CBR for CBR:
A Case-Based Template Recommender System
for Building Case-Based Systems

Juan A. Recio-Garcia!, Derek Bridge?,
Belén Diaz-Agudo', and Pedro A. Gonzélez-Calero!

! Department of Software Engineering and Artificial Intelligence,
Universidad Complutense de Madrid, Spain
jareciog@fdi.ucm.es, {belend,pedro}@sip.ucm.es
2 Department of of Computer Science, University College Cork, Ireland
d.bridge@cs.ucc.ie

Abstract. Our goal is to support system developers in rapid prototyp-
ing of Case-Based Reasoning (CBR) systems through component reuse.
In this paper, we propose the idea of templates that can be readily
adapted when building a CBR system. We define a case base of templates
for case-based recommender systems. We devise a novel case-based tem-
plate recommender, based on recommender systems research, but using
a new idea that we call Retrieval-by-Trying. Our experiments with the
system show that similarity based on semantic features is more effec-
tive than similarity based on behavioural features, which is in turn more
effective than similarity based on structural features.

1 Introduction

It is an aspiration of the software industry that software development proceeds,
at least in part, by a process of reuse of components. The anticipated benefits
are improvements in programmer productivity and in software quality.

Compositional software reuse consists of processes such as: identifying reusable
components; describing the components; retrieving reusable components; adapt-
ing retrieved components to specific needs; and integrating components into the
software being developed [1]. These are difficult processes, made more difficult
by the high volume of reusable components with which a software developer
must ideally be acquainted.

Over the last twenty years, researchers have been looking at ways of pro-
viding software support to programmers engaged in software reuse. A lot of this
research has drawn ideas from Case-Based Reasoning (CBR). The CBR cycle [2],
retrieve-reuse-revise-retain, has obvious parallels with the processes involved in
software reuse [3]. For example, an ambitious CBR system for software reuse is
proposed in [4]. Its design combines text retrieval on component documentation
with similarity-based retrieval on a case base of software components represented
in LOOM. In [5], information about a repository of Java class definitions is ex-
tracted using Java’s reflection facilities, and this information is used (along with



human annotations) to index the repository for similarity-based retrieval. In [6]
retrieval is from a case base of Java ‘examplets’ (that is, snippets that demon-
strate Java usage), using a mixture of text retrieval and spreading activation
over a graph-based representation of the examplet token stream.

The most sustained research effort is that of Gomes [7]. In his ReBuilder
system, cases represent designs and design patterns expressed as class diagrams
in the Unified Modeling Language (UML). The work is unusual in providing
some support for automated adaptation of the user’s retrieved cases.

There has been surprisingly little work in which CBR applications have them-
selves been the target of case-based reuse: CBR for CBR! Perhaps the only ex-
ample is the work reported in [8, 9], where CBR is used at the corporate level to
support organization learning in software development projects, including CBR
projects.

On the other hand, there are now several frameworks for building CBR sys-
tems, including myCBR?, IUCBRF*, and, the most developed, jCOLIBRI®.

jCOLIBRI, for example, is a Java framework for building CBR systems. Build-
ing a CBR system with jCOLIBRI is a process of configuration: the system devel-
oper selects tasks that the CBR system must fulfil and, for every primitive task,
assigns one of a set of competing methods to achieve the task, where a method
is an actual Java implementation. Non-primitive tasks decompose into subtasks,
which themselves may be primitive (achieved by methods) or non-primitive (re-
quiring further decomposition). Ideally, every task and method that a system
designer needs will already be defined; more realistically, s/he may need to im-
plement some new methods and, more rarely, to define some new tasks.

In jeoLIBRI 1, the emphasis was on supporting the novice system developer.
A developer could build a CBR system using a visual builder, i.e. s/he used a
graphical tool to select tasks and methods in point-and-click fashion. While easy
to use, this offered low flexibility. For example, it was not easy to implement
new methods; and to keep the visual builder simple, non-primitive tasks could
be decomposed only into sequences of subtasks.

jCOLIBRI 2 is a more ‘open’ system: a white-box framework that make it
easier for programmers to add new methods to its repository. Non-primitive task
decomposition now supports conditionals and iteration, as well as sequence. This
raises the question of how best to support system developers who wish to use
JjCOLIBRI 2 to build CBR systems. For novices building simple systems, a visual
builder might again be appropriate, although as yet a visual builder for jCOLIBRI
2 has not been written. But for more complex systems, students, inexperienced
designers and even experienced designers may benefit from greater support. In
this paper, we explain how we have extended jCOLIBRI to have a case base of
past CBR systems and system templates, and how we explain how we can give
case-based support to these users of the jCOLIBRI framework: truly, CBR for
CBR.

3 http://mycbr-project.net/
4 http://www.cs.indiana.edu/ sbogaert/CBR/index.html
® http://gaia.fdi.ucm.es/grupo/projects/jcolibri/



The contributions of this paper are as follows. We define the idea of templates,
as abstractions over past systems (Section 2). We show how a case base of systems
can be defined, where each can be described in terms of the templates from
which it was constructed and features drawn from an ontology of CBR systems,
and we describe Retrieval-by-Trying, which we have implemented in a case-
based recommender system for case-based recommender systems (Section 3). We
define alternative similarity measures that can be used in Retrieval-by-Trying
(Sections 4). We give an example of our system in operation (Section 5). And we
use ablation experiments to evaluate the different similarity measures (Section 6).

2 Template-Based Design

2.1 Templates

A template is a predefined composition of tasks. Each template is an abstraction
over one or more successful systems (in our case, CBR systems). A template
may contain primitive tasks, for which there will exist one or more methods
that implement that task. A template may also contain non-primitive tasks,
for which there may be one or more decompositions, each defined by a further,
lower-level template. As already mentioned, in jCOLIBRI 2 tasks can be composed
in sequence, conditionals and iteration. Templates are defined by experts who
have experience of building relevant systems and are capable of abstracting over
the systems they have built.

A system developer can rapidly build a new prototype CBR system by re-
trieving and adapting relevant templates, a process we will refer to as template-
based design. The designer will select among retrieved templates, among decom-
positions of non-primitive tasks, and among methods that implement primitive
tasks. There may be occasions too when the designer must modify templates,
e.g. inserting or deleting tasks or altering control flow; and there may be times
when s/he must implement new methods. The degree to which these more rad-
ical adaptations are needed will depend on the extent to which the template
library covers the design space. It also depends on the extent to which CBR is
suitable for CBR, i.e. the extent to which problems recur, and similar problems
have similar solutions.

There is a knowledge acquisition bottleneck here: experienced CBR, designers
must define the templates. Furthermore, templates are not concrete instances.
They are abstractions over successful designs. Nevertheless, we believe that this
is feasible for CBR systems. They have a strong, recurring process model, whose
essence the expert can capture in a relatively small number of templates.

As proof-of-concept, we have built a library of templates for case-based rec-
ommender systems. The second author of this paper acted as expert, while the
other authors acted as knowledge engineers. Within a few hours, we obtained a
library of templates with, we believe, good coverage, which we have refined, but
not substantially altered, over the last twelve months. We will describe some of
these templates in the next section. More of them are described in [10].



IFa-Off
reference

Elicitation

| elrieval

Implay

, 3 Buy or Quit-
item list

Fig. 1. Single Shot Systems

2.2 Templates for case-based recommender systems

We have defined twelve templates for case-based recommender systems, based in
part on the conceptual framework described in the review paper by Bridge et al.
[11]. We take the systems’ interaction behaviour as the fundamental distinction
from which we construct templates:

— Single-Shot Systems make a suggestion and finish. Figure 1 shows the tem-
plate for this kind of system, where One-Off Preference Elicitation (for so-
liciting the user’s ’query’) and Retrieval (for finding items to recommend)
are complex tasks that are solved by decomposition methods having other
associated templates.

— After retrieving items, Conversational Systems (Figure 2) may invite or allow
the user to refine his/her current preferences, typically based on the recom-
mended items. [terated Preference Elicitation might be done in navigation-
by-proposing fashion [12] by allowing the user to select and critique a recom-
mended item thereby producing a modified query, which requires that one
or more retrieved items be displayed (Figure 2 left). Alternatively, it might
be done in navigation-by-asking fashion [12] by asking the user a further
question or questions thereby refining the query, in which case the retrieved
items might be displayed every time (Figure 2 left) or might be displayed
only when some criterion is satisfied (e.g. when the size of the set is ‘small
enough’) (Figure 2 right). Note that both templates share the One-Off Pref-
erence Elicitation and Retrieval tasks with single-shot systems.

In the diagrams, non-primitive tasks are shown as red/dark grey rectangles.
These tasks are associated with one or more further, lower-level templates. For
the purposes of this paper, we will describe the decompositions of the Retrieval
task, because it is common to all case-based recommender systems and because
it will be familiar to everyone in a CBR audience. For information about the
decompositions of the other non-primitive tasks in Figures 1 and 2, see [10].



| Fe-off
reference

Elicitation

[ or [ee
reference

Elicitation

Preferences

I Fated
reference
l! Elicitation
etrieval

| ted

reference
Elicitation

I etrieval

continue

Buy;
Continue;
Quit

@ prlay
Buy;

item list

"splay

item list

Fig. 2. Conversational Systems A and B

Retrieval is a complex task, with many alternative decompositions. Although
Figure 3 shows only three decompositions, each of these three contains non-
primitive tasks which themselves have more than one decomposition Commonly,
for example, Retrieval comprises a scoring process followed by a selection pro-
cess (Figure 3 top). For example, in similarity-based retrieval (k-NN), items are
scored by their similarity to the user’s preferences and then the £ highest-scoring
items are selected for display. Most forms of diversity-enhanced similarity-based
retrieval follow this pattern too: items are scored by similarity, and then a diverse
set is selected from the highest-scoring items [13-15].

But there are other types of recommender system in which Retrieval decom-
poses into more than two steps (Figure 3 bottom). For example, in some forms
of navigation-by-proposing, first a set of items that satisfy the user’s critique
is obtained by filter-based retrieval, then these are scored for similarity to the
user’s selected item, and finally a subset is chosen for display to the user.

For completeness we mention also that some systems use filter-based retrieval
(Figure 3 middle), where the user’s preferences are treated as hard constraints.
Although this is not commonly used in CBR in general, it can be found in some
recommender systems. Despite its problems [16] it is still used in many com-
mercial web-based systems. Also, systems that use navigation-by-asking often
use filter-based retrieval: questions are selected using, e.g. information gain, and
cases are retrieved in filter-based fashion [17].

A final observation about Figure 3 is that it shows optional tasks for up-
dating a ‘tabu list’. The tabu list can be used to prevent certain items from
being recommended. A common use, for example, is to prevent the system from
recommending an item that it has recommended previously.



Scoring | 3 | Selection

Ielrieval . Filtering | 1—» i Tabu List &

..............

Y.

“.» i Tabu List | +—st | Filtering |+ | Scoring

Selection | +—» : Tabu List ! &

Fig. 3. Retrieval decomposition

2.3 Template recommendation

We envisage that a system developer will build a CBR system by adapting
relevant templates. This implies a way of retrieving relevant templates.

We had originally thought that we would devise a description language for
templates. With this language we would be able to describe each template in the
library from the point-of-view of the functional and non-functional requirements
that it might satisfy. The same description language could then be used by the
CBR system developer to construct a query description of the functional and
non-functional requirements of the system s/he is building. A retrieval engine
would then find the best-matching templates from the template library.

We soon realized that this raised two formidable problems. There is the
difficulty for system developers of expressing their requirements as a query. But
more fundamentally, we realized that templates often do not lend themselves to
a useful level of description. It is easier to say useful things about systems, rather
than templates.

This insight led us to define the case-based template recommender system
that we describe in the next section.

3 Case-Based Template Recommendation

3.1 Cases

In line with the insight of the previous section, each case in our case-based
template recommender represents a successful CBR system (in our case, each
is a case-based recommender system). But the templates that characterize the
system are stored in the case as well. One can think of the system itself and its
templates as the ‘solution’ part of the case.

The description part of the case is a set of feature-value pairs. The feature
set includes the tasks of the system, the methods of the system, and semantic
features from an ontology defined by the domain expert. We postpone a detailed
explanation of the features to Section 4.

In some situations, the systems in the case base may be original systems,
collected over the years. In other situations, this may not be possible. It was not
the way in which we built our case base of case-based recommender systems,
for example. The original systems, such as Entree [18] and ExpertClerk [12], are



not available. How then did we build a case base of systems? Very simply, we
re-implemented versions of these systems and included these, along with their
templates, in the case base. It is testimony to jCOLIBRI’s repository of templates,
tasks and methods that it did not take long to re-implement simplified versions
of each of the main case-based recommender systems from the research and
development literature. The case base we use in the rest of this paper contains
fourteen such systems, although others could easily be implemented.

3.2 Retrieval-by-Trying

In Section 2.3, we noted two problems with a simple approach to template rec-
ommendation. We have overcome one of these problems (that the most useful
descriptions apply to systems rather than to templates) by basing our case base
on systems (see above). The other problem was that system developers would
find it difficult to express their requirements as a query.

This problem is not unique to case-based template recommendation. In other
recommender systems domains, it is not uncommon for users to find it difficult to
articulate their preferences. But recommender systems research offers a solution.

In some of the most influential recommender systems, users make their prefer-
ences known through one or other of the many forms of navigation-by-proposing
[18, 19,12, 20]. In navigation-by-proposing, the user is shown a small set of prod-
ucts from which s/he selects the one that comes closest to meeting his/her re-
quirements. The next set of product s/he is shown will be ones that are similar
to the chosen product, taking into account any other feedback the user supplies.

This is the idea we adopt in our case-based template recommender. We show
the user (the system developer) two systems. In the style of McGinty & Smyth’s
comparison-based recommendation, s/he may choose one, and the system will
try to retrieve more systems that are like the chosen one. This overcomes the
problem that system developers may not be able to articulate their requirements.

But it raises another problem. On any iteration, how will the system de-
veloper know which system to choose? If all we do is show the names of the
systems or abstruse descriptions of the systems, s/he is unlikely to be able to
make a decision. But, what the user is choosing between here are implemented
systems. Therefore, we allow the user to run these system. We call this Retrieval-
by-Trying: the user can actually ¢ry the recommended items (in this case, the
recommended recommender systems) to inform his/her choice.

Retrieval-by-Trying is a natural approach for systems that are relatively sim-
ple and interactive, like case-based recommender systems. The approach may not
extend to other kinds of CBR system that are more complicated (e.g. case-based
planners) or non-interactive (e.g. case-based process controllers).

In the next three subsections, we explain the following: how our implementa-
tion of Retrieval-by-Trying selects the initial pair of systems that it shows to the
user; how it selects the pair of systems that it shows to the user on subsequent
iterations; and how the user’s feedback on every iteration is handled.



3.3 Entry points

Initially, our system selects two systems to show to the user. One is as close to
the ‘median’ of the case base as possible; the other is as different to the median
as possible. A similar idea is used in ExpertClerk system [12], except that it
selects three cases, one near the median and two dissimilar ones. Whether it is
better to show three systems rather than two is something we can evaluate in
future work. We decided to use two in our initial prototype because it simplifies
the comparisons the user must make.

The first system that we retrieve is the most similar case to the median of
the case base. The median of the case base is an artificial case where the value
for every numerical attribute is obtained as the median of the values of that
attribute in the case base, and the value for non-numerical attributes is set to
the most frequent value for that attribute in the case base.

The second system initially retrieved is chosen to be as different to the median
of the case base as possible. We compute for every case in the case base the
number of ‘sufficiently dissimilar’ attributes between that case and the median
case, and select the one with the largest number of dissimilar attributes. Two
values of a numerical attribute are sufficiently dissimilar when their distance is
larger than a predefined threshold. Two values of a non-numerical attribute are
sufficiently dissimilar simply when they are different.

Although the process of selecting the initial two cases may be computation-
ally expensive, it does not need to be repeated until new cases are added to the
case base.

3.4 Diversity-enhanced retrieval for comparison-based
recommendation

The user is shown a pair of systems, which s/he may try. In the style of preference-
based feedback, s/he may then select one, and we will retrieve a new pair of
systems that are similar to the one s/he chooses.

We need to ensure that the two systems that we retrieve are similar to the
user’s choice but are different from each other. If they are too similar to each
other, the chances that at least one of the systems will satisfy the user are
reduced. In recommender systems terminology, we want to enhance the diversity
of the retrieved set [13]. There are several ways to achieve this. We use the
well known Bounded Greedy Selection algorithm which enhances diversity while
remaining reasonably efficient [13].

3.5 Preference-based feedback

The case that the user chooses gives us information about his/her preferences.
But the rejected case also gives important feedback. Therefore we have imple-
mented several of the preference feedback elicitation techniques described in [19].

The More Like This (MLT) strategy just uses the selected case as the new
query for the following iteration. A more sophisticated version named Partial
More Like This (pMLT) only copies attributes from the selected case to the



query if the rejected case does not contain the same value for that attribute.
Another option is the Less Like This (LLT) strategy that takes into account the
values of the rejected case that are different from the values of the selected one. In
the subsequent iteration, cases with these ‘rejected values’ will be filtered before
retrieving the cases. Finally, the More and Less Like This strategy combines
both MLT and LLT behaviors. Given that it is difficult for users to express their
requirements as a query (as we have explained above), it is an advantage that
none of these approaches requires the user him/herself to deal explicitly with
features and their values.

Our tool to retrieve templates can be configured to work with any of these
strategies. We compare them empirically in Section 6.

4  Similarity in Case-Based Template Recommendation

The description part of each case is a set of feature-value pairs. The feature
set includes the tasks of the system, the methods of the system, and semantic
features from an ontology defined by the domain expert. Thus we can compute
similarity based on what the systems do (by comparing system task structure);
we can compute their similarity based on how they do what they do (by compar-
ing their methods); and we can compute their similarity using semantic features
defined by an expert to describe structural and behavioural characteristics of
the systems. Or, of course, we can use combinations of these. We will describe
each of them in more detail in the next three subsections.

4.1 Task structure similarity

We take a simple approach to task similarity for the moment, which relies to an
extent on the fact that our ‘top-level’ templates (Figures 1 and 2) contain very
similar non-primitive tasks. A more complex approach might be needed for case
bases whose templates share less top-level structure. Let G be the set of non-
primitive tasks {C4,Cs, Cs, ..., Cy}, (such as Retrieval) and @ the set of possible
decompositions of tasks in G into primitive tasks Q@ = {Q1,Q2,@s,...,Qn}.
Each sequence @); is composed of a set of primitive tasks S = {51, 52,53, ...,S,}
(e.g. see Retrieval decompositions in Figure 3).

We define one attribute for each non-primitive task in G. The allowed values
of these attributes are the specific sequences of primitive tasks @ used in this
case. Comparing two cases by their structure means comparing the attributes of
their templates using the equals function that returns 1 if they have the same
value and 0 otherwise.

4.2 Methods similarity

Computing system similarity based on how the systems do what they do means
comparing their methods. To be able to do that we include in the case repre-
sentation structure different attributes, one for each primitive task. The allowed
values for each one of these attributes are the set of methods that implement the



= @ ImplernentedSystem
= @ ByCasesSelectionMethods
- @ WithSelection
----- JustMoreSimilar
----- Similar AndDiverse
- & WithoutSelection
BylteratedPEtype
WithPE
WithoutPE
= ) ByNavigationType
- E&NavigationByAsking
MavigationByProposing
- & OtherMavigation
- @ ByRetrievalCombination
AllowingEmptyRetrievalSet

not SimilarAndDiverse
and hasMethod some SelectCasestethod

WithSelection
# Recommenderl

# Receermendsr 10
# Racommendarll

# Recommender2
# RecommendsrS
# Recommendarg
# Recommendar?
# Recommendsrd

f NoEmptyRetrievalSet
= £ ByScoring

[ @ WithScoring

L. & WithoutScoring
- ByUserInformationReguest
- @ AskingPreferences
OtherReguest
L. &UsingProfile

|

Fig. 4. Semantic features classification

primitive task. If a primitive task occurs more than once, then it is represented
by different attributes.

To be able to compare methods we have created a concept in CBROnto
for each method, and we have organized them into subconcepts of the Method
concept. These method concepts are hierarchically organized according to their
behaviour. Then we apply the ontological similarity measures implemented in
jCOLIBRI2 to compare the methods. This family of ontological measures use
the structure of the ontology to compute the similarity between instances. The
CBROnto ontology and the similarity measures are described in [21].

4.3 Semantic feature similarity

As well as comparing systems by their tasks and methods, we let the expert
define semantic features to describe structural and behavioural characteristics of
the systems. In the recommenders domain, for example, we can classify systems
depending on their preference elicitation approach: navigation-by-asking (asking
questions to the user) or navigation-by-proposing (showing items to the user).
We can also classify them according to their retrieval process: filtering, scoring or
both. These features (navigation type and retrieval) define two different ways of
classifying recommenders, and by extension the templates associated with those
systems. There are other axes to classify systems, like the type of interaction
with the user and the type of user information that it collects. The left-hand
side of Figure 4 illustrates some of these semantic features.

Each case (system) in the case base is represented by an individual and is
assigned properties describing the tasks and methods that define its behaviour.
Using the classification capabilities of a Description Logic reasoner, each indi-
vidual (system) is classified into the concepts that this individual fulfils, based



Generic Template Conversational & Conversationald ConversationalB
One-Off P.E Form_Filling Form_Filling Ask_Cuestion

Task Structure Retrieval Filtering_Scoring_Selection Filtering_Scaring Selection Filtering
lterated P.E. Create Complex Query Create_Complex_Query ExpertClerck_lterated P.E
Display Display Display ExpertClerck Display
FormFilling FormFillingWithInitialvalues FormFilling¥ithoutInitialalues
SelectQuestion InformationGain InformationGain
AskQuestion ObtainQueryWithAttributeQuestion ObtainQueryWWithAttributeCQuestion
ReadProfile ObtainQueryFrormProfile
Scoring ExpertClerkMedianScoting
SelectCases SelectTopk
DisplayCases DisplayCasesTableWithCritiques
Filtering FilterBasedRetrievalbethod FilterBasedRetrievaliethod FilterBasedRetrievaltethod

Methods Scoring MWNScoringhethod MNMScoringtethod MMScoringhethod

Selection SelectTopkl SelectTopk EoundedGreedySelection
RemoveTabu null
Display DisplayCasesTableWithCritiques DisplayCasesTableWithCritigues  |DisplayCasesTableWithCritiques
UpdateTabu
FarmFilling FarmFillingWithinitialvalues
SelectOuestion InfarmationGain InfarmationGain
AskQuestion ObtainQueryWithAttribute Cluestion ObtainQueryyVithAttributeQuestion
CreateComplexGuery  |MoreLikeThis horeLikeThis MareLikeThis
CasesSelectionMethods JusthoreSimilar SimilarAndDiverse
lteratedPEtype ModifyingQueryWithUserSelection |MaodifyingQuenyWithUserSelection

Global Features MavigationType MNbP MNBP and NbA
RetrievalCormbination MNotEmptyRetrieval Set NotEmptyRetrievalSet
Scaring BasicScoring BasicScoring
UserlnformationReguest AskingUserForAllPreferences AskingUserForSomePreferences

Fig. 5. Case values during retrieval

on the properties of the individual. The concepts into which each individual is
classified define different relevant features of the recommender. For example, in
the right-hand side of Figure 4 we show the definition of the feature “JustMoreS-
imilar”. It is a defined concept described as follows:

JustMoreSimilar = not SimilarAndDiverse and
hasmethod some SelectCasesMethod

This definition applies to systems whose retrieval methods do not use any mecha-
nism to enhance diversity but which do contain some method for selecting cases.
The right-hand side of Figure 4 shows the systems in our case base that have
been automatically classified as instances of this defined concept: eight of the
fourteen recommenders are classified according to this feature.

The ontology allows us to compare two systems by classifying them into
the hierarchy and comparing the concepts under which they are classsified. We
use one of the ontological similarity metrics included in jJCOLIBRI: the cosine
function [21]. Similarity in the different semantic features can be computed sep-
arately as each feature represents a subtree in the hierarchy. Then the similarity
results for each feature are aggregated.

5 Example

Let’s illustrate the first step of our Retrieval-by-Trying template recommender.
When the system is launched, it finds the most similar case to the median of
the case base and the case that has most different attributes with respect to
this median case. Figure 5 shows the content of the two retrieved cases and



EZ Retrieved cases x|

Recommenderé Recommender8
| L | Tryitt |
Description | Screenshot rDetaiIs ‘ Description rScreenshm rDetaiIs |

| Show me something similar | | Show me something similar |

Choose this one Choose this one

Fig. 6. Templates recommender screenshot

the median case computed by our method. The table contains the value of the
attributes for each component of the case description: tasks, methods and se-
mantic features. The first group of attributes describes the task decomposition of
the templates associated with each case. Our templates have five non-primitive
tasks: One-Off Preference Elicitation, Retrieval, Display and Iterated Preference
Elicitation. Each one of these tasks can be decomposed into several sequences
of primitive tasks as shown in Figure 3. This way, the values of this set of at-
tributes reflect the decomposition into primitive tasks. The method attributes
describe which methods were assigned to solve each task of the template to ob-
tain the recommender. Finally, the semantic features refer to the roots of each
classification hierarchy of our ontology (shown in Figure 4). The values of these
features are the leaves of the hierarchy where each recommender is classified by
the Description Logic reasoner.

The median case is a Conversational A recommender where each attribute
has the most repeated value among all cases. This median case has no semantic
features because it does not correspond to a real system in the case base. Rec-
ommender 6 is the closest case to the median and it is also a Conversational A
system. Finally, Recommender 8 is the most different case to the median and to
Recommender 6. The first feature that makes it different is that it is a Conver-
sational B recommender. Also, our application has retrieved this recommender
because it is an implementation of the ExpertClerk system [12] and thus has
several features that make it different from other recommenders. For example,
it acts both as a navigation-by-asking and a navigation-by-proposing system.

The result displayed to the user is shown in Figure 6. The user can read
descriptions of the two recommender systems and choose to execute one or both.
Once the user has selected the closest recommender to his/her preferences, s/he
can ask the system for something similar. The system uses the Bounded Greedy
algorithm to select the next pair of recommenders.



O Average
OMLT
EMLT_LLT]
LLT
©1mpMLT

10 %
0l

Tasks Methods Features

Fig. 7. Similarity approaches comparison

6 Evaluation

Our experimental evaluation is an ablation study. It is a leave-one-in study,
where a chosen case from the case base is taken to be the user’s target system.
We simulate user preferences by deleting some of the case’s attributes and take
the resulting partial description to be a representation of the user’s preferences.

Six representative recommenders were selected to act as target systems/queries
(two Single-Shot systems, two Conversational A systems, and two Conversational
B systems). We used random deletion, and hence we repeated each cycle twenty
times to allow for deletion of different sets of attributes.

Our experiments measured the number of steps required to retrieve the same
recommender using our tool. Obviously, the number of steps (or depth) when
using 100% of the attributes is always 0 but depth will increase when using only
75%, 50% and 25% of the attributes.

During the first stage of our experiment we used only one of the three simi-
larity approaches: either tasks, methods or semantic features. We also tried each
preference feedback elicitation strategy: MLT, LLT, pMLT, MLT_LLT (see Sec-
tion 3.5). Figure 7 shows, for every similarity approach and every preference
feedback elicitation strategy, the percentage of queries where that particular
combination results in the minimum number of retrieval steps. Averaging those
results we find that task-based similarity provides the best results in 10% of
the queries, method-based in 40% and feature-based in 50%. As might be ex-
pected, the semantic feature similarity is most often the best because it is a
knowledge-intensive measure.

Next we tested our hypothesis that the best similarity measure would be a
weighted combination of the three similarity approaches using as weights the
percentages discovered in the previous experiment. This hypothesis was actu-
ally confirmed in the experiments as shown in Figure 8 (left) where the pro-
posed weight combination is shown to outperform other weight combinations
(70%-15%-15%, 15%-70%-15%, and 15%-15%-70%), and Figure 8 (right) where
it outperforms pure task, method and semantic feature approaches.



— + - w01 mw:0.4 w05
- -ae = tw0.7 mw:0.15 w015
— 0— tw:0.15 mw:0.7 fw:0.15 07
— 5 —tw:0.15 mw:0.15 fw0.7
—5—tw:0.33 mw:0.33 fw:0.34 06 i

= =X- - Features
\ e Juvaea
0,5

T 04 = \
= - ~
= 03 - +

— +— Tasks
—e— Wethods

00 =< S
- 3 -+ . X
e 02 = =s=sXe=ss =
0.06 -
\‘ - 01
- : [P — P

mLT MLT_LLT L pMLT Total [ MLT_LLT ur ' pMLT Total
Fig. 8. Optimum weighted combination of similarity approaches

We can also propose a set of weights to use in the case where semantic
features are not available. It is important to consider this scenario because it
may not always be possible for an expert to define an ontology. In this case, our
experiments show that the best weights are: Tasks = 34% and Methods = 66%.
These values demonstrate that the behaviour of the system (methods) is more
important than its structure (tasks) when computing the similarity.

7  Conclusions

In this paper, we have extended jCOLIBRI 2 with facilities to support reuse during
the construction of CBR systems. In particular, we propose the use of templates,
which a system developer can adapt to his/her new purposes. Our case-based
template recommender draws ideas from case-based recommender systems re-
search, and uses a new approach that we call Retrieval-by-Trying. We have il-
lustrated the ideas by building a case-based recommender system for case-based
recommender systems. We have defined and empirically evaluated different ap-
proaches to the measurement of similarity. We found, as might be expected, that
knowledge-intensive semantic features are more important than behavioural fea-
tures, which are in turn more important than structural features.

We will soon report on an empirical evaluation in which students template-
based and other approaches to build recommender systems. In the future, we
want to apply these ideas to CBR systems other than recommender systems.
For example, we are looking at textual CBR systems. And we want to gain more
practical experience of using the approach for rapid prototyping in educational,
research and industrial environments.

References

1. Smolarové, M., Navrat, P.: Software reuse: Principles, patterns, prospects. Journal
of Computing and Information Technology 5(1) (1997) 33-49

2. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues,methodological
variants, and system approaches. Artificial Intelligence Communications 7(1)
(1994) 39-59



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Tautz, C., Althoff, K.D.: Using case-based reasoning for reusing software knowl-
edge. In Leake, D.B., Plaza, E., eds.: Procs. of the ICCBR’97. LNAI 1266, Springer
(1997) 156-165

Fernédndez-Chamizo, C., Gonzélez-Calero, P.A., Gémez, M., Hernédndez, L.: Sup-
porting object reuse through case-based reasoning. In Smith, I., Faltings, B., eds.:
Procs. of EWCBR96. LNAI 1168, Springer (1996) 135-149

Tessem, B., Whitehurst, A., Powell, C.L.: Retrieval of java classes for case-based
reuse. In Smyth, B., Cunningham, P., eds.: Procs. of the EWCBR’98. LNAI 1488,
Springer (1998) 148-159

. Grabert, M., Bridge, D.: Case-based reuse of software examplets. Journal of

Universal Computer Science 9(7) (2003) 627-640

Gomes, P.: A Case-Based Approach to Software Design. PhD thesis, Departamento
de Engenharia Informaética, Faculdade de Ciécias e Tecnologia, Univerisdade de
Coimbra (2003)

Althoff, K.D., Birk, A., von Wangenheim, C.G., Tautz, C.: Cbr for experimental
software engineering. In Lenz, M., Bartsch-Sporl, B., Burkhard, H.D., S.Wess,
eds.: Case-Based Reasoning Technology: From Foundations to Applications. LNAI
1400. Springer (1998) 235-254

Jedlitschka, A., Althoff, K.D., Decker, B., Hartkopf, S., Nick, M.: Corporate in-
formation network: The Fraunhofer IESE Experience Factory. In Weber, R., von
Wangenheim, C., eds.: Workshops ICCBR’01. (2001) 9-12

Recio-Garcia, J.A., Bridge, D., Diaz-Agudo, B., Gonzalez-Calero, P.A.: Semantic
templates for designing recommender systems. In: Procs. of the 12th UK Workshop
on Case-Based Reasoning, University of Greenwich (2007) 64-75

Bridge, D., Goker, M.H., McGinty, L., Smyth, B.: Case-based recommender sys-
tems. Knowledge Engineering Review 20(3) (2006) 315-320

Shimazu, H.: ExpertClerk: A conversational case-based reasoning tool for devel-
oping salesclerk agents in e-commerce webshops. Artificial Intelligence Review
18(3-4) (2002) 223244

Smyth, B., McClave, P.: Similarity vs. diversity. In Aha, D.W., Watson, 1., eds.:
Procs. of the ICCBR’01, Vancouver, Springer (2001) 347-361

McSherry, D.: Diversity-conscious retrieval. In Craw, S., Preece, A., eds.: Procs.
of the ECCBR’02, Springer (2002) 219-233

McSherry, D.: Similarity and compromise. In Ashley, K.D., Bridge, D.G., eds.:
Procs. of the ICCBR’03, Springer (2003) 291-305

Wilke, W., Lenz, M., Wess, S.: Intelligent sales support with CBR. In Lenz, M.,
Bartsch-Sporl, B., Burkhard, H.D., Wess, S., eds.: Case-Based Reasoning Technol-
ogy: From Foundations to Applications. Springer (1998) 91-113

Doyle, M., Cunningham, P.: A dynamic approach to reducing dialog in on-line
decision guides. In Blanzieri, E., Portinale, L., eds.: Procs. of the EWCBR’00,
Springer (2000) 49-60

Burke, R.D., Hammond, K.J., Young, B.C.: The FindMe approach to assisted
browsing. IEEE Expert 12(5) (1997) 32-40

McGinty, L., Smyth, B.: Comparison-based recommendation. In Craw, S., Preece,
A., eds.: Procs. of the ECCBR’02, Aberdeen, Scotland, Springer (2002) 575-589
Smyth, B., McGinty, L.: The power of suggestion. In Gottlob, G., Walsh, T., eds.:
Procs. of the IJCATI'03, Morgan-Kaufmann (2003) 127-132

Recio-Garcia, J.A., Diaz-Agudo, B., Gonzalez-Calero, P.A.; Sdnchez, A.: Ontology
based CBR with jCOLIBRI. In: Procs. of the 26th SGAI Int. Conference AI-2006.
Springer-Verlang (2006)



