
A Case-Based Solution to the Cold-Start Problem in Group Recommenders
Lara Quijano-Sánchez

Universidad Complutense de Madrid, Spain

lara.quijano@fdi.ucm.es

Derek Bridge
University College Cork, Ireland

d.bridge@cs.ucc.ie

Belén Dı́az-Agudo and Juan A. Recio-Garcı́a
Universidad Complutense de Madrid, Spain

belend@sip.ucm.es, jareciog@fdi.ucm.es

Abstract

In this paper we offer a potential solution to the
cold-start problem in group recommender systems.
To do so, we use information about previous group
recommendation events and copy ratings from a
user who played a similar role in some previous
group event. We show that copying in this way,
i.e. conditioned on groups, is superior to copying
nothing and also superior to copying ratings from
the most similar user known to the system.

1 Introduction
Groups often dine in restaurants together; visit historic sights,
galleries and museums together; attend concerts, the theatre
and the cinema together; vacation together; cook and eat to-
gether; watch TV together. They must select the items which
they intend to consume together, ranging from restaurants to
TV programmes, in a way that reconciles the different pref-
erences and personalities of the group members. For this,
they may seek the support of a recommender system. But
where the majority of recommender systems suggest items
based on the preferences of an individual consumer, group
recommender systems suggest items taking into account the
preferences and personalities of the members of a group [4].

In this paper, in the context of movie recommendation to
groups of friends, we consider a group recommender system
that aggregates the results of running a single-person recom-
mender system to predict movie ratings for each member of
the group. The single-person recommender that we use is
a user-based collaborative recommender system [3], which
predicts a user’s rating for a candidate movie from the rat-
ings given to that movie by a neighbourhood of users who are
similar to that user.

But collaborative recommenders suffer from cold-start
problems [3; 14]. In particular, a user-based collaborative
recommender finds it difficult to make good predictions for
new users, for whom it has few ratings. The group rec-
ommender inherits this problem too because it aggregates
the predicted ratings from the single-user collaborative rec-
ommender. Solutions to the cold-start problem for single-
person recommenders are summarized in [14] and include:
non-personalized recommendations for cold-start users us-
ing population averages; intelligent ways to solicit more rat-
ings (e.g. [2; 12]); and hybrid recommenders that resort
to content-based recommendations when there are insuffi-
cient ratings to make collaborative recommendations (e.g. [1;
6]).

The contribution of this paper is to introduce and evaluate
a case-based reasoning (CBR) solution to this problem. We
use a case base in which each case records a previous group
movie recommendation event. When a group requests a new
recommendation but where one or more of the group mem-
bers is in cold-start, we find a case that describes a previous
recommendation event where there are users who are not in
cold-start but who play similar roles in their group to the roles
the cold-start users play in the active group. We temporarily
copy ratings from the users in the case to the corresponding
users in the active group and only then proceed to run the
single-person recommender and to aggregate its results. It is
natural to use a CBR approach because, similar events recur:
the same group (perhaps with some small variations) repeats
activities together; and some age, gender and personality dis-
tributions will tend to recur too (e.g. two adults with two chil-
dren going to the movies).

CBR has been used in recommender systems before (e.g.
[13]) and explicit parallels between CBR and user-based col-
laborative recommenders have been drawn (e.g. [7]). But we
are unaware of any previous use of CBR in group recom-
menders or in solutions to the cold-start problem.

Section 2 describes our group recommender method; Sec-
tion 3 describes how we have extended our method to solve
the cold-start problem; Section 4 proposes systems against
which our system can be compared; Section 5 describes the
dataset that we have used in our experiments; Section 6
presents our experimental method; Section 7 contains results;
and Section 8 concludes our work.

2 Social Group Recommender Systems
Suppose there are n users, U = {u : 1 . . . n}, and m items
(e.g. movies), I = {i : 1 . . .m}. Let ru,i be the rating that
user u assigns to item i. Ratings are on a numeric scale, e.g.
1 = terrible and 5 = excellent, but ru,i = ⊥ signals that u has
not yet rated i. Let Ga ⊆ U be an active group of users, in
our case a group who intend going to see a movie together.
The goal is to recommend to Ga a set of k items drawn from
a set of candidate target items Ta ⊆ I . For example, Ta could
be the set of movies showing this week at the local multiplex.

If none of the users in Ga is in cold-start the group recom-
mender system will work asfollows:

Step 1: First, it uses a user-based collaborative recommender
to predict a rating r̂ua,i for each ua ∈ Ga for the vari-
ous i in Ta. The user-based collaborative recommender
that we use works as described in [3; 14]. In brief, it
computes the similarity between ua and each other user
u 6= ua who has rated i; it retrieves ua’s 20 nearest



neighbours, i.e. the 20 users who are most similar to ua;
and its prediction r̂ua,i is then a weighted average of the
neighbours’ actual ratings for i.

Step 2: Second, for each i, it aggregates the predicted ratings
of each ua ∈ Ga to give a predicted group rating for that
item, i.e.

r̂Ga,i =̂ F
ua∈Ga

r̂ua,i (1)

where F is the aggregation function, which we discuss
in more detail below.

Step 3: Finally, it recommends the k items i ∈ Ta for which
the predicted group ratings r̂ua,i are highest.

Possible aggregation functions F include least misery (tak-
ing the minimum) and most pleasure (taking the maximum)
[5]. We experimented with both before [8], and we found
most pleasure to give better results, and so we adopt that here.

However, our previous work showed an improvement in
the accuracy of predicted group ratings by taking into ac-
count the personality of the users in the group and the strength
of their connections, which we refer to as their trust [10; 8;
11]. We refer to our recommender that takes this extra social
information into account as being social and the method it
uses as being delegation-based. Specifically then, we have:

r̂Ga,i =̂ max
ua∈Ga

dbr(r̂ua,i, Ga) (2)

Here the most pleasure principle (maximum) is not applied
directly to individual predicted ratings, r̂ua,i. The ratings are
modified by the dbr function, which takes into account per-
sonality and trust values within the group Ga.

We obtain the personality of each user u by requiring group
members complete a personality test on registration with the
recommender. The details of the personality test are in [16].
In a real application, such as the Facebook social group rec-
ommender that we have built [9], trust between users two
users can be based on distance in the social network, the num-
ber of friends in common, relationship duration, and so on.

Space limitations preclude a detailed presentation of dbr
but it is defined in, for example, [10].

We will designate the social group recommender system
that we have outlined in this section by Soc.

3 Using CBR for Cold-Start Users
As we have explained, an active user with few ratings is said
to be in cold-start. The problem that this causes for the kind
of recommenders that we have been discussing is that it be-
comes difficult to find a reliable neighbourhood of similar
users from which predictions can be made. One solution is
to temporarily copy some ratings into the profile of the active
cold-start user from a similar user who has additional ratings.
Similarity in this case would be measured using demographic
information [14] because the active user has insufficient rat-
ings to find a similar user based on co-rated items.

A group recommender can take the same approach when
members of the group are in cold-start: prior to predicting in-
dividual ratings, it can temporarily augment the ratings pro-
files of group members who are in cold-start with ratings that
are copied from the profiles of similar users. But in a group

recommender, we can go further than using just demographic
information. In our work, we investigate how to reuse ratings
from similar users in similar groups in a case-based fashion.

Assume a case base CB in which each case c ∈ CB
records a previous group movie recommendation event. Each
case will have the following structure:

〈idc , 〈Gc, Tc〉, ic〉

where idc is a case identification number. The problem de-
scription part of the case comprises:
• Gc ⊆ U , the group of users who used the recommender

previously. For each user u ∈ Gc, we will know u’s age
and gender; u’s ratings, ru,i, for some set of items; and
u’s personality value. For each pair of users u ∈ Gc, v ∈
Gc, u 6= v, we will know the trust value.
• Tc ⊆ I , the set of items that the users were choosing

between. In our case, these were the movies that were
at the local multiplex on the occasion when this group
used the recommender.

And the solution part of the case contains just ic ∈ Tc, the
item that the group agreed on. In our case, this is the movie
that the group went to see together.

If none of the users in Ga is in cold-start, then the system
will work either in the fashion described in Section 2.

But suppose, on the other hand, that one or more members
of Ga are in cold-start. We define this simply using a thresh-
old, θ: a user ua is in cold-start if and only if the number of
items s/he has rated is less than θ. In this case, we need to
use the CBR. For each user who is in cold-start, we will copy
ratings from the most similar user in the most similar group
in the case base, as follows.

Case retrieval
We can write the problem statement as PS = 〈Ga, Ta〉. We
will find the most similar case, c∗, in the case base:

c∗ =̂ argmax
c∈CB

sim(PS, c) (3)

The similarity between a problem statement PS = 〈Ga, Ta〉
and a case c = 〈idc , 〈Gc, Tc〉, ic〉 ∈ CB, sim(PS, c), is cal-
culated on the basis of group similarity:

sim(〈Ga, Ta〉, 〈idc , 〈Gc, Tc〉, ic〉) =̂ gsim(Ga, Gc) (4)

This means that in our work case similarity takes only the
groups, Ga and Gc, into account; it does not take into ac-
count the items, Ta and Tc. Tc contains the items that Gc

contemplated in the past, but Ta contains items that Ga is
contemplating right now, e.g. movies that have just come to
town, and these sets need not even overlap.

This process requires a definition of group similarity, gsim.
We compute the similarity of any pair of groups, G and
G′, from the similarity of the users in the two groups,
psimCB(u,G, u

′, G′), u ∈ G, u′ ∈ G′. Specifically, we de-
fine gsim(G,G′) to be the average similarity of each user u
in G to his/her most similar user in G′. Note that we do not
prevent two or more people from G being associated with the
same user u′ ∈ G′ (and vice versa). This fact allows us to
easily compare groups of different sizes. It does mean that,



if two or more users from Ga are in cold-start, they may all
copy ratings from the same user u′ ∈ G.

We define psimCB(u,G, u
′, G′), the similarity between

two users in groups, as an average similarity over the data
that we hold about them: their ratings, gender, ages, person-
ality values and trust values. Details are in [11].

Case reuse
Next, for each user ua in Ga who is in cold-start, we find the
most similar user u∗ in case c∗ who has rated movies that ua
has not. Let G∗ be the group of people described in case c∗:

u∗ =̂ argmax
u∈G∗∧∃i,rua,i=⊥∧ru,i 6=⊥

psimCB(ua, Ga, u,G
∗) (5)

In the case of more than one such user, we choose the one
from whom we can copy the most ratings, i.e. the one who
has most ratings for movies that ua has not rated. Then, tem-
porarily (for the purposes of making ua’s prediction for the
items in Ta), we copy into ua’s profile the rating for each item
i that u∗ has rated (ru∗,i 6= ⊥) that ua has not (ru,i = ⊥).

With each cold-start user’s profile augmented in this way,
we can then proceed to compute group recommendations in
the fashion described in Section 2. But, it should now be
less problematic finding neighbourhoods for the users who
are in cold-start because they now have augmented user pro-
files. We will designate this system by Soc-CB.

4 Other Recommenders for Cold-Start Users
An obvious question is whether it makes a difference that our
case-based solution to the cold-start problem in group rec-
ommenders works on a group basis at all. Why copy ratings
from the most similar user in the most similar group? Why
not copy ratings simply from the most similar user in the case
base as a whole? Or why not copy ratings from the most sim-
ilar user known to the system? Systems that work in these
different ways will be useful for comparisons in our experi-
ments, hence we define both of these more precisely now.

Consider the set of users who appear in at least one case in
the case base:

UCB =̂ {u : ∃c = 〈idc , 〈Gc, Tc〉, ic〉 ∈ CB ∧ u ∈ Gc} (6)

When trying to predict group Ga’s rating for an item i ∈ Ta,
then for any user u ∈ Ga who is in cold-start, we could find,
and copy ratings from, the most similar user in UCB :

u∗ =̂ argmax
u∈UCB∧∃i,rua,i=⊥∧ru,i 6=⊥

psimUCB
(ua, u) (7)

This is different from first finding the most similar group and
then, for each active user in cold-start, copying ratings from
the most similar user in that group. Our case-based approach
is conditioned on the groups; this alternative is not.

We will designate this recommender by Soc-UCB.
The second of our two alternative cold-start recommenders

ignores the case base altogether. It simply finds, and copies
ratings from, the most similar user in U (the entire set of
users), wholly ignoring whether they have previously partici-
pated in group recommendations or not. Hence,

u∗ =̂ argmax
u∈U∧∃i,rua,i=⊥∧ru,i 6=⊥

psimU (ua, u) (8)

We will designate this recommender by by Soc-U.

5 Group Recommender Dataset
We need a dataset with which we can evaluate our case-based
solution to the cold-start problem in group recommenders.
We are not aware of a public dataset for group recommenders,
hence we created our own.

We started from the MovieLens 1M dataset
(www.grouplens.org). It gives us around 1 mil-
lion ratings on a scale of 1 to 5 for around 6040 users for
nearly 4000 movies. For each user, it records gender, age
range, and at least twenty ratings. We impute a personality
value to each used based on the population norms in [15].

We created 100 groups. Group members are chosen at ran-
dom from all users in the MovieLens dataset but subject to
the following restrictions: in a group, users are distinct (but a
user may be in more than one group); all users are in the same
age range; and we ensure that there are at least 15 movies
which are co-rated by all members of the group. When we
create cases, these 15 movies will be the set Tc. Their ratings
are withheld from the recommender, because it would not in
general know a user’s actual ratings for the candidate movies.

We conducted a Facebook poll in which we asked respon-
dents to tell us, for the last five times that they went to the
cinema in a group, how large the group was. We used the fre-
quencies to create our groups. We have 50 groups of size 2,
18 of size 3, 16 of size 4, 7 of size 5, 5 of size 6, and 4 where
we took the size to be 7.

As we have discussed, in our Facebook application, trust
is computed from Facebook data (distance in the social net-
work, etc.), but that is not available to us for the users in the
MovieLens dataset. Rather than simply imputing trust values
at random, we chose to base them on the degree of shared
taste as revealed by co-rated items.

To create a case, we need to indicate which of the 15
movies in Tc the group will actually have chosen. But we
cannot ask random groups of MovieLens users to work out
which of their 15 candidate movies they would have gone to
see together. We used four human ‘experts’ who were given
all the information about a group’s members Gc and the can-
didate movies Tc (including the actual ratings by the members
of Gc for the items in Tc) and were asked to decide which of
the movies the group would be most likely to settle on. Each
expert evaluated 50 cases, hence each of the 100 groups was
evaluated by two experts (not always the same two). Experts
were asked to give an ordered list of the three movies from Tc
that they thought the members of Gc would agree on, and we
combined the experts’ judgements into a single final ordered
list. We will designate this ordered list by E (for ‘Expert’)
and we will use E1 to mean movies in the first position in E,
E2 to mean movies in the first and second positions in E, and
so on.

6 Evaluation Methodology
The dataset that we have created has 100 movie-going events.
We use a leave-one-out cross-validation methodology, where
we remove each case in turn from the case base and present
it to the recommenders. We compare their recommendations
with the experts’ judgements.



Figure 1: Results for θ = 20

We report results from four recommenders: Soc, Soc-CB,
Soc-UCB, and Soc-U. Each recommender recommends the
top k = 3 movies from the 15 candidates. Let R be the
set of recommendations made by a particular recommender.
Then we want to compare R with E from above. We com-
puted total success@n for n = 1, 2, 3, where success@n =
1 if ∃i, i ∈ R ∧ i ∈ En and is 0 otherwise. For exam-
ple, when using success@2, we score 1 each time there is at
least one recommended movie in the top two positions of E.
We also computed total precision@n for n = 1, 2, 3, where
precision@n =̂ |{i : i ∈ R ∧ i ∈ En}|/n. For example, if
no recommended movie is in the top two positions in E, then
precision@2 = 0; if one recommended movie is in the top
two positions in E, then precision@2 = 0.5.

We repeat the experiments with different cold-start thresh-
olds (θ). For θ = 20, just over ten users are in cold-start; with
θ = 40, an additional twenty users are in cold-start; and then
as θ goes up by 20, the number of users in cold-start grows
by about an additional ten each time. (The threshold excludes
the 15 ratings for Ta withheld from the recommender.)

7 Results
Figure 1 shows success@n for n = 1, 2, 3 and precision@n
for n = 2, 3 (precision@1 = success@1 and is therefore not
shown) for cold-start threshold θ = 20.

Results show that as n gets bigger, results improve but
differences between systems become less pronounced: with
bigger n it is simply easier to make a recommendation that
matches an expert judgement. The most important obser-
vation is that the Soc-CB system out-performs the Soc-UCB
system, which out-performs the Soc-U system, which out-
performs the Soc system. So, a cold-start strategy that is con-
ditioned on groups copies ratings in a more informed and
successful way than strategies that copy without regard to
groups, and copying ratings is more successful than having
no cold-start solution.

We tried out a similar cold-start solution in the context of a
single-person recommender, where a single active user seeks
movie recommendations. If the active user was in cold-start,
we copied ratings from a similar user in U . Interestingly, do-
ing so made no or almost no change to the success@n and
precision@n results (not shown here) across several defini-
tions of similarity. We conclude that, for our movie data,
conditioning on groups really does seem to be the most ef-
fective way to use this cold-start solution.

Figure 2: Results for precision@2

We have also studied the impact of varying θ (from 20 to
200), Figure 2. In other words, more and more users are re-
garded as being in cold-start and are given ratings from other
users. The results for Soc itself remain the same for all values
of θ because this system has no cold-start strategy. For the
other systems, we see that results improve and then fall off as
θ increases. For example, for Soc-CB, results improve until
θ = 100. For this system, 100 is the cut-off point: users with
fewer than 100 ratings are ones we should regard as being in
cold-start. A higher threshold treats so many users as being
in cold-start that the tastes of the active group are swamped
by the ratings copied from other users, causing system per-
formance to decrease. The graph is for precision@2 but we
observed the same pattern of results for all other measures.

8 Conclusions
We have presented a new solution to the cold-start problem
in a collaborative group recommender. We use a case base
of group recommendation events and copy ratings into the
profile of users who are in cold-start from their most similar
user in the most similar group in the case base. Our exper-
iments on movie data show that, for users with fewer than
100 ratings, this strategy improves the quality of the group
recommendations.

A side-product of the research has been the construction of
a dataset for group recommender research. We recognize that
it has limitations: for example, it contains no family groups
(e.g. parents with children) since members of a group are se-
lected to be in the same age range; and its imputation of per-
sonality and trust values is too simplistic.

There is much that can be done to take this work forward.
For us, the next step is to consider a case base in which we
more explicitly arrange that there be cases (e.g. movie-going
events) that involve groups whose members have a high de-
gree of overlap with the members of the active group, so that
we can experiment with the situation where the same group
(or nearly the same group) consumes items together on a fre-
quent basis. We also intend to consider richer case represen-
tations to take into account such things as timestamps, pre-
dicted and actual ratings from group members, and the dy-
namics of reaching a consensus (e.g. changes in group mem-
bership and changes in the selected item). We hope too to
gather more data from our Facebook application and use this
data to overcome the limitations of our current dataset.
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