Parallel Retrieval from Case Bases

Hugh Osborne and Derek Bridge

Department of Computer Science
University of York
Heslington
York YO1 5DD

Abstract. A method for constructing similarity measures for case based reasoning systems from sim-
ilarity measures for component features of the cases in the case base is presented. Disjunctive normal
forms can be derived for these similarity measures, and cases retrieved by applying the conjunctions
from this normal form in parallel. A system that graphically demonstrates the techniques involved is
presented. of parallel retrieval is presented.

1 Case Memory Systems

This paper presents a method for parallel retrieval from case bases. A case base will be considered to consist
of a case memory and a retrieval mechanism. The case memory will be modelled as a finite subset of a set,
0, of cases, or tuples, equiped with projection functions for accessing the component elements of these cases.
A retrieval request is presented to the system as a pair, consisting of an element, ¥, of ©® and a similarity
measure, o. The case 9, known as the probe, represents the “best possible” case. The similarity measure is
a function from cases to partial orders over cases, o0 :: © - @ — © — bool. Application of o to ¥ gives a
partial order over © which can be used to deliver the maxima from the case memory — the “best fits”.

Normally, where cases are description-report pairs, one might expect a probe to be a description, rather
than a case. There are, however, situations in which one might like to compare reports in order to discriminate
between cases — for example when cosideration of the descriptions alone has failed to discriminate sufficiently
between cases. It is for this reason that the probe is taken to be a case. If only descriptions are to be compared
o will be designed to ignore reports. A description-report pair in which both the description and the report
are tuples, can, without loss of generality, be seen as a tuple containing the elements of the description
and the report. The description and the report can be recovered by the application of suitable projection
functions.

This article will concentrate on the similarity measure ¢ — in particular how to construct similarity
measures, and then analyse them in order to enable some degree of parallel evaluation in retrieving “best”
cases from the case memory system.

Section 2 will present a means of constructing similarity measures; section 2.1 introducing a repertoire
of atomic similarity measures (intended for application to component elements of cases), and section 2.2
providing operations for combining simple similarity measures to form more complex measures. In particular,
section 2.3 discusses preferences.

Section ?? discusses retrieval from a case memory system using similarity measures, and shows how this
can be done in parallel. Finally, section 3 presents an implementation of a demonstration system for parallel
retrieval.

The paper is illustrated throughout by the following example (based on one by Ryan [?]):

Example 1 (a)
Consider the problem of providing a guest with a meal. A meal can be characterised by its name, a
list of ingredients (in this case just “meat”), some indication of its degree of spiciness, the number
of calories it contains, etc., etc.

dish:: (string, the name of the dish
bool, does it contain meat
spiciness, how spicy is it

num) number of calories



spiciness::= mild| medium mild| medium|
medium hot| hot| extra hot| killer| suicide

The projections 7meat, Tspiciness ad Tealories Will select the relevant elements of the list.

Assume that you know how to cook lamb casserole, vegetable biryani and chicken vindaloo, and
pasta with tomato chilli sauce. These are specified by the following four cases.

name meal spiciness calories
(“lamb”, True, mild, 634 ),
(“vegetable biryani”, False, hot, 843 ),
(“chicken vindaloo”, True, extra hot, 716 ),
(“pasta”, False, medium hot, 716 )

Given a guest, called “Mark”, who is vegetarian, likes his food medium hot, and is watching his
weight a probe can be defined expressing these wishes.

mark = (“Mark”, False, medium hot, 0)

Cases are then retrieved from the case base by applying a similarity measure to the ideal, giving an
ordering over cases, and then taking the maxima of the case base according to this ordering.

2 Constructing Similarity Measures

This section presents a repertoire of comparison operations, or similarity measures, and (binary) operations
on these similarity measures used to construct new similarity measures.

2.1 Atomic Similarity Measures

Some standard similarity measures are defined below, and illustrated by an example applied to the set
{1,2,3,4,5}, with the usual total order <.

flat: No elements are related (returns the flat partial order).

z (flate) y=(x =y)

is 3

3
TR
1 2 4 5

greater: The given element is a minimum requirement, and anything greater than that is better.

z (greatere)y=(z>yAzx>e)V(z=y)



greater 3

—r s —- Ut

7N
2

less: The given element is a maximum requirement.
z(lesse)y=(r<yAz<e)V(xr=y)

less 3

—— DD —>C

N
£ 5

best: The given element is the best (“break the back” of the underlying total order at this element).
x(beste)y=aox<y<eVae>y>e
best 3
3
N
2 4
SN

1 )

Furthermore the inverse function is defined for similarities, where the inverse of a similarity o returns the

inverse of the order returned by o.

U_lea:y:aeya:

Example 1 (b)

Recall that the probe for mark was
mark = (“Mark”, medium hot, 0).

Assuming that spiciness is ordered from least spicy to most spicy, Mark’s preferences are given by:
Tmeat 1S, Tspiciness Pest and Tealories greater !, all applied to mark.

The orders generated on the meals in the case base by each of these atomic measures are then:

Tmeat 1S Mark
vegetable biryani, pasta

T

chicken vindaloo, lamb casserole

Tspiciness Dest mark
pasta

e N

lamb casserole vegetable biryani

T

chicken vindaloo




and

Tealories greater ! mark

lamb casserole

T

pasta, chicken vindaloo

T

vegetable biryani

Note that no one member of the case base is best in all of these orderings. The following section will
present a method of combining these orderings to arrive at new orderings which may give a (unique)
best fit.

2.2 Connectives

The first obvious candidates for combining orderings are the usual boolean operators. These are presented
below. This is followed by a discussion of determining the maxima of the new similarity measures obtained
by application of these operators.

A second set of candidates will then be introduced. These are connectives expressing some form of priority
— e.g. that Mark considers it to be more important that the meal is vegetarian than that it be medium hot.

Normally one would expect the priority connectives to require one computation of the maxima for each
level of priority. It is however possible to reduce both the boolean operators and the priority connectives
to a (disjunctive) normal form, which can then not only be computed in one pass, but also be evaluated in
parallel. A summary of the method used concludes this section.

Boolean Operators. The usual boolean operators may be applied to similarity measures to form new
similarity measures. This is done by “lifting” the point-wise boolean operators to operate on similarities. If
@ is a binary boolean operator then the lifted operator @, acting on similarities o; and o4, applied to probe
p and cases x and y, is defined by

~

(o1 @o2)pry=(o1pxy) ®(02pyY).

Example 1 (c)
The order generated by (mmeat A Wgréater) when applied to the probe for Mark and the case memory

given is:
(Tmeat A ﬂ;réater) best mark
pasta lamb casserole
T e T

vegetable biryani  chicken vindaloo

Determining Maxima. Note that if @ is a boolean operator other than A then, even if oy p and o3 p are
partial orders, (o @ o) p is not necessarily a partial order. It will however be a pre-order. This problem is
addressed by extending the definition of maxima to cover pre-orders.

The maxima of a partial order C are usually defined as

Definition 1.

nc S={reSVWweS:zCcy=z=y}. (1)
[maxdef]



Since, for a partial order, (zt Cy = z =y) = (x C y = y C z) this is equivalent to
Definition 2.
NnCc S={zeSVyeS:ecy=yCa} (2)
[maxaltdef]
and this will be taken as the definition of the “maxima” of any relation, i.e. if @ is a relation then
Definition 3.

NoS={xecSVyeS:zdy = ydz} (3)

[maxreldef]

which is equivalent to the definition of the maxima of the partial order C over the equivalence classes
generated by C.
This definition has the following properties:

Indeed, if ®' V @2 is a partial order, then

n(e've?) =maeh A Mae?)

2.3 Two More Connectives

Two more connectives will be useful, known as preferences. One similarity measure is prefered to another
if the second is only applied to discriminate between maxima of the first. The notation s; > s is used for
“sy is prefered to s3”. An analogous notation is used for the inverse: sy < s2, with s; < s3 = s9 > s1. The
maxima of the preference of two relations are defined by:

Definition 4. If s; and s» are similarity measures, 7 is a probe, and S is a case base, then
1 ((81 > 82) Z) S=n (82 Z) (|_| (81 Z) S)

The maxima of ((s1 > s»2) i) are the maxima s; 7 S, if there is no more than one maximum in s; ¢ S, and
the maxima so ¢ S', where S’ is the set of maxima s; i S, otherwise.

This definition implies that two computations are necessary to determine MM (s; > s2) i) S, one to find
M (s1 i) S, and a second applying M (sz @) to this result. However, (s; 3> s2) i can be expressed in terms of
the standard boolean operators.

sl>>52:slV(sl/A\sflﬂ82)

3 An Implementation

A demonstration prototype of the system described above has been implemented. The syntax of cases, probes
and similarity measures was defined using the ASF+SDF [?] Meta-environment developed at the Centrum
voor Wiskunde en Informatica and the University of Amsterdam, as was the transformation of similarity
measures to disjunctive normal form. The disjunctive normal form is then passed to Gadget Gofer [?], a
dialect of Gofer developed at the University of York for parallel programming of graphical user interfaces.



3.1 Calling the system

The system is called by maxima < filename>. A small window will pop up called “Centaur menu”. Selecting
“ASF+SDF” from the “View” pull-down menu will start the ASF+SDF system.

The ASF+SDF system will automatically load the modules defining the case base language. The root
window of the system will appear.

|Statué. Iidle |
Specification Delete Edit-Module Edit-term Errors

A probe and a similarity measure (together known as a “script”) can be constructed by selecting “EXPR” in
the pull-down “EDIT-TERM” menu.

|idle
Specification Delete Edit-Module Edit-term Errors
N CASES

Hinterface

Hlayout
Hlisp
Emeta-Lisp
HprojToLisp

Hprojections
Haets
Hzimilarities
EtoDnf

A pop-up box asks for confirmation of the choice.

Which file?

[Fusc Augh/ THF ]
EZPE. trm

|
|

Upon confirmation, a syntax directed editor (a “term editor”) for a script will be created. At some point in
the development it could look like this.

tan/uzZhugh/-DNF/te

New Script: {STRING>
Script: <STRING:

Ideal: <CASE>
Similarity: <{EXPR>
E¥d

<EXPR> | <EEPR?




A final specification could be:

[ tree text expand help

Si"e Jew Script: (STRING>
ToDNF Script: test
Gofer Ideal: [ Name "idl",
Name "ideal",
New Seript Ingredient "meat" False,
Reduce Ingredient "nuts" True,

Ingredient "tomatoes® True,
Ingredient "chilli" True,
Spiciness MediumHot,
Calories 0 ]

Similarity: (is -» meat)
bEd
({is -» tom)

(best -> spicy)
1

B 0, RS,
[] tiee text expand help

Sawe [ Name "lamb" .
Install “ Name "lamb" ,

Ingredient "meat" True ,
Ingredient "nuts" False .
Ingredient "tomatoes" True .,
Ingredient "chilli" True ,
Spiciness Medium ,

Calories THE

1.

Reduce

[ Wame "rutr" ,
Name "rutroast" |,
Ingredient "meat" False .
Ingredient "nuts" True ,
Ingredient "tomatoes" False .
Ingredient "chilli" False .,
Spiciness Eland |
Calories 453 ],

[ Hame "psta" .

Name “"pasta" |

Ingredient "meat" False ,
Ingredient "nuts" False ,
Ingredient "tomaktoes" True ,
Ingredient "chilli" True .
Spiciness Hot ,

Calories 843 ],

[ Hame "fish" .
Name "trout meuniere" ,
Ingredient "meat" False ,
Ingredient "nuts" True ,
Ingredient "tomatoes" False .
Ingredient "chilli" False ,
Spiciness Eland |,
Calories 621 ]

The case memory can be installed by first clicking on the “Save” button and then on the “Install” button.

The other two options in the “EDIT-TERM” menu are “README”, which will pop up a window containing
on-line documentation, and “DNF” which will pop up an editor for the most recent disjunctive normal form.
The parallel retrieval mechanism can also be called from a disjunctive normal form term editor.

Once a script has been fully developed it can be installed by clicking on the “Save” button of the script
term editor. If a case memory has also been installed the evaluation part of the system can now be called. This
is done by clicking the “*” button of the “EXPR” term editor. The system will then compute the disjunctive
normal form of the similarity measure provided (this will be available by way of the “DNF” option of the
“EDIT-TERM” pull-down menu), and call Gadget Gofer. The disjunctive normal form of the example used
here is (the minus sign indicates the inverse of the similarity measure):



itansuughsDnf/DNErm. o0

{ig-meat }

,

{is-meat,
-is- meat,
1s->tom }

{is-rmeat,
-1s-rmeat,
best-»spicy

The “->DNF” button of the script term editor will compute the disjunctive normal form without calling
Gadget Gofer. Similarly, if the disjunctive normal form has already been computed the “Gofer” button will
start the parallel retrieval without recomputing the disjunctive normal form.

Gadget Gofer will create a window containing a demonstration of the parallel retrieval system. The top
half of the window contains various explanatory sub-windows. The top two sub-windows show the similarity
measure used, and the base case (probe) it is applied to. The grid in the bottom half is the demonstration
of the system. The bottom four rows represent evaluation of the disjunctive normal form. The topmost of
these rows will contain the final result of the evaluation. The remaining three rows shows the evaluation of
each of the terms in the disjunctive normal form. Clicking on the left most button of one of these rows will
cause the corresponding expression to be shown in the third explanatory sub-window. The expression being
evaluated in the second row is, for example

Lo~ L1 .
Tmeat IS A\ Tmeat 1S = A Ttomato IS-

In the first of these rows the lamb casserole has already been eliminated as a candidate (since the nut roast
contains no meat, and is therefore better). The nut roast has been selected as a possible candidate, since it
is as good as, or better, than all the other cases. Evaluation is still in progress for all the other cases and
terms.

I Meal Maxima

| SIMILARITY: (is —=> meat)>>({is —> tom)lthest —> spicy)) |

| BASE CASE: ideal: no meat nuts tornatees,chilli, medium hot.0 calories |

1 |
[amb | |_fish |

| nutr | | psta |

|Iamh | | nutr | | psta | | fish |
| [ [ [ |
[omes] fonute=] [ | [Cfish | [ Cpsta |
|is—ﬂ| | fish | | psta | | nutr | |Iamb |
[ormea] [ fish | [psta [ [lamb | [lamb |

The final result is obtained by taking the intersection of the results over all the terms. In this case the pasta
has been selected as the best result.



[ Meal Maxime

[ SIMILARITY: lis —> meati>>{{is —> toml(best —> spicyl) I

| BASE CASE: ideal: ho meat nuts termatess, chilll.mediur hot,0 calories |

1 |
|Iamb | | nutr | | fish |

[psta |

|Iamb | | nutr | | psta | | fish |
=1 [ =1 [T [ =1
[=2mes] |—nutr—| | | | | | Pl
fsome] [ T [opstec] [ ] [opste]
Eomead [ T [ T [ T [[x 1

The remaining two explanatory sub-windows give further information about the cases. Clicking once on one
of the buttons immediately below these sub-windows will give the name of the case (here illustrated by
“pasta”), clicking twice will give the full specification of the case (as shown here by the lamb casserole).

1 Meal Maxung

| SIMILARITY: (is —> meat)>>({is —> tom)lthest —> spicy)) |

| BASE CASE: ideal: no meat nuts tornatees,chilli,medium hot.0 calories |

| is—>meat & —is—>meat & is—>tom |

l:l | - |
|damb | |_fish |

| nutr | | psta |

| lamb: meat no nuts tomatoes,chilli. medium, 786 calories

|Iamh | | nutr | | psta | | fish |
=1 [=1T [T [=1
Emed [onuwe] [ | [ ] [x ]
fiszzmel [ [ [rosta-] [x T [rosta]

Eread [« | [x ] [x ] [[x ]

This article was processed using the IXTEX macro package with LLNCS style



