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Abstract. We extend a group recommender system with a case base
of previous group recommendation events. We show that this offers a
potential solution to the cold-start problem. Suppose a group recom-
mendation is sought but one of the group members is a new user who
has few item ratings. We can copy ratings into this user’s profile from the
profile of the most similar user in the most similar group from the case
base. In other words, we copy ratings from a user who played a similar
role in some previous group event. We show that copying in this way, i.e.
conditioned on groups, is superior to copying nothing and also superior
to copying ratings from the most similar user known to the system.

1 Introduction

Restaurants; tourist attractions; vacation destinations; movies, music & TV
when broadcast in shared spaces. All these are examples of items that can benefit
from group recommender systems, i.e. recommender systems whose suggestions
take into account the preferences of the members of a group of people who will
consume the items together [4]. Group recommenders typically work by either
(a) merging the recommendations that would be made to the group members,
(b) aggregating the predicted ratings of the group members, or (c) constructing
a group preference model from the preferences of the group members [4].

In this paper, in the context of movie recommendation to groups of friends,
we consider a group recommender system that takes the second of these ap-
proaches. It runs, and aggregates the results of, a single-person recommender
system for each member of the group. Specifically, it runs a user-based collabo-
rative recommender system [3] to predict movie ratings for each member of the
group. It finds a neighbourhood of users who have similar movie ratings to those
of the active user; it predicts user ratings for candidate movies that neighbours
have rated but which the active user has not rated. The group recommender
aggregates the predicted ratings for each group member to arrive at ratings and
thence suggestions that it can make to the group as a whole. Methods for ag-
gregating ratings are reviewed in [5] and it is the most pleasure principle (see
Section 3) that we use.



It is well-known that collaborative recommenders suffer from cold-start prob-
lems [3, 13]. In particular, a user-based collaborative recommender finds it dif-
ficult to make good predictions for new users for whom it has few ratings: it
cannot reliably find neighbours who have similar ratings to those of the new
user. The group recommender inherits this problem too because it aggregates
the predicted ratings for each group member. Solutions to the cold-start problem
for single-person recommenders are summarized in [13]. Solutions include: non-
personalized recommendations for cold-start users using population averages;
intelligent ways to solicit more ratings (e.g. [2, 11]); and hybrid recommenders
that resort to content-based recommendations when there are insufficient ratings
to make collaborative recommendations (e.g. [1, 6]).

The contribution of this paper is to introduce and evaluate a case-based
reasoning (CBR) solution to this problem. We use a case base in which each case
records a previous group movie recommendation event. When a group requests
a new recommendation but where one or more of the group members is in cold-
start, we find a case that describes a previous recommendation event where
there are users who are not in cold-start but who play similar roles in their
group to the roles the cold-start users play in the active group. We copy ratings
from the users in the case to the corresponding users in the active group and
only then proceed to run the single-person recommender and to aggregate its
results. It is natural to use a CBR approach because, in the movie domain and
similar domains, similar events recur: the same group (perhaps with some small
variations) repeats activities together; and some age, gender and personality
distributions will tend to recur too (e.g. two adults with two children, or several
friends in the same age range).

Case-based reasoning (CBR) has been used in recommender systems before
(e.g. [12]) and explicit parallels between CBR and user-based collaborative rec-
ommenders have been drawn (e.g. [7]). But we are unaware of any previous use
of CBR in group recommenders or in solutions to the cold-start problem.

Section 2 defines a single-person user-based collaborative recommender sys-
tem; Section 3 describes two group recommenders that aggregate the predictions
made for each group member by the single-person recommender; Section 4 de-
scribes how we have extended these group recommenders to use a case base
of previous group recommendation events to solve the cold-start problem; Sec-
tion 5 proposes systems against which the case-based system can be compared;
Section 6 describes the dataset that we have used in our experiments; Section 7
presents our experimental method; Section 8 contains results; and Section 9
concludes and presents some ideas for future work.

2 Single-person user-based collaborative recommenders

As we have explained, our group recommender runs a user-based collaborative
recommender for each person that is a member of the active group. Although
the operation of user-based collaborative recommenders is well-known, we sum-
marize it here in order to be explicit and to introduce some notation.



Suppose there are n users, U = {u : 1 . . . n}, and m items (e.g. movies),
I = {i : 1 . . .m}. Let ru,i be the rating that user u assigns to item i. Ratings are
on a numeric scale, e.g. 1 = terrible and 5 = excellent, but ru,i = ⊥ signals that
u has not yet rated i.

Suppose we want to recommend to active user ua one or more of a set of
candidate target items Ta ⊆ I. For example, Ta could be the set of movies show-
ing this week at ua’s local multiplex. The user-based collaborative recommender
that we use works as follows [3, 13]:

– For each i ∈ Ta,
• The similarity between the active user ua and each other user u 6= ua

who has rated i, is computed using Pearson Correlation [3], ρ.
• After computing the similarity between ua and each other user u who has

rated i, the k nearest neighbours are selected, i.e. the k for whom ρua,u

is highest. In our work, we use k = 20 and we only include neighbours
for whom ρua,u > 0.

• A predicted rating r̂ua,i for active user ua and target item i is computed
from the neighbours’ ratings of i as follows:

r̂ua,i =̂ r̄ua
+

∑k
u=1(ru,i − r̄u)ρua,u∑k

u=1 ρua,u

(1)

– Having computed r̂ua,i for each i ∈ Ta, the system recommends to the active
user the k′ items from Ta whose predicted ratings are highest. We use k′ = 3.

3 Group recommenders

Let Ga ⊆ U be an active group of users, in our case a group who intend going
to see a movie together. The goal again is to recommend k′ items from a set of
Ta items. We will do this by computing a predicted rating r̂Ga,i for active group
Ga and each target item i ∈ Ta and then recommending the k′ items in Ta that
have the highest predicted ratings.

3.1 Standard group recommenders

As we have explained, a common approach to group recommendation, and the
one that we follow, is to aggregate the predicted ratings of the members of
the group, r̂ua,i for each ua ∈ Ga for the various i in Ta. Possible aggregation
functions include least misery (where the minimum is taken) and most pleasure
(where the maximum is taken). We experimented with both before [8], and we
found most pleasure to give better results, and so we adopt that here:

r̂Ga,i =̂ max
ua∈Ga

r̂ua,i (2)

We compute r̂Ga,i for each i ∈ Ta and recommend the k′ with the highest
aggregated predicted rating. We will designate this recommender by Std.



3.2 Social group recommenders

Our previous work showed an improvement in the accuracy of predicted group
ratings by taking into account the personality of the users in the group and the
strength of their connections, which we refer to as their trust [10]. We refer to
our recommender that takes this extra social information into account as being
social and the method it uses as being delegation-based

We obtain the personality of each user u, denoted u.pers, by making group
members complete a personality test on registration with the recommender.
The details of the personality test are in [15]. In a real application, such as the
Facebook social group recommender that we have built [9], trust between users u
and v (u ∈ U, v ∈ U, u 6= v), tu,v, can be based on distance in the social network,
the number of friends in common, relationship duration, and so on.

Using the most pleasure principle again, we have:

r̂Ga,i =̂ max
ua∈Ga

dbr(r̂ua,i, Ga) (3)

Here the most pleasure principle is not applied directly to individual predicted
ratings, r̂ua,i. The ratings are modified by the dbr function, which takes into
account personality and trust values within the group Ga to compute what we
call a delegation-based rating (dbr).

Space limitations preclude a detailed description of the operation of dbr but
it is described in [10]. In essence, it is a weighted average of multiple copies of
r̂ua,i, one copy for each other member of u 6= ua in group Ga. The weights are
based on the trust between ua and u, tua,u, and a value that is computed from
the difference in their personalities, ua.pers − u.pers.

The recommender recommends the k′ items i from Ta for which r̂Ga,i is
highest. We will designate this recommender by Soc.

4 Using CBR in recommenders for users in cold-start

As we have explained, an active user with few ratings is said to be in cold-start.
The problem that this causes for the kind of recommenders that we have been
discussing is that it becomes difficult to find a reliable neighbourhood of similar
users from which predictions can be made. One solution is to copy some ratings
into the profile of the active cold-start user from a similar user who has additional
ratings. Similarity in this case (i.e. for finding a user from whom ratings can be
copied) would be measured using demographic information (age, gender, etc.)
[13] because the active user has insufficient ratings to find a similar user using
Pearson correlation, ρ. Let v be the user who is similar to ua and from whom
ratings will be copied. Then ua obtains ratings for all items i that v has rated
(rv,i 6= ⊥) but that ua has not (rua,i = ⊥).

A group recommender can take the same approach when members of the
group are in cold-start: prior to predicting individual ratings, it can augment
the ratings profiles of group members who are in cold-start with ratings that are
copied from the profiles of similar users. But in a group recommender, we can



go further than using just demographic information for finding the most similar
users from whom ratings will be copied. In our work, we investigate how to reuse
ratings from similar users in similar groups in a case-based fashion.

4.1 Case representation

Assume a case base CB in which each case c ∈ CB records a previous group
movie recommendation event. Each case will have the following structure:

〈idc , 〈Gc, Tc〉, ic〉

– idc is a case identification number, used to distinguish the case from others,
but otherwise not used by the CBR.

– The problem description part of the case comprises:
• Gc ⊆ U , the group of users who used the recommender previously. For

each user u ∈ Gc, we will know demographic information such as u’s age
(u.age) and gender (u.gender); u’s ratings, ru,i for some set of items;
and u’s personality value, u.pers. And, for each pair of users u ∈ Gc, v ∈
Gc, u 6= v, we will know the trust value, tu,v.

• Tc ⊆ I, the set of items that the users were choosing between. In our case,
these were the movies that were at the local multiplex on the occasion
when this group used the recommender.

– The solution part of the case contains just ic ∈ Tc, the item that the group
agreed on. In our case, this is the movie that the group went to see together.

Cases could also contain some of the numbers calculated when making the
recommendation to the group, for example, the predicted individual ratings, r̂u,i
for each u ∈ Gc and for each i ∈ Tc. Or, cases could also contain the actual
ratings that users assign to item ic. In other words, having gone to see movie ic,
users may come back to the system and give an actual rating, ru,ic . We leave
the possible exploitation of this additional information to future work.

4.2 CBR for cold-start users in groups

We will summarize the process by which the case base is used for cold-start users.
Details of the similarity measures will be given in subsequent sections. As usual,
the goal is to recommend k′ items from a set of items, Ta ⊆ I, to an active
group of users, Ga ⊆ U . The recommender will recommend the k′ for which
the predicted group rating, which is aggregated from the predicted individual
ratings, is highest. Of course, if none of the users in Ga is in cold-start, then the
system will work either in the fashion described in Section 3.1 or in the fashion
described in Section 3.2.

But suppose, on the other hand, that one or more members of Ga are in cold-
start. We define this simply using a threshold, θ: a user ua is in cold-start if and
only if the number of items s/he has rated is less than θ, |{i : r(ua, i) 6= ⊥}| < θ.
In this case, we need to use the CBR. For each user who is in cold-start, we will
copy ratings from the most similar user in the most similar group in the case
base. The details follow.



Case retrieval We can write the problem statement as PS = 〈Ga, Ta〉. We will
find the most similar case, c∗, in the case base:

c∗ =̂ arg max
c∈CB

sim(PS, c) (4)

The similarity between a problem statement PS = 〈Ga, Ta〉 and a case c =
〈idc , 〈Gc, Tc〉, ic〉 ∈ CB, sim(PS, c), is calculated on the basis of group similarity:

sim(〈Ga, Ta〉, 〈idc , 〈Gc, Tc〉, ic〉) =̂ gsim(Ga, Gc) (5)

This means that in our work case similarity only takes the groups, Ga and Gc,
into account; it does not take into account the items, Ta and Tc. Tc contains
the items that Gc contemplated in the past, but Ta contains items that Ga is
contemplating right now, e.g. movies that have just come to town. These sets
may or may not overlap. If they do, we have the basis for a refinement to the
similarity we could use in case retrieval. We leave this to future work.

Case reuse Next, for each user ua in Ga who is in cold-start, we find the most
similar user u∗ in case c∗ who has rated movies that ua has not. Let G∗ be the
group of people described in case c∗. We find:

u∗ =̂ arg max
u∈G∗∧∃i,rua,i=⊥∧ru,i 6=⊥

psimCB(ua, Ga, u,G
∗) (6)

In the case of more than one such user, we choose the one from whom we can
copy the most ratings, i.e. the one who has most ratings for movies that ua has
not rated. Then, temporarily (for the purposes of making ua’s prediction for the
items in Ta), we copy into ua’s profile the rating for each item i that u∗ has
rated (ru∗,i 6= ⊥) that ua has not (ru,i = ⊥).

With each cold-start user’s profile augmented in this way, we can then pro-
ceed to compute group recommendations in the fashion described in Section 3.1,
which we will designate by Std-CB, or in the fashion described in Section 3.2,
which we will designate by Soc-CB. But, it should now be less problematic find-
ing neighbourhoods for the users who are in cold-start because they now have
augmented user profiles.

4.3 The most similar group

As we saw above, case retrieval in this system finds the most similar case to the
problem statement, which is the one that contains the group that is most similar
to Ga. This requires a definition of group similarity, gsim. We compute the simi-
larity of any pair of groups, G and G′, from the similarity of the users in the two
groups, psimCB(u,G, u′, G′), u ∈ G, u′ ∈ G′. We will define psimCB(u,G, u′, G′)
in the next subsection.

So, the similarity of G to G′ is the average similarity of each user u in G to
his/her most similar user in G′:

gsim(G,G′) =̂

∑
u∈G psimCB(u,G, u∗, G′)

|G|
(7)



where
u∗ =̂ arg max

u′∈G′
psimCB(u,G, u′, G′) (8)

Note that the mapping from users u ∈ G to users u′ ∈ G′ is not bijective, meaning
we do not prevent two or more people from G being associated with the same
user u′ ∈ G′. This fact allows us to easily compare groups of different sizes
without further complications. It does mean that, if two or more users from Ga
are in cold-start, they may all copy ratings from the same user u′ ∈ G. (We could
have taken the option of requiring bijective mappings, either by only comparing
equal-sized groups or by introducing ‘virtual’ users to make groups equal-sized,
and we have done this in on-going work. But it seemed an unnecessary and costly
complication in our work on cold-start.)

4.4 The most similar user

Our CBR solution to the cold-start problem in group recommenders requires
a definition of the similarity between two users, u and u′, in different groups,
psimCB(u,G, u′, G′) where u ∈ G and u′ ∈ G′. This plays two roles in the CBR.
First, as Section 4.3 explains, it is used in case retrieval, since the most similar
user is part of the definition of the most similar group. Second, as Section 4.2
explains, it is used in case reuse, since ratings are copied to each cold-start user
from his/her corresponding most similar user in the most similar case.

To define psimCB(u,G, u′, G′), the similarity between two users in groups,
we make use of their ratings, their demographic information (age and gender)
and the social information (personality and trust). Specifically, we compute local
similarities for each of these, and then combine them into a global similarity.

The local similarities are as follows. For their ratings, we use the Pearson
correlation but normalized to [0, 1], denoted here by ρ[0,1]. For gender, we use
an equality metric and for ages and personalities, we use the range-normalized
difference:

eq(x, y) =̂

{
1 if x = y
0 otherwise rn diffattr (x, y) =̂ 1− |x− y|

rangeattr
(9)

For trust values, we compute the average trust value between user u and all other
members of his group, v ∈ G, u 6= v, which we will denote by t̄u. Similarly, we
compute the average trust value for the other user, ¯tu′ , and we use rn diff to give
the similarity of these two values. We do the same for the standard deviations
of the trust values, σtu and σtu′ . The global similarity, psimCB , is simply an
average of ρ[0,1], eqgender , rn diffage , rn diffpers , rn diff t̄ and rn diffσt .

5 Other recommenders for users in cold-start

An obvious question is whether it makes a difference that our case-based solution
to the cold-start problem in group recommenders works on a group basis at all.



Why copy ratings from the most similar user in the most similar group? Why
not copy ratings simply from the most similar user in the case base as a whole?
Or why not copy ratings from the most similar user known to the system?
Systems that work in these different ways will be useful for comparisons in our
experiments, hence we define both of these more precisely now.

Consider the set of users who appear in at least one case in the case base:

UCB =̂ {u : ∃c = 〈idc , 〈Gc, Tc〉, ic〉 ∈ CB ∧ u ∈ Gc} (10)

When trying to predict group Ga’s rating for an item i ∈ Ta, then for any user
u ∈ Ga who is in cold-start, we could find, and copy ratings from, the most
similar user in UCB :

u∗ =̂ arg max
u∈UCB∧∃i,rua,i=⊥∧ru,i 6=⊥

psimUCB
(ua, u) (11)

This is different from first finding the most similar case (in other words, the most
similar group) and then, for each active user in cold-start, copying ratings from
the most similar user in that group. Our case-based approach is conditioned on
the groups; this alternative is not. Note that this alternative needs a new defini-
tion of the similarity between two people, psimUCB

in place of psimCB . Above,
we were able to compute and compare the average and standard deviations of the
trust values between a user and all other members of his/her group. In this new
setting, this no longer makes sense, since we are ignoring the groups. Hence, the
global similarity psimUCB

will be the average of just ρ[0,1], eqgender , rn diffage

and rn diffpers . We will designate this recommender by Std-UCB (where it works
in the fashion described in Section 3.1) and by Soc-UCB (where it works in the
fashion described in Section 3.2).

The second of our two alternative cold-start recommenders ignores the case
base altogether. It simply finds, and copies ratings from, the most similar user
in U (the entire set of users), wholly ignoring whether they have previously
participated in group recommendations or not. Hence,

u∗ =̂ arg max
u∈U∧∃i,rua,i=⊥∧ru,i 6=⊥

psimU (ua, u) (12)

Note that for the experiments in this paper, this requires yet another definition
of the similarity between users, psimU . This is because we only have person-
ality values for users who have participated in group recommendation events.
Hence, the global similarity psimU will be the average of just ρ[0,1], eqgender and
rn diffage . We will designate this recommender by Std-U (where it works as per
Section 3.1) and by Soc-U (where it works as per Section 3.2).

6 Group Recommender Dataset

We need a dataset with which we can evaluate our case-based solution to the
cold-start problem in group recommenders. We have built a social group rec-
ommender as a Facebook application [9]. But, at the time of writing, it cannot



Fig. 1. Group sizes for 525 real movie-going events

provide the volume of data that we need for conducting experiments. Unfortu-
nately, neither are we aware of a public dataset for group recommenders. Hence,
we created our own dataset, and we explain how we did this here.

Base dataset We have used the MovieLens 1M dataset (www.grouplens.org).
It gives us around 1 million ratings on a scale of 1 to 5 for around 6040 users
for nearly 4000 movies. Each user has at least 20 ratings. The dataset also gives
a small amount of demographic information about each user. In particular, we
use the user’s gender and age range (under 18, 18− 24, 25− 34, and so on).

Groups We created 100 groups from the MovieLens dataset. Group members
are chosen at random from all users in the MovieLens dataset but subject to the
following restrictions:

– In a group, users are distinct (but a user may be in more than one group).
– In a group, we ensure that all the users are in the same age range.
– In a group, we ensure that there are at least 15 movies which are co-rated

by all members of the group. When we create cases, these 15 movies will be
the set Tc. These ratings themselves are withheld from the recommender,
because it would not in general know a user’s actual ratings for the movies
that the group was choosing from.

We conducted a Facebook poll in which we asked respondents to tell us, for
the last five times that they went to the cinema in a group, how large the group
was. There were 105 respondents and so we learned the group size for 525 events
(although we we cannot be certain that they were all distinct events). Figure 1
shows the distribution. We used the frequencies from this distribution to create
our 100 groups. Hence, we have 50 groups of size 2, 18 of size 3, 16 of size 4, 7
of size 5, 5 of size 6, and 4 where we took the size to be 7.



Personality values We had to impute personality values to the users in the
groups. The personality test that we have described in previous work is the
Thomas-Killmann Conflict Mode Instrument (TKI) [15]. Questions on the test
reveal the extent to which a person uses each of five modes for dealing with
conflict, including “competing”, “compromising”, “avoiding” and so on. These
five modes can be summarized to give scores on two dimensions, “assertiveness”
and “cooperativeness”, from which we define a single numeric value, u.pers, in
the range [0, 1], where 0 signals a very cooperative person and 1 signals a very
selfish person [10].

To impute personalities to users in our dataset, we make use of the population
norms that the TKI Technical Brief provides [14]. We randomly give to each user
five scores, one for each mode, based on the distributions given in the Brief. We
calculate u.pers from these.

We recognize that this is imperfect. Although the distribution of the five
modes among our users will reflect the distribution in the population, the dis-
tribution within groups may not reflect reality. Because of the randomness, we
might end up with a group of, for example, four very selfish people, where per-
haps this rarely occurs in reality. We should be able to take a more informed
approach in the future, once our Facebook application generates more data.

Trust values As we have discussed, in our Facebook application, trust is com-
puted from Facebook data (distance in the social network, etc.), but that is
not available to us for the users in the MovieLens dataset. Rather than simply
imputing trust values at random, we have chosen to base them on ratings. For
these experiments, the trust between users u and u′ is the number of movies on
whose ratings they agree as a proportion of the movies that either of them has
rated. Agreement here is defined quite loosely: they agree if both have given the
movie a rating above the ratings mid-point (which is 3) or if both have given
the movie a rating below the ratings mid-point. The formula is as follows:

tu,u′ =̂
|{i : (r(u, i) > 3 ∧ r(u′, i) > 3) ∨ (r(u, i) < 3 ∧ r(u′, i) < 3)}|

|{i : r(u, i) 6= ⊥ ∨ r(u′, i) 6= ⊥}|
(13)

Hence, in our dataset, trust is based on the degree of shared taste.
This does not mean that, when psimCB combines ρ[0,1] with rn diff t̄ and

rn diffσt
, it is counting the same shared ratings twice. ρ[0,1] compares ratings

between members of different groups (inter-group); it aligns a person in one
group with someone in the other group who has the same tastes. But rn diff t̄
and rn diffσt compare ratings within groups (intra-group) to give trust values,
which are then compared between groups; they align a person in one group with
someone who has similar trust relationships in the other group.

The chosen movie So far, we have described how we have created 100 groups.
As we have explained, we have engineered matters so that, for each group, there
is a set of 15 movies that all members of the group have rated (although we



withhold the ratings from the recommender), and we are treating these 15 movies
as Tc, the set of movies that this group was choosing between. (Remember that
Tc can be different for every group.) To create a case, we need to indicate which
of these 15 movies the group will actually have chosen to go to see. But we
cannot ask random groups of MovieLens users to work out which of their 15
candidate movies they would have gone to see together.

We used four human ‘experts’ who were given all the information about a
group’s members Gc and the candidate movies Tc (including the actual ratings
by the members of Gc for the items in Tc) and were asked to decide which of
the movies the group would be most likely to settle on. Each expert evaluated
50 cases, hence each of the 100 groups was evaluated by two experts (not always
the same two experts). Experts were asked to give an ordered list of the three
movies from Tc that they thought the members of Gc would agree on.

Since each case is being decided by two experts, we needed a voting scheme
to reconcile their judgements. A movie that an expert placed in first position was
given three votes; a movie placed in second position was given two votes; and
a movie placed in third position was given one vote. By adding up and ranking
movies by their votes, we obtain a final ordered list of the movies that Gc would
be most likely to see. For example, if both experts placed a movie i ∈ Tc in first
place, then it would receive six votes and would come first in the final combined
ordering. But if one expert placed i in first position and j 6= i in second position,
but the other expert placed them in the opposite order, then both get five votes.
The final ordered set will contain a minimum of three movies (where the experts
agreed on the same set of three movies from Tc) and a maximum of six movies
(where the two experts disagreed entirely). In fact, the latter never happened;
final ordered sets are roughly evenly-split between those of size three and those
of size four, plus a handful of size five. We will designate this ordered set by E
(for ‘Expert’) and we will use E1 to mean movies in the first position in E, E2

to mean movies in the first and second positions in E, and so on.

7 Evaluation Methodology

The dataset that we have created has 100 movie-going events, in other words
100 cases. We use a leave-one-out cross-validation methodology, where we remove
each case in turn from the case base and present it to the recommenders. We
compare their recommendations with the judgements of the experts.

We use eight recommenders in these experiments: Std, Soc, Std-CB, Soc-CB,
Std-UCB, Soc-UCB, Std-U and Soc-U. Soc (social) indicates that, before aggre-
gation, the recommender uses extra social data to modify individuals’ predictions
using the delegation-based method of Section 3.2, whereas Std (standard) indi-
cates that they do not as in Section 3.1. The second part of the name, if there is
one, indicates how the recommenders handle cold-start users. The four options
here are: they do nothing for cold-start users; they copy ratings from the most
similar user in the most similar case (-CB, Section 4); they copy ratings from the



Fig. 2. Number of users in cold-start

most similar user from any case (-UCB, Section 5); or they copy ratings from
the most similar user in the whole dataset (-U, also Section 5).

Recall that each recommender recommends the top k′ = 3 movies from the
15 candidates. Let R be the set of recommendations made by a particular rec-
ommender. Then we want to compare R with E from above, the ordered set
of movies that the experts judged to be correct. We computed total success@n
for n = 1, 2, 3, where success@n = 1 if ∃i, i ∈ R ∧ i ∈ En and is 0 otherwise.
For example, when using success@2, we score 1 each time there is at least one
recommended movie in the top two positions of E. We also computed total
precision@n for n = 1, 2, 3, where precision@n =̂ |{i : i ∈ R ∧ i ∈ En}|/n.
For example, if no recommended movie is in the top two positions in E, then
precision@2 = 0; if one recommended movie is in the top two positions in E,
then precision@2 = 0.5.

We repeat the experiments with different cold-start thresholds. Figure 2
shows how many users are affected. We see that with θ = 20, just over ten
users are in cold-start; with θ = 40, an additional twenty users are in cold-start;
and then as θ goes up by 20, the number of users in cold-start grows by about an
additional ten each time. (The threshold excludes the 15 ratings for Ta, which
are withheld from the recommender.)

8 Results

Figure 3 shows success@n for n = 1, 2, 3 and precision@n for n = 2, 3 (precision@1
= success@1 and is therefore not shown) for cold-start threshold θ = 20.

The first observation about the results is that, as one would expect, as n gets
bigger, results improve but differences between systems become less pronounced:



Fig. 3. Results for θ = 20

with bigger n it is simply easier to make a recommendation that matches an
expert judgement. The next observation comes from looking at pairs of bars. The
first bar in each pair is a system that does not use social data, and the second
is one that does. Consistently throughout all our results, systems that use social
data out-perform their counterparts that do not, which shows the value of using
personality and trust information. This is something we had already established
in our previous work (e.g. [10, 8]), but it is good to see the result confirmed on
our new dataset. A final (and the most important) observation is that the Soc-
CB system out-performs the Soc-UCB system, which out-performs the Soc-U
system, which out-performs the Soc system. In other words, a cold-start strategy
that is conditioned on groups (from cases) copies ratings in a more informed and
successful way than strategies that copy without regard to groups, and copying
ratings is more successful than having no cold-start solution at all.

We tried out a similar cold-start solution in the context of a single-person rec-
ommender, where a single active user seeks movie recommendations. If the active
user was in cold-start, we copied ratings from a similar user in U . Interestingly,
doing so made no or almost no change to the success@n and precision@n results
(not shown here) across several definitions of similarity. We conclude that, for
our movie data, conditioning on groups really does seem to be the most effective
way to use this cold-start solution.

Figure 4 shows the effects of varying θ from 20 to 200. In other words, more
and more users are regarded as being in cold-start and are given ratings from
other users. We only show systems that use social data because, as we have
already said, they are better. The results for Soc itself remain the same for all
values of θ because this system has no cold-start strategy. For the other systems,
we see that results improve and then fall off as θ increases. For example, for Soc-
CB, results improve until θ = 100. For this system, 100 is the cut-off point: users



Fig. 4. Results for precision@2

with fewer than 100 ratings are ones we should regard as being in cold-start. A
higher threshold treats so many users as being in cold-start that the tastes of
the active group are swamped by the ratings copied from other users, causing
system performance to decrease. The graph is for precision@2 but we observed
the same pattern of results for all other measures.

9 Conclusions

We have presented a new solution to the cold-start problem in a collaborative
group recommender. We use a case base of group recommendation events and
copy ratings into the profile of users who are in cold-start from their most similar
user in the most similar group in the case base. Our experiments on movie data
show that, for users with fewer than 100 ratings, this strategy improves the
quality of the group recommendations. The experiments also confirm, using new
data, the results of our previous work, viz. a group recommender that uses social
data, such as user personality and inter-personal trust, produces higher quality
recommendations than one that does not use this data. A side-product of the
research has been the construction of a dataset for group recommender research.

There is much that can be done to take this work forward. For us, the next
step is to consider a case base in which we more explicitly arrange that there
be cases (e.g. movie-going events) that involve groups whose members have a
high degree of overlap with the members of the active group, so that we can
experiment with the situation where the same group (or nearly the same group)
consumes items together on a frequent basis. We also intend to consider richer
case representations to take into account such things as timestamps, predicted



and actual ratings from group members, and the dynamics of reaching a con-
sensus (e.g. changes in group membership and changes in the selected item). We
hope too to gather more data from our Facebook application and use this data
as the basis for future experiments.
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