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Abstract

This paper describes a grammar learning sys-
tem which combines model-based and data-driven
learning within a single framework. Results from
learning grammars with the Spoken English Cor-
pus (SEC) suggest that a combined model-based
and data-driven learner can acquire a wide cover-
age grammar from only a small training corpus.
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1: Introduction

In this paper, we present some results of our
grammar learning system. We show that using
unification-based grammars, with a hybrid learn-
ing system allows a rapid rate of convergence
upon a test corpus with only a modest amount
of training material.

In contrast to other researchers (for example
(BMMS92; GLS87; Bak79; LY90; VB87)), we try
to learn competence grammars and not perfor-
mance grammars. We also try to learn gram-
mars that assign linguistically plausible parses
to sentences. Learning competence grammars
that assign plausible parses is achieved by com-
bining model-based and data-driven learning
within a single framework (OB93b; OB93a; Os-
bng).  Model-based (deductive) methods are
sound (MKKC86) (assuming that the model
is consistent), but suffer from incompleteness,
whilst data-driven (inductive) methods are un-
sound (they cannot guarantee that natural lan-
guages can be learnt (Gol67)), but complete.
Note that ‘completeness’ here means that the
learner 1s always in a position to make a decision.
We let both of the learning styles compensate for
each other’s weaknesses. A recent result showed
that the combined use of induction and deduction
produced a grammar that assigned quantitatively
more plausible parses to sentences taken from the

Spoken English Corpus (SEC) (L.G91) than is the

case when using either learning style in isolation
(OB94).

The system is implemented to make use of
the Grammar Development Environment (GDE)
(CGBB88) and it augments the GDE with 3300
lines of Common Lisp.

The structure of this paper is as follows. Sec-
tion 2 gives an overview of the combined model-
based and data-driven learner. Section 3 then de-
scribes the method used to generate the results,
which are then presented in section 4 . Section
5 discusses these results and points the way for-
ward.

2: System overview
Architecture

We assume that the system has some initial gram-
mar fragment, G, from the outset. Presented with
an input string, W, an attempt is made to parse
W using G. If this fails, the learning system is
invoked. Learning takes place through the inter-
leaved operation of a parse completion process
and a parse rejection process.

In the parse completion process, the learning
system tries to generate rules that, had they been
members of G, would have enabled a derivation
sequence for W to be found. This is done by try-
ing to extend incomplete derivations using what
we call super rules. Super rules are the following
unification-based grammar rules:

[]=[][] (binary)
[1=10]  (unary)

The binary rule says (roughly) that any cate-
gory rewrites as any two other categories, and
the unary rule says (roughly) that any category
rewrites as any other category. The categories
in unification grammars are expressed by sets
of feature-value pairs; as the three categories in
the binary super rule and two categories in the



unary super rule specify no values for any of the
grammar’s features, these rules are the most gen-
eral (or vacuous) binary and unary rules possi-
ble. These rules thus enable constituents found
in an incomplete analysis of W to be formed into
a larger constituent. In unifying with these con-
stituents, the categories on the right-hand side
of the super rules become partially instantiated
with feature-value pairs. Hence, these rules en-
sure that at least one derivation sequence will be
found for W.

In fact, in practice, many instantiations of the
super rules may be produced by the parse com-
pletion process described above. Linguistically
implausible instantiations must be rejected and
we interleave this rejection process with the parse
completion process. Rejection of rules is carried
out by the model-driven and data-driven learn-
ing processes described below. As an idea of the
need to reject super rule instantiations, a short
sentence (5 words) was parsed, using just the bi-
nary super rule, and without any rejection. This
resulted in 15 rules learnt, of which all but one
spurious. However, reparsing the same sentence,
but this time rejecting implausible super rule in-
stantiations only resulted in the single, desired
rule being learnt.

If all instantiation are rejected, then the input
string W is deemed ungrammatical. Otherwise,
those surviving instantiations of the super rules
that were used to create the parse for W are re-
garded as being linguistically plausible and may
be added to G for future use.

Model-driven learning

A grammatical model is a high-level theory of syn-
tax. In principle, if the model is complete, an
‘object’ grammar could be produced by comput-
ing the ‘deductive closure’ of the model (e.g. a
‘meta’-rule can be applied to those ‘object’ rules
that account for active sentences to produce ‘ob-
ject” rules for passive sentences). An example
of purely model-based language learning is given
by Berwick (Ber85). More usually, though, the
model is incomplete and this leads us to give it a
different role in our architecture.

For the purposes of evaluating our architec-
ture, our (incomplete) model currently consists of
GPSG Linear Precedence (LP) rules (GKPS85),
semantic types (Cas88), a Head Feature Conven-

tion (GKPS85) and X-bar syntax (Jac77).

e LP rules are restrictions upon local trees. A lo-
cal tree is a (sub)tree of depth one. An example

of an LP rule might be (GKPS85, p.50):
[SUBCAT] < ~ [SUBCAT]
This rule should be read as ‘if the SUBCAT

feature is instantiated (in a category of a local
tree) then the SUBCAT feature of the linearly

preceding category should not be instantiated’.
The SUBCAT feature is used to help indicate
minor lexical categories, and so this rule states
that verbs will be initial in VPs, determiners
will be initial in NPs, and so on. In our learning
system, any putative rule that violates an LP
rule is rejected.

e We construct our syntax and semantics in tan-
dem, adhering to the principle of composition-
ality, and pair a semantic rule to each syntactic
rule (DWP81). Our semantics uses the typed
A-calculus with extensional typing. For exam-
ple, the syntactic rule:

S — NP VP
is paired with the following semantic rule:
VP(NP)
which should be read as ‘the functor VP takes
the argument NP’'. The functor VP is of
type?:
<<< et > t>t>

and the argument NP is of type:

<<et>t>
The result of applying VP (NP) has the type:

[

For many newly-learnt rules, we are able to
check whether the semantic types of the cat-
egories can be composed by function applica-
tion. If they cannot, then the syntactic rule can
be rejected. For example, the syntactic rule:

VP — VP VP

has the semantic rule VP(VP), which is ill-
formed because the type

<<<et>t>t>

cannot be applied to itself.

e Head Feature Conventions (HFCs) help instan-
tiate the mother of a local tree with respect to
immediately dominated daughters. For exam-
ple, the verb phrase dominating a third person
verb 1s itself third person.

e X-bar syntax specifies a restriction upon the
space of possible grammar rules. Roughly
speaking, the RHS of a rule contains a distin-
guished category called the head that charac-
terises the rule. The LHS of the rule is then

!Syntactic categories are written in a normal font
and semantic functors and arguments are written in
a bold font.

2The exact details of these types is not important
to understanding the thrust of this section and so they
are not given any detailed justification.



a projection of the head. Projecting the head
category results in a phrasal category of the
same syntactic class as that of the head. For
example, the rule NP — Det NI has a nominal
head and a NP projection.

This incomplete model plays two very similar,
but different roles in improving on the hypothet-
ical super rule instantiations resulting from the
parse completion process. Firstly, LP rules and
semantic types can be used to reject instantia-
tions which, through containing rule right-hand
sides whose categories are wrongly ordered or do
not comprise categories of compatible semantic
type, violate these aspects of the model. Note
that the rule rejection process can be as restric-
tive as desired. For a stricter model, the LP rules
and types can be made more general. For a liberal
model, the LP rules and types can be restricted
in scope. Secondly, the HFC and the principles of
X-bar syntax can be used to refine putative rules
by further instantiating their features, thus form-
ing more specific rules. Note that these rule re-
finement operators may at times prevent idiosyn-
cratic rules, necessary for generating unusual con-
structs found in a corpus, being learnt.

Data-driven learning

In most other inductive systems (for example
(GLS87; LGI1; Mag94)), the data-driven com-
ponent uses a treebank consisting of flat local
trees, generated by highly specific rules. Hence,
these systems in turn tend to acquire rules that
contain many categories in their right-hand side
and are also highly specific. As we have already
explained, in our system new rules are proposed
by the parse completion process, and the data-
driven component, like the model-driven compo-
nent, acts as a filter upon these proposed rules.

Our data-driven component can prefer learnt
rules that are ‘similar’ to rules previously seen
by the parser. For this to work well, the system
needs some training, prior to any learning taking
place. This consists of a small, preparsed corpus.
This can then be used to score instantiations of
the super rules when learning begins.

The learner is trained by recording the fre-
quencies of mother-daughter pairs found in parses
of sentences taken from the preparsed corpus
(LG91). For example, the tree (S (NP Sam) (VP
(V laughs))) has the following mother-daughter

pairs:

<SNP>
<S,VP>
<VP,V>

The frequencies of mother-daughter pairs in the
parse trees that have previously been assigned
to sentences of the preparsed corpus are noted.
From these frequencies, the score of each distinct

mother-daughter pair can be computed: if pair
<A, B> occurs with frequency n out of a to-
tal number of N mother-daughter pairs, then the
mother-daughter pair’s score, f, is:

f(< A,B>)=n/N

This set of mother-daughter frequencies is com-
puted in advance of using our system for learning.

During learning, after parse completion by the
super rules, local trees in completed parses can
be scored. The score is computed recursively, as
follows:

e For local trees of the form (A (B C)) whose
daughters are leaves, the score of the local tree
is:

score(A) = gm(f(< A, B >),
F(< A C>))

where gm is the geometric mean. We take
the geometric mean, rather than the prod-
uct, to avoid penalising local trees that have
more daughters over local trees that have fewer

daughters (MM91).

e For interior trees of the form (B (C D)), the
score of the local tree is:

score(B) = gm(score(C) x f(< B,C >),
score(D) x f(< B, D >))

(This does leave the problem of dealing with
mother-daughter pairs that arise in completed
parses but which did not arise in the preparsed
corpus. These can be given a low score. Giving
them a score ensures that all trees can be scored,
and thus the data-driven learner is ‘complete’.)

After scoring, instantiations of the super rule
that have daughters whose scores exceed some
threshold can be accepted. Other instantiations
can be rejected.

The approach we have described 1s a general-
isation of the work of Leech, who uses a sim-
ple phrase structure grammar, whereas we use
a unification-based grammar (Lee87). Note that
there are also mechanisms to retract rules, or to
specialise rules; at some later stage in the learning
process. These mechanisms have not been fully
tested and so are not reported in this paper.

3: Method

In this section we will show how the previously
described system can be used to create a wide
covering grammar using only a small training set.
We will also show how the system converges upon
this grammar. Coverage is defined as the propor-
tion of sentences of the test set that are gener-
ated by the grammar, whilst convergence 1s de-
fined as how many sentences in the training set
are required to achieve this coverage. Clearly, a



learning approach that converges using a smaller
size of training material is preferable to one that
converges more slowly, other things being equal.

We use the SEC as a source of training ma-
terial. The SEC is a collection of monologues
for public broadcast and is small (circa 50,000
words) in comparison to other corpora, such as
the Lancaster-Oslo-Bergen Corpus (JLG78), but
sufficiently large to demonstrate the capabilities
of the learning system. Furthermore, the SEC is
tagged and parsed, thus side-stepping the prob-
lems of constructing a suitable lexicon and of cre-
ating an evaluation corpus to determine the plau-
sibility of the learnt grammars.

To determine the convergence of our system,
the following steps were taken:

e Three disjoint sets of sentences were arbitrar-
ily selected from the SEC. These were pretrain
(less than 20 sentences), train (60 sentences)
and test (60 sentences).

e A grammar, G, was used as the initial gram-
mar. This was manually constructed and con-
sisted of 97 unification-based rules with a ter-

minal set of the CLAWS2 tagset (BGL93).

e The Model was configured to consist of 4 LP
rules; 32 semantic types, X-bar syntax and a
Head Feature Convention.

e The sentences in pretrain were used to provide
the initial estimate of mother-daughter fre-
quencies later used by the data-driven learner.

e BEach sentence in train was then parsed. For
those that failed to parse, interleaved parsing
and learning, using both the data-driven com-
ponent and the model-driven components, was
invoked. Notionally, train was partitioned into
groups of 10 sentences which were processed in-
crementally. After dealing with each group, the
resulting grammar was saved for subsequent
inspection. This gave 6 grammars, G .. .G,
where L(G;) € L(Gy41).

e Test was then parsed, without learning, using
each of the grammars G, 1, . . ., Gg. The num-
ber of sentences successfully parsed in test using
each grammar was recorded.

4: Results

The following table shows the growth in grammar
size (measured in number of rules) and the cov-
erage of that grammar (as a percentage of test):

Grammar | Size | Coverage
G 97 26.6
Gy 101 | 38.3
Go 107 | 43.3
Gs 111 | 43.3
Gy 118 | 46.6
G 122 | 51.6
G 128 | 75.0

In other words, after learning from the first 60
sentences, the grammar Gg had 128 rules and
parsed 75.0% of test. This compares with the
original grammar G’s 97 rules covering 26.6% of
test.

5: Discussion

With only a small training corpus, we increased
the coverage of a manually constructed gram-
mar by approximately 50%. By comparison with
other researchers who use purely inductive meth-
ods, we seem to get good results with only a small
train. Below we compare the size of our train with
that of others reported in the literature:

Approach Train(no. of words)
Sharman et al. (SJM88) | 50,000

Black et al. (BGL93) 470,000

Brill et al. (BMMS92) 900,000

Osborne and Bridge 837

We make no formal claims in this paper that these
systems produce ‘equivalent’ grammars, given the
difficulty in making such a comparison, but in-
stead argue that expressing grammaticality con-
cisely within a model reduces the need to infer
grammaticality from exposure to large amounts
of text. Support for this view can be found in
the human language acquisition literature, which
suggests that children do not acquire languages
purely inductively. A child does not encounter
enough training material to account for the ac-
quisition of a full adult competence grammar
(Cho7h; Whi89; Cho81). Instead, children are
thought to learn language largely deductively.
Our results reflect this view: languages can be
identified with only a modest amount of train-
ing material if deduction is used. Approaches
that use induction alone will need ever increas-
ing amounts of data to attempt to identify in the
limit any given natural language.

Acknowledgements

We would like to thank Eric Atwell (Leeds Uni-
versity) for allowing access to the SEC, Ted
Briscoe (Cambridge University) for supplying the
grammar G, Tony Griffiths for proof reading, and
the two anonymous referees for suggestions. The
first author is supported by a Science and Engi-
neering Research Council grant.

References

J. K. Baker. Trainable grammars for speech
recognition. In D. H. Klatt and J. J. Wolf,
editors, Speech Communication Papers for
the 97" Meeting of the Acoustical Society of
America, pages b47-550. 1979.

Robert C. Berwick. The acquisition of syntactic
knowledge. MIT Press, 1985.



Ezra Black, Roger Garside, and Geoffrey Leech,
editors. Statistically driven computer gram-
mars of English the I[IBM-Lancaster ap-
proach. Rodopi, 1993.

Eric Brill, David Magerman, Mitchell Marcus,
and Beatrice Santorini. Deducing Linguis-
tic Structure from the Statistics of Large
Corpora. In AAAI-92 Workshop Pro-
gram: Statistically-Based NLP Techniques,
San Jose, California, 1992.

Claudia Casadio. Semantic Categories and
the Development of Categorial Grammars.
In Richard T. Oehrle, editor, Categorial
Grammars and Natural Language Structures,

pages 95-123. D. Reidel, 1988.

John Carroll, Claire Grover, Ted Briscoe, and
Bran Boguraev. A Development Environ-
ment for Large Natural Language Gram-
mars. Technical report number 127, Uni-
versity of Cambridge Computer Laboratory,
1988.

Noam Chomsky. Reflections on Language. Pan-
theon, 1975.

Noam Chomsky. Lectures on Government and
Binding. Dordrecht: Foris, 1981.

D.R. Dowty, R.E. Wall, and S. Peters. Introduc-
tion to Montague Semantics. D. Reidel Pub-
lishing Company, 1981.

G. Gadzar, E. Klein, G.K. Pullum, and L[.A.
Sag. Generalized Phrase Structure Gram-
mar. Harvard University Press, 1985.

R. Garside, G. Leech, and G. Sampson, editors.
The Computational Analysis of English: A
Corpus-based Approach. Longman, 1987.

E. M. Gold. Language Identification to the Limit.
Information and Control, 10:447-474, 1967.

Ray S. Jackendoff. X-Bar Syntaz: A Study of
Phrase Structure. The M.I.'T Press, 1977.

S. Johansson, G. Leech, and H. Goodluck.
Manual of Information to Accompany the
Lancaster-Oslo/Bergen Corpus of British
English, for Use with Digital Computers.
Technical report, Department of English,
University of Oslo, 1978.

Fanny Leech. An approach to probabilistic pars-
wng. MPhil Dissertation, 1987. University of
Lancaster.

Geoffrey Leech and Roger Garside. Running a
grammar factory: The production of syn-
tactically analysed corpora or “treebanks”.
In Stig Johansson and Anna-Brita Sten-
strom, editors, English Computer Corpora:
Selected Papers and Research Guide. Mouten
de Gruyter, 1991.

K. Lari and S. J. Young. The estimation of
stochastic context-free grammars using the
Inside-Outside Algorithm. Computer Speech
and Language, 4:35-56, 1990.

David M. Magerman. Natural Language Parsing
as Statistical Pattern Recognition. PhD the-
sis, Stanford University, February 1994.

T. Mitchell, R. Keller, and S. Kedar-Cabelli.
Explanation-based generalization: A unify-
ing view. Machine Learning, 1.1:47-80, 1986.

D. Magerman and M. Marcus. Pearl: a proba-
bilistic chart parser. In Proceedings of the 2%
International Workshop on Parsing Tech-
nologies, Cancun, Mezxico, pages 193-199,
1991.

Miles Osborne and Derek Bridge. Inductive and
deductive grammar learning: dealing with
incomplete theories. In Grammatical Infer-
ence Colloquium, Essex University, 1993.

Miles Osborne and Derek Bridge. Learning
unification-based grammars and the treat-
ment of undergeneration. In Workshop
on Machine Learning Techniques and Text
Analysis, Vienna, Austria, 1993.

Miles Osborne and Derek Bridge. Learning
unification-based grammars using the Spo-
ken English Corpus. In The Second Inter-
national Grammatical Inference Colloquim,
Alicante, Spain, 1994.

Miles Osborne. Learning Unification-based Nat-
ural Language Grammars. PhD thesis, Uni-
versity of York, forthcoming.

R. A. Sharman, F. Jelinek, and R. L. Mercer.
Generating a grammar for statistical train-
ing. In Proceedings of the IBM Conference
on Natural Language Processing, 1988.

Kurt Vanlehn and William Ball. A Version Space
Approach to Learning Context-free Gram-
mars. Machine Learning, 2.1:39-74, 1987.

Lydia White. Universal Grammar and second
language acquisition. John Benjamins Pub-
lishing Company, 1989.



