Preference Dominance Approaches for Conversational
Recommender Systems

Walid Trabelsi and Nic Wilson and Derek Bridge' and Francesco Ricci’

Abstract. Conversational recommender systems typically involve
iteratively showing the user a small set of options for them to choose
between. In order to choose an appropriate set to display at each
stage, it is useful to have information regarding the user’s relative
preference between options: specifically whether an option is dom-
inated by others with respect to the user’s preference relation. This
paper describes a simple semantic framework for preference domi-
nance, and two instances of the framework are developed for a re-
cent kind of conversational recommender system. The first is based
on a basic quantitative preferences formalism, where products are
compared using sums of weights of features, and the input language
involves comparisons between options. The second is a qualitative
preference formalism, where models are a kind of generalised lexico-
graphic order, and the inputs are comparative preference statements
(in a language generalising CP-nets). A key feature of both methods
is that deductions of preference dominance can be made efficiently,
since this procedure needs to be applied for many pairs of products.
The two approaches have been implemented, with encouraging ex-
perimental results.

1 Introduction

In an era of overwhelming choice, recommender systems are a new
source of assistance, helping their users to decide which goods, ser-
vices or information to purchase or consume [1]. These systems infer
user preferences from data gathered either explicitly, e.g. in the form
of product ratings, or implicitly by observing user behaviour. The
prediction algorithms used within recommender systems include col-
laborative filtering, content-based filtering and case-based reasoning
[1, 6].

No matter how good recommender systems become, they are un-
likely ever to be sufficiently prescient that their first set of recom-
mendations always satisfies the user. Conversational recommenders
allow for this, and recognise that their users may be willing and able
to reveal more of their constraints and preferences, over a short di-
alogue. This is also an opportunity for the recommender system to
guide the user by asking questions, giving advice, displaying can-
didate products, and giving explanations [11, 6, 13, 12]. In 2007,
Bridge & Ricci introduced a new kind of conversational recommen-
dation, which they call Information Recommendation [7]. We de-
scribe Information Recommendation in Section 5. We use it as the
setting in which we explore different models of user preferences.
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Conversational recommender systems typically involve iteratively
showing the user a small set of options (e.g., products) for them to
choose between. In order to choose an appropriate set to display at
each stage, from a much larger collection of options, it is useful to
have information regarding which options are likely to be preferred
to others by the user, based on previous responses they have given
in the dialogue; if one assumes that the user has some kind of pref-
erence relation over products, this amounts to determining if certain
products are dominated according to this preference relation.

This paper describes, in Section 2, a simple semantic framework
for this kind of reasoning, where a set of models of the user is as-
sumed, with an associated preference ordering, along with a satis-
faction relation between models and preference statements in an ap-
propriate language. Based on such a framework, given a set of in-
put statements, we infer that one choice is preferred to another if
this preference holds for all models satisfying the input statements.
Two instances of the framework are developed. The first, described
in Section 3, is based on a simple quantitative preferences formalism,
involving a sum of weights, with an associated language of linear in-
equalities. The second (see Section 4) is a qualitative preference for-
malism, where models are a kind of generalised lexicographic order,
and the inputs are comparative preference statements (in a language
generalising CP-nets [3]). A crucial feature of both methods is that
deductions can be made efficiently, since this procedure of testing
dominance needs to be applied for many pairs of products.

Both the quantitative and the qualitative approaches are developed
in Section 5 for Information Recommendation [7]. Implementations
of the methods have been experimentally tested, as described in Sec-
tion 6.

2 A Framework for Dominance of Preferences

We assume a set Q of outcomes, representing possible choices, for
example, products that a user is interested in buying. We would like
to generate some kind of (partially ordered) preference relation on Q,
based on previous information we have received regarding the user’s
preferences. This section describes a simple semantic framework for
generating such a preference relation. We will define in Section 3 and
Section 4 two instances of the framework.

In order to make non-trivial inferences regarding the user’s relative
preferences over outcomes, we will have to make some assumptions.
We assume information of the following form:

e A set of models M : each of these is intended to represent a possi-
ble user (or way the user could be). Associated with each M € M
is a total pre-order =), on outcomes, i.e., a reflexive, transitive
and complete relation (so for all outcomes o and B, we have either
o =y B or B =p o (or both).



e A formal input preference language L, used to represent state-
ments induced from the user’s responses.

e Arelation |= between M and L. For M € M and ¢ € L, we inter-
pret M = ¢ to mean that @ holds for the preferences of M.

For any particular situation the assumption is that we will be given
a particular set @ C L of input statements. We can then consider the
preference orderings on outcomes which hold for every model sat-
isfying input statements ®. Formally, we define relation =4 on out-
comes as follows: o =g P if and only if o 3=y B for all M satisfying
(every member of) ®. It follows that =¢ is a pre-order (a reflexive
and transitive relation) on outcomes. Now, o =¢ 3 means that every
user who agrees with @ considers that outcome o is at least as de-
sirable as outcome [ (assuming this particular model of users). It is
possible that we also have B =g o, Define relation ¢ to be the strict
part of 3=, so that o ¢ P if and only if o = B and B #¢ a. Rela-
tion >¢ is irreflexive and transitive. We say that Given ®, o strictly
dominates B, if o - P, i.e., if all users M agreeing with ® regard o
as at least as preferable as B (i.e., o =) B), and at least one user M
regards o as strictly preferable to B (i.e., B %y Q).

QOutcomes generated from features. In this paper we consider a
set of outcomes with a particular structure. We assume a collection of
features V = {Fy,...,F,}. Define a configuration o to be a mapping
from {1,...,n} to {1,0}. Configuration o can also be thought of a
set of features, i.e., all features F; such that o(i) = 1. The features
are intended to relate to a set of products that the user is interested in
choosing between; for example, in choosing a hotel room, one fea-
ture might be whether the hotel has a swimming pool. We assume
here that having a feature is always at least as good as failing to
have it. The set of outcomes is then a subset of the set of configura-
tions, corresponding to choices (e.g., products) that are available to
the user. For convenience we will also write a configuration such as

(1701 1) as f1f2f3-

3 Sum of Weights Model of the User

In this section we consider our first kind of model of users, where it
is assumed that a user assigns a weight to each feature, and outcomes
are compared on the sum of weights of the associated set of features.
This is a very commonly used model for preference representation,
specifically, in Multi-Attribute Utility Theory (MAUT) [8].

The set of models is the set of all vectors of weights w =
(W1,...,wy), where w; is a non-negative real number. w; can be con-
sidered as a weighting assigned to feature F;. Given a weights vector
w, the overall value w(a) of a configuration o is the sum of weights
of the features included, i.e., w(0) = ¥;.j—1 wi- This is used to de-
fine the ordering on configurations. We define the preference rela-
tion 3=, for model w by a =, B if and only if w(a) > w(B), i.e.,
iff Yy wi(ou(i) — B(i)) > 0. Thus =, is a total pre-order on configura-
tions.

Preference language: this consists of statements of the form o >
B, where o and B are outcomes. Weight vector w is defined to satisfy
o> Bif a =, B. Let @ be a set of input preference statements. The
definitions in Section 2 lead to the following definition of =g, the
induced preference relation given preference statements ®:

For outcomes o and B, o =¢ P if and only if a 3=, B for all weight
vectors w satisfying ®. Dominance relation >¢ is then the strict part
of =¢. When comparing with the second semantics, we also use the
notation =g’ for =g.

Example 1. Let @ be the pair of preference statements: f 5 f3 >

fifafs. and f1f2f3 > fif2f3. Let o be the outcome fi f2f3, and let B
be the outcome f| f> f3. Weights vector w satisfies fi f>.f3 > f1.fof5 if
and only if W(f] f_2f3) > w(f] fzf:;), i.e., wi +w3 > wy + w3, which
holds if and only w; > w,. By similar reasoning, w satisfies ® if and
only if w; > wy and w| > ws3. Also, w satisfies a > B if and only
if wi > wy +wj3. Thus @ does not entail o0 > B, so we do not have
o kﬁﬁv B, since, for example, weights vector w with w; =4, wp =2
and w3 = 3 satisfies ® but does not satisfy o > f.

Example 2. Suppose now that there are four features, and let
Y be the pair of preference statements f|f>f3f4 > fifof3fs and
fifafsfs > fifofsfa. With the sum of weights semantics this im-
plies fiffsfs > fifofsfs, since the first statement implies wy >
wy, and the second statement implies wy > w3, implying w; > ws,
which implies that the third statement is satisfied. We therefore have

fihaf3fa =8 Aifafsfs

Computational aspects: We wish to determine if o = B, for
given configurations o and f. Let Pos be the set of constraints w; > 0,
for i =1,...,n, representing the non-negativity of the weights (and
corresponding to the assumption that including a feature is always at
least as good as not including it). The definition implies that o =g
if and only if the linear constraints ® U Pos (over real-valued vari-
ables w;) entail the constraint };(ou(i) — B(i))w; > 0.

For implementation of this using a Linear Programming solver,
it can be convenient to express it as a linear optimisation problem.
Define A, to be the minimum value of Y (ou(i) — B(¢))w; subject to
constraints ® U Pos. It can be easily shown that o ¢ P if and only
@ U Pos entails Y;(o(i) — B(i))w; > 0 if and only if A, > 0.

4 Comparative Preferences Model of the User

In this scenario, models are a kind of generalised lexicographic order,
called cp-trees [16], which are similar to search trees used for solving
constraint satisfaction problems. Figure 1 gives an example of a cp-
tree. There is a most important variable, F>, and an ordering of its
values. In order to be consistent with the requirement that including
a feature is never worse than not including it, this local ordering is
f> > f>, where f> means F is included (F>» = 1) and f> means that
F> is not included (F>, = 0).

Figure 1. A cp-tree G, along with its associated ordering on outcomes =g.

Two configurations o and 3 are compared first on this most impor-
tant variable. If they do not agree on this variable then the compari-
son is settled: If a contains feature F> and B does not, then o is better
than . This happens, for example, if o is the outcome fi f> f3 and B



is f1f>f3. Otherwise, o and B agree on the most important variable.
The user may then have a next most important variable; which this
is can depend on the value assigned to the most important variable
(thus this model allows conditional preferences). If there is no such
next important variable, then o and [ are considered equally prefer-
able according to this cp-tree. Thus the cp-tree ¢ generates a total
pre-order = on outcomes.

Note that a node in the cp-tree in Figure 1 is associated with a
single variable. In fact, we can allow a more general representation,
where at most 7y variables (where e.g., Y = 1, 2 or 3) are associated
with a node, along with a total pre-order over the assignments to that
set of at most 7y variables. For example, if a node is associated with
the pair of variables Y = {F>,F3} then the local ordering is over as-
signments to ¥, and might be e.g., fof3 > f.fs = fofs > Hfs. Let
M (y) be the set of cp-trees over Q, where the set of variables asso-
ciated to a node involves at most ¥ variables. A 1-cp-tree over Q is
defined to be an element of M (1), i.e., a cp-tree with a single vari-
able being associated with each node. The local ordering associated
with a node associated with feature F;, must then be f; > f,-, since
including a feature is always at least as good as not including it. Full
definitions of cp-trees are given in [16].

The Language: The preference language will include preference
statements that compactly express comparative (and sometimes con-
ditional) preferences. There is a substantial and fast growing litera-
ture on this topic in the Al and Philosophy of Science communities,
seee.g., [14,9, 3, 15,5, 4, 16].

Each statement ¢ in the language has an interpretation ¢*, which
is a relation between outcomes, giving the direct implications of ¢
regarding preferences between outcomes. We say that total pre-order
= satisfies @ iff = extends ¢*, i.e., if (&, ) € @* implies o > f.

The language will include only comparative preference statements
¢ of the form p > ¢ || T, where P, Q and T are sets of features, and
p is an assignment to P (i.e., a function from P to {0,1}), and g is
an assignment to Q. Informally, the statement p > ¢ || T represents
the following: p is preferred to ¢ if T is held constant. Formally,
the semantics of this statement is given by the relation @* which is
defined to be the set of pairs (a.,3) of outcomes such that o extends
p (i.e., arestricted to P equals p), and 3 extends ¢, and o and [ agree
on T: oT)=B(T). A very important kind of input statement is one
expressing a preference for one outcome, o, over another, 3. This
can be written as o > 3 || 0; as above we also write such a preference
statement as o > .

Since including a feature is at least as good as not including it,
we always include, in the set @ of input statements, the preference
statement f; > f; | V' \ {F;} for each feature F;. Hence our language
is strongly related to Conditional Importance Networks [4].

Comparative preference dominance relation. We define the set

of models of users to be the M () for some Y= 1,2, or 3. Each cp-
tree G generates a total pre-order = on outcomes. Let ¢ be a cp-tree
and let @ be an input comparative preference statement. G satisfies
¢ if and only if =¢ satisfies @, which is if and only if >5 extends
©*. In the same way as in Section 2 and Section 3, we define, for a
given set of input comparative preference statements @, ¢ (or more
precisely, %;fy), in the following way: o ¢ P holds if and only if
o 3= P holds for all cp-trees 6 in M () satisfying P.

Example 1 continued. With the cp-tree semantics, when y = 1,
the pair of statements ® implies the preference statement fi f> f3 >
fifofs, so we have f1f>fs %g" fifof3. The reason is that, for any
1-cp-tree G satisfying fi f>f3 > fif>f3, the most important feature

must be either F; or F3. (If F, were the most important feature, then
we would not have fi /13 =6 f1./2f3, because the local ordering is
f>» > f, since the presence of a feature is never worse than its ab-
sence.) Similarly, if 1-cp-tree G satisfies f| f>f3 > f1/>f3, then the
most important feature must be either F; or F>. Hence for any 1-cp-
tree satisfying @, F is the most important variable. The top node then
decides pair of outcomes f f>f3 and fj f> f3. Since the local ordering
of this node must be f; > fi, we have fi 3 = fif>f3. Hence we
have f1/>/3 >g" f1./2f3. The qualitative and lexicographic nature
of the cp-trees semantics ensures this inference, in contrast with the
numerical sum of weights method.

Example 2 continued. In contrast with the sum of weights se-
mantics, ¥ does not imply f1f>f3fs > fifofsfs. To show this we
can construct a 1-cp-tree ¢ with Fy as the most important (top) vari-
able, and where, given f4, F3 is more important than F; which is
more important than F», and given fy, F> is more important than
F3 which is more important than F;. ¢ then satisfies ¥, but not
f1haf3fa 2 fifafsfa.

A key issue here is that cp-trees can represent conditional prefer-
ences: the preferences can be different given f; from those given fj.
In contrast, the sum of weights semantics assumes preferential inde-
pendence, so preferences are not conditional at all, which is why the
inference holds for the sum of weights semantics.

The pair of examples shows that the two preference dominance
techniques are incomparable: >g’1 can sometimes include prefer-
ences not included in kg" , and vice versa.

Computation of Preference: Given set of preference statements
@, and outcomes o and B we can determine in polynomial time
whether or not o >¢ B holds, using the algorithm given in [16], as
shown by Theorem 1 in [16].

5 Development of Approaches for a Conversational
Recommender System

We compare the Sum of Weights Model and the Comparative Pref-
erences Model in the conversational product recommender system
application first described in [7]. In this setting, a user repeatedly ed-
its and resubmits a query until she finds a product that she wants. The
recommender system: observes the user’s actions; infers user prefer-
ences; uses the preference statements to deduce which queries a user
is likely to try next; and advises the user to avoid those that are unsat-
isfiable. In [7], users are represented by the Sum Of Weights Model.

Below we describe this recommender system in more detail; we
relate it to the framework for dominance of preferences presented
above; and we show how users can alternatively be represented by
the Comparative Preferences Model.

In this setting, outcomes 2, over which preferences are expressed,
are queries over a set of features Fi,...,F, (rather than e.g., prod-
ucts). If a user issues query g and if f; € g, this means that the user
is interested in products that have the ith feature. In accordance with
most Web-based product search systems, f; ¢ ¢ means only that the
user has not (yet) declared any interest in feature F;; it does not mean
that the user wants products that lack the ith feature.

A query is satisfiable it and only if there exists a product which
has all the features in the query; otherwise, it is unsatisfiable. Users
cannot be expected to know in advance which queries are satisfiable
although they may have incomplete knowledge of this.



The dialogue

In the kind of system envisaged in [7], the user submits an initial
query, typically one that is quite under-specified: ‘to test the water’.
In our experiments we use an empty initial query.

The recommender system does not know the user’s preferences
and does not ask about them. It may only infer them from the se-
quence of queries that the user submits. As the dialogue proceeds,
the recommender system will infer preference statements expressed
in preference language £. We will denote the current set of state-
ments by ®. Initially ® contains a set of ‘background’ assumptions.
In particular, we wish to express that including a feature in a query is
at least as good as not including it. For the Sum of Weights Model,
initially @ = Pos, i.e. the set of constraints w; > 0, fori=1,...,n. For
the Comparative Preferences Model, initially & contains the prefer-
ence statement f; > f; | V \ {F} for each feature F;.

The interaction between the user and the recommender system
proceeds as follows:

1. The recommender system analyzes g, with particular regard to dif-
ferences between current query ¢ and the previous query the user
submitted. (In the case where g is the very first query, the previ-
ous query is the empty set.) The system induces some additional
preference statements to add to inputs .

2. The recommender system generates a set of candidate next pos-
sible queries and prunes this set to those that are satisfiable and
undominated (see below). It advises the user to confine her next
query to this set.

3. The user chooses and submits her next query. This becomes the
new current query ¢. In the experiments reported in the next sec-
tion, we arrange that the user always chooses one of the queries
that the system advises (although this might not be so in practice.)

Steps 1-3 are repeated until the user is satisfied with ¢ or the set of
undominated, satisfiable candidates is empty, in which case as far as
the recommender system is concerned g cannot be bettered. At this
point, the user can request to see the products that satisfy q.

The goal of the recommender system is to give the advice that has
the greatest value. We consider this to be that which minimizes the
total quantity of advice given and the dialogue length, while guiding
the user to the best product.

During step 2 above, the recommender system computes the fol-
lowing three sets of queries:

e Candidates: Candidate queries are ones which are close, in a par-
ticular sense, to the current query. Each is a low-cost edit to the
current query. For example, for each f; € g, the set of candidates
will include the query that results from adding just feature f; to g.

o Satisfiables: The recommender system never includes unsatisfi-
able queries in its advice: they make interaction length longer
without leading the user to the best product. Hence, the system
eliminates from Candidates those queries which are unsatisfiable;
the remaining queries are called the Satisfiables.

e Undominated: The system could advise the user to confine her
query to Satisfiables. However, this set can be large. Hence, the
system eliminates from Satisfiables each query which is domi-
nated by (i.e., worse than) some other member of Satisfiables; the
remaining set of queries is called Undominated. The dominance
relation is based on what is induced in step 1 above. The rationale
is to exclude from the system’s advice queries that, on the basis of
what the system has induced about the user’s preferences, it thinks
the user would regard as inferior.

In the following, we will explain how to obtain the three sets of
queries.

Generating the candidates: Real user behaviour in query edit-
ing tends to proceed with modifications of limited ‘reach’. Hence,
following [7], we define Candidates as the set of queries which we
obtain by applying three editing operations, Add, Switch and Trade,
to the current query. These operations are defined as follows. Given
current query g and f; & g, then Add(q, f;) adds just feature f; to
g, giving the new query g U {f;}, which we sometimes write as
q'. Switch(q, fi, ;) where f; € q,fj & q.i # j discards feature f; in
favour of feature f;, giving the new query ¢\ {fi} U{f;}. Finally,
Trade(q7fi7fj7fk) where f; € q‘f] ¢4, fx £ q,i # j,i #k, j # k dis-
cards feature f; and introduces features f; and fi.

Checking satisfiability: As defined earlier, a query is satisfi-
able if and only if there exists a product which has all the features
present in the query. (It may also have other features, not present
in the query.) To produce Satisfiables requires eliminating unsatisfi-
able queries from Candidates. If products are stored explicitly in a
database, satisfiability of a candidate query can be checked by a scan
of the database. For configurable products, where the set of products
is represented as a set of solutions to a Constraint Satisfaction Prob-
lem, satisfiability of a candidate query can be checked by determin-
ing if the CSP has solutions containing all the features in the query
(which can be checked by checking satisfiability of an augmented
CSP).

Checking for dominance: The final pruning of the satisfiable can-

didate queries can be performed using one of the two strict domi-
nance approaches described earlier. In either case, g € Satisfiables is
pruned if it is strictly dominated, i.e., dominated according to rela-
tion =g, by ¢’ € Satisfiables. This dominance relation is based on
the set ® of formal preference statements which are induced in step
1 of the dialogue.

It remains for us to explain what the system induces in step 1
above, when it observes the user’s queries. We explain this below for
each of the two preference models. Due to space limits, we confine
our treatment only to what can be inferred when the system observes
the user adding a feature f; to a query g, Add(q, f;). However, our
system induces preference statements for Switch and Trade as well
as for Add.

Generating induced preference statements for sum of weights
model: If the user has added feature f; to query g, then statements
q' > ¢’ are induced for all fi € q,i# junless Add(q, f;) = g is
unsatisfiable. This assumes that the value of the new query must be at
least as much as the value of other satisfiable queries that could have
been generated by adding other features. This implies that the weight
vector satisfies the linear inequality w; > w;. However, we do not
infer ¢' > ¢/ in all cases. In particular, we do not infer it if Add(q, f;)
is unsatisfiable. Users may have (incomplete) knowledge of which
queries are unsatisfiable: if she knows a query is unsatisfiable, then
she will not submit it. We ‘play it safe’: when ¢/ is unsatisfiable, in
case the user knows this, we do not assume that the query that she
does submit has higher weight than this unsatisfiable query.

Generating induced preference statements for comparative
preferences model: Again consider the situation where the user
has chosen to add feature f; instead of feature f;. There is more than
one way one might induce a comparative preference statement from
this decision by the user. We consider two, each being a kind of coun-



terpart for the constraint w; > w; induced for the sum of weights
approach.

Basic: Let g be the current query, let ¢’ be the current query g with
the feature f; added, and let ¢/ be ¢ with the feature f ' added.
A basic, somewhat conservative, approach is to just model the
preference of feature i over feature j by the preference statement:
q > quﬁ), i.e., ¢' > ¢/, which just expresses a preference for g
over ¢/

Importance: Alternatively, and less conservatively, we can induce
fi > fillV\ {F,F;}, which says that the presence or not of the
feature F; is more important than the choice of F;. Thus, whatever
the state of the feature F; in the query the user will prefer F; to
be present in the query so that this feature is included in the best
product.

Note too that, in either case we ensure that the recommender sys-
tem ‘plays it safe” when inducing preference statements, in the same
way that we explained for the Sum of Weights Model.

6 Experiments

In this section, we report experiments with simulated users that
demonstrate the feasibility of using both the Sum of Weights Model
and the Comparative Preferences Model within the conversational
recommender system that we described above. We use two separate
product databases, that we scraped from the Web, each describing
hotels by their amenities expressed as Boolean features such as air-
port shuttle, pets permitted, restaurant on-site, etc. The Marriott-NY
database records 9 features about 81 hotels; many offer the same
amenities, and so there are 36 distinct products in the database. The
Trentino-10 database records 10 features about 4056 hotels, of which
133 are distinct.

The simulated users behave in the following somewhat idealized
way: within a dialogue, they do not try queries that they have tried
earlier in the dialogue; they are aware of their own preferences and
never choose a next query that would be inferior to the current one;
and they take heed of all advice given, i.e. if the recommender sys-
tem tells them to confine their next query to a certain set, then they
do so; indeed they choose the best possible query from this set. (In
the terminology of [7], these are optimizing users.) The user’s true
preferences are represented either in the Sum of Weights Model by
randomly generating weight vectors over product features or in the
Comparative Preferences Model by randomly generating cp-trees
over product features. While this vector or cp-tree is known to the
simulated user and used for query selection, it is not known to the
recommender system, which knows only what it induces and adds to
& when observing user query behaviour.

In the experiments, we pair the users with each of several recom-
mender systems. One recommender system uses the Sum of Weights
Model. Six use the Comparative Preferences Model, differing first on
which of the two alternative preference statements they infer (Basic
or Importance), and on their value for Y (1, 2 or 3). For each pairing of
a user with a recommender system, we ran 500 simulated dialogues.

The experiments allow us to compare the pruning rate achieved
by using the Sum of Weights Model with those achieved by the six
recommender systems that use the Comparative Preferences Model.
The pruning rate is defined as follows:

|Satisfiables \ Undominated)|
|Satisfiables|

pruning rate = x 100

It shows the extent to which an approach eliminates what it takes to
be inferior satisfiable candidate queries from its advice. Other things
being equal, the shorter the advice the better, as this reduces the
choice the user has to make. The results in the case where the users’
true preferences are represented in the Sum of Weights Model are
shown below.

| v=1 [ y=2 | v=3
Marriott-NY
Comp. Prefs. Basic 87.50 | 14.48 | 12.65
Comp. Prefs. Importance | 87.50 | 87.49 | §87.42
Sum of Weights 87.38
Trentino-10
Comp. Prefs. Basic 87.49 | 16.51 | 13.98
Comp. Prefs. Importance | 87.42 | 87.57 | 86.72
Sum of Weights 85.72

The table shows that, in nearly all settings, the Comparative Pref-
erences approach is pruning non-optimal queries a little more than
the Sum of Weights approach. For example, in the Marriott-NY part
of the table, the Comparative Preferences Model using Basic pref-
erence statements and with y = 1 eliminates 87.5% of satisfiable
candidates in dialogues about the Marriott-NY database, where the
Sum of Weights approach prunes 87.38%. The tables also show that,
on the whole, with the Comparative Preference Model, the amount
of pruning increases as the preference statements induced become
less conservative (from Basic to Importance). For example, in the
Trentino-10 part of the table with y = 2, pruning goes from 16.51%
Basic to 87.57% Importance. (The very slight exception to this for
the Trentino-y = 1 case is probably due to random variation in tie
breaking.)

Furthermore, we see that the parameter v, (the maximum number
of variables that are associated with a node in a cp-tree), affects the
degree of pruning. Specifically, as y increases, the number of queries
pruned tends to decrease. For example, in the Marriotr-NY part of
the table with preference statements Importance, pruning goes from
87.50% (y=1) to 87.49% (y = 2) to 87.42% (y = 3). This is a re-
flection of the monotonicity with respect to y observed above (how-
ever, pruning is to do with strict dominance, which is not necessarily
monotonic with respect to vy, but very often will be, because of the
monotonicity of dominance.) The effect is especially marked in the
Basic model where the pruning rate falls from nearly 90% to around
16.5% or less. When 7 is increased from 1 to 2, many queries of the
Trade form become undominated in the Basic model, because of the
more expressive preference relations which can be represented by
cp-trees with Y= 2 (allowing more than one feature to be assigned at
a node). With the stronger Importance preference form, these Trade
queries are still dominated.

What is also of concern from a practical point of view is the av-
erage length of the advice that the system gives, i.e., the number of
options the user has to choose from; this is inversely related to the
pruning rate. Except in the cases where pruning is very low (Basic
with Y= 2 or 3), advice from the Sum of Weights recommenders is
very slightly longer than it is in the case of the Comparative Pref-
erences recommenders, being around 10 for both datasets. Dialogue
lengths are very similar in the case of all recommenders: around 6
steps on average for Marriott-NY, and around 6.8 steps for Trentino-
10.

Of course, it is not enough to know that one approach prunes more
than another, or gives shorter advice. If it were doing so to the detri-
ment of other factors, in particular the ability of the user to reach the
best product, then the extra pruning would be of little value. We have



measured the extent to which the final queries that the user reaches
in a dialogue (and hence the final product that she might choose)
agree across the different recommenders. Space limits preclude the
inclusion of detailed results but we find that the Comparative Prefer-
ences approaches agree with the Sum of Weights approach between
91 and 99% of the time, and the more an approach prunes, the less
this agreement is. For example, for Trentino-10, Basic y = 1 agrees
with Sum of Weights 92.6% of the time; this rises to 96.2% for y=2;
and it falls to 92% for Importance y = 1.

Where the user’s true preferences are represented in the Sum of
Weights Model, we have also measured the amount by which the
utility of the product that the user ultimately chooses falls short of
the utility of the best product that she could have reached, normal-
ized by the difference between the products of highest and lowest
utility. Unsurprisingly, these follow a similar pattern to the percent-
age agreements reported in the previous paragraph. The values are
very close to zero, ranging from 0 to 0.008.

When vy = 1, the time taken by the different implementations of
the pruning is roughly similar—for example, around 0.2 seconds for
a dialogue with the basic comparative preferences pruning for the
Trentino dataset—with the sum of weights linear programming algo-
rithm taking a little longer than the two others. The computation time
increases exponentially with 7; for example, the Basic-Trentino-y =3
dialogue takes on average around 7.5 seconds.

Overall, for this experimental setup it seems that it is better to use
the more restrictive set of models corresponding to Yy = 1, at least for
the Basic preferences input form, because, it generates much greater
pruning, leading to manageable sets of options for the user, and is
computationally cheaper. However, in other situations the more cau-
tious reasoning corresponding to Y = 2 or 3 might pay off in terms of
the final quality of solutions.

We have shown results in the case where the user’s true prefer-
ences are represented in the Sum of Weights Model. Space limits
prevent us from showing what happens when their preferences are
modeled using cp-trees. Suffice to say that the numbers are very sim-
ilar and follow similar patterns to those reported above.

7 Discussion

There has been a lot of excellent theoretical work produced on com-
parative preference formalisms in recent years, for example, the
award winning papers [3, 10]; however, development towards ap-
plications has been lagging somewhat. A major contribution of this
paper is to show how a comparative preferences approach can be
adapted for a conversational recommender system. For this kind of
application it is important that the preference language allows the ex-
pression of direct comparisons between outcomes (that one outcome
is preferred to another); and also that the inference technique is both
efficient and rather adventurous in its inferences (or else the pruning
of possibilities is too weak). The language, inference method and al-
gorithm described in [16] fit these requirements. We have shown that
it is possible to implement this inference method so that it is effi-
cient in a practical (rather than theoretical) sense, as part of a form of
conversational recommender system. We have tested our method on
datasets involving real hotel data, and shown that it leads to strong
pruning of possibilities, but without eliminating the best options,
even when ‘best’ is defined based on a different semantics (based
on a sum of weights of included features).

An attractive feature of the comparative preferences approach is
that it would also allow general conditional preference statements to
be expressed by the user, such as If the hotel is not in the city centre,

then 1'd like there to be an on-site restaurant. Such statements can
further strengthen the pruning capability, and could potentially be
re-used for different searches.

In future work, we will extend these approaches for other kinds of
recommender systems, including for non-boolean features, and for
configurable products, where the set of possibilities is expressed im-
plicitly as the solutions of a Constraint Satisfaction Problem. We will
also consider other inference procedures. For instance, the weighted
sum model can be easily extended to a sum of functions of more than
one variable (a GAI representation [2]).
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