A Case Base Similarity Framework*

Hugh R. Osborne and Derek G. Bridge

University of York

Abstract. Case based systems typically retrieve cases from the case
base by applying similarity measures. The measures are usually con-
structed in an ad hoc manner. This paper presents a theoretical frame-
work for the systematic construction of similarity measures. In addition
to paving the way to a design methodology for similarity measures, this
systematic approach facilitates the identification of opportunities for par-
allelisation in case base retrieval.

1 Case Memory Systems

In this paper we present a framework for the construction of similarity measures.
Great flexibility is achieved by constructing complex similarity measures from
more basic measures using a variety of connectives that we define. The concepts
introduced in this paper are illustrated by an extensive example in the appendix.

A case memory system will be considered to consist of a case base and a
retrieval mechanism. The case base will be modelled as a finite set, ©, of cases,
equipped with projection functions for accessing the component elements of these
cases. While the cases in the example in the appendix are all tuples, and the
projection functions the standard projection functions for tuples, a case may
be a more complex structure, with correspondingly more complex projection
functions. The projection functions might even implement considerable infer-
encing [9, 14], perhaps to obtain “deep” features [3] from “surface” features.

A retrieval request is presented to the system as a pair, consisting of an
element, ¥, of @ and a similarity measure, o. The case ¥, known as the seed will,
in combination with the similarity measure, represent the “best possible” case.
This is in contrast to the earliest approaches, e.g. [11], in which the seed was
the ideal case, and the similarity measure measured the closeness of retrieved
cases to this ideal. In the approach taken here, the similarity measure can, for
example, include negation, so that distance from, rather than closeness to, the
seed becomes the measure of suitability.

We take a very general view of what cases are. The problem description, its
wider situation or context, its solution, the solution’s outcome, etc. may all be
features that may be projected from a case. In some case memory implementa-
tions, only a subset of these might be stored directly as fields of the cases; others

*In: Proceedings of the grd European Workshop on Case-Based Reasoning,
EWCBR’96, Advances in Case-Based reasoning, Ian Smith and Boi Faltings (Eds.),
Lecture Notes in Artificial Intelligence 1168, Springer Verlag, 1996

might be part of an indexing structure (as, e.g., with the explanations of case
applicability in [5]). However, even in these systems, the information has to be
associated with the case in some fashion, and so we can, without loss of gen-
erality, assume that the information can be obtained by applying a projection
function to a case.

By taking this broad view of what cases are and by allowing similarity mea-
sures to apply to any of the features that can be projected from the case, our
framework also encompasses proposals that retrieval should be sensitive to as-
pects of the case other than the problem description (e.g. the adaptability of the
solution, as in [12, 24]). If, on the other hand, only problem descriptions are to
be compared, o will be designed to ignore other features.

Finally, we should note that, in systems in which the case memory is indexed,
case base interrogation is often a two-stage process [13, 1]: a retrieval step ex-
ploits the indexes to restrict computational effort to cases that are similar to
the seed on those characteristics encoded as indexes, but the final ranking and
case selection requires application of a similarity measure to this retrieved set of
cases.

There is a sense in which this two-step process is equivalent to the application
of two similarity measures: one that is “hard-coded” as indexes, and one that
is then applied to the results of the application of the first. From this point of
view, our framework encompasses systems of this kind.

In passing, we note that at stake here is whether to take a representational or
a computational view of similarity [19], or, in Richter’s terminology [21], whether
the similarity measure is compiled knowledge or knowledge that is interpreted
at run-time. In the representational approach, cases reside in a data structure,
such as a DAG, where, e.g., proximity in the data structure denotes similarity.
Representational approaches can afford considerable efficiency in retrieval. The
data structure is effectively optimised towards retrieval according to the “hard-
coded” similarity measure. This can be of especial value when similarity assess-
ment requires the application of large bodies of domain-specific knowledge: that
knowledge will be applied once per case at case base update time, rather than
being applied afresh on every retrieval [19]. However, this form of optimisation
can lead to a loss of flexibility [15] as it may be hard or inefficient to access the
case base in different ways as might be needed to give more context-sensitivity or
to use the case base for multiple tasks [4]. The computational approach, on the
other hand, will, in its most extreme form, compute similarity “from scratch” on
each retrieval. This can be a flexible approach as nothing is hard-coded; it may
be more amenable to user manipulation of the similarity measure (as allowed in
many case-based reasoning shells, e.g., [10]) or even manipulation through some
learning process, e.g. [22]; but there may be an efficiency price to be paid. (A
“spin-off” of our own work has been the identification of opportunities for paral-
lelisation in pure computational approaches using our similarity framework [17],
and this may help to make computational approaches more widely usable. See
also [16].) The two-stage process mentioned above is clearly a compromise be-
tween pure representational and pure computational approaches. We repeat that

(while our implementational work has focused on computational approaches) our
framework is general enough to cover the full spectrum of possibilities.

The first half of this paper — Sect. 2 — will discuss “ordinal” similarity mea-
sures, both defining simple “atomic” similarity measures and introducing meth-
ods of combining these to form more complex measures. A model demonstrating
some of the results from Sect. 2 has been implemented [17, 18]. Section 3 will
then consider how the results from Sect. 2 can be applied to “cardinal” similar-
ity measures, and how both types of measure may be combined. Finally Sect. 4
draws some conclusions.

2 Ordinal Similarity Measures

This section presents a repertoire of comparison operations, or similarity mea-
sures, and operations on these similarity measures used to construct new simi-
larity measures. These similarity measures are ordinal, i.e. they are symbolic and
do not give a numeric value for cases, but order them in terms of their similarity
to a seed, i.e. a similarity measure is a function from (features of) cases to partial
orders over (features of) cases: 0 :: @ - @ — © — bool. Cardinal similarity
measures, giving numeric “scores”, will be considered in Sect. 3. In this section,
Sects. 2.1 and 2.2 will discuss the construction of similarity measures for indi-
vidual features of cases, while Sects. 2.3, 2.4 and 2.5 will show how to combine
these to form more complex similarity measures for complete cases.

2.1 Atomic Similarity Measures

Some standard similarity measures are defined in Fig. 1, and illustrated by an
example applied to the set {1,2,3,4, 5}, with the usual total order <. The inverse
function, ' Yz y = o ¥ y , is also defined for similarities, where the inverse
of a similarity o returns the inverse of the order returned by o.

2.2 Orders from Other Structures

The orders above (with the exception of flat) were all based on an existing
ordering. The general approach was to define a function (e.g. is) which given a
seed (e.g. ¥9) would return an ordering (e.g. is). This section will discuss the
derivation of orderings from other structures. A similar approach will be taken
— functions will be defined to generate orders from seeds. These functions will
make use of auxiliary functions, again applied to seeds, mapping elements of the
domain to some ordered set — e.g. N. These auxiliary functions will reflect some
notion of distance from the seed, and will usually be written “—".

Trees. A tree in which only leaves contain elements is defined by: Tree elem ::=
Leaf elem | Node [Tree]. The distance of an element from a seed can be defined
to be the depth of that element in the smallest subtree containing both the

flat: No elements are flat 3 is: The seed is better is 3
related than all others
z (is?)y
z (flat 9) y =0 //7;%§\\
rT=y 12345 \ 1 2 4 5
(z=y)
minimal: The seed minimal 3 maximal: The seed maximal 3
is a minimum is a maximum
requirement requirement
5 3
z (minimal 9) y f z (maximal ¥) y f
(x>yAz>9) ? (x>yAx <) %
\ 3 v 1
(z=1y) N (z=1y) N
1 2 4 5

best: The seed is best best 3 id: Ignore the seed id 3

z (best ¥) y 3

(y<z<9) 2/\4 z (id 9) y
\Y >y

(y>z>9) 1/ \5

O) W — s —

Fig. 1. Atomic similarity measures

element and the seed. The range of the distance function is the ordered set
No = N U {co}. The definition of the distance function — makes use of three
other functions: depth (giving the depth of an element in a tree), Cree (the
subtrees of a tree), and €t (which tests if an element appears in a tree). These
functions are defined in Fig. 2. Since ¢ (— t) clearly defines a function from
elements to the ordered set N, it can be used to define a similarity measure
generator for trees, Cyee, also given in Fig. 2.

Directed Acyclic Graphs. The functions in Fig. 2 have been defined in such
a way that they can easily be adapted to apply to DAGs. Details can be found
in [18]. The reader should note that graphs are being used in this paper to define
distances between elements and seeds. This is quite distinct from assessing the
similarity of two graph structures by some sort of subgraph algorithm, as is

depth :: elem — Tree elem — N
depth e (Leafl) =0, ife=1
= 00, otherwise
depth e (Node n) = 1 4 (min {depth e ¢t | t € n})
Cree:: Tree elem — {Tree elem}
Crree (Leafl) = {(Leafl)}
Ctree (Node n) = {(Node n)} U (UtEn Cree 1)
ETree:: elem — Tree elem — bool
€ ETree (Leafl) =e=1
€ ETree (Noden) = En:e Eqpeet
——:: Tree elem — elem — elem — Noo
9 (— t)e=min {depthet |t € (Crree t) AV ETree t'}
CTree:: Tree elem — elem — (elem — elem — bool)
el (ETree tﬁ) ea =1 ('—> t) e1 <9 ('—) t) €2

Fig. 2. Similarity measure generating functions for trees

found in many case based reasoning systems [2, 6]. There is, however, no reason
why such an algorithm could not be used to define an ordering on graphs, and
then apply this ordering in the way presented in this paper.

Graphs. A similar construction can be used for graphs in general, by defining
the distance function to return the length of the shortest path between the seed
and an element.

User Defined Types. The same method can be applied to user defined types.
A metric should be defined giving the “closeness” of an element to a seed, and
this can then be used to define an ordering on that type. Indeed this can be
used to implement more representational approaches [19], with the user defined
type being some representation of the positioning of a case in a structured case
base. The similarity measure will then reflect the indexing of cases in the case
base structure.

2.3 Boolean Connectives

Sections 2.1 and 2.2 presented a repertoire of similarity measures for individual
features of a case. It is now necessary to consider how to combine these similarity
measures to form more complex similarity measures for whole cases.

The first obvious candidates for combining orderings are the usual boolean
operators. These are covered in this section. The section starts with a presen-
tation of the application of boolean operators to construct complex similarity

measures from simpler ones. This is followed by a discussion of the determina-
tion of maxima from these similarity measures. It will then be shown how this
can be done in parallel, by transforming similarity measures to a normal form.

Sections 2.4 and 2.5 will then introduce other methods of constructing more
complex similarity measures, these being filters, priorities and preferences. These
new connectives also allow a normal form to be determined, and the computation
of the maxima to be executed in parallel.

Boolean Operators. The usual boolean operators (A, V and —) may be applied
to similarity measures to form new similarity measures. This is done by “lifting”
the point-wise boolean operators to operate on similarities. If & is a binary
boolean operator then the lifted operator @, acting on similarities o7 and o3,
applied to seed ¥ and cases = and y, is defined by: (o @ o2) Vzy = (01 Dz y)
(o2 ¥z y).

Determining Maxima. Note that if @ is a boolean operator other than A
then, even if o1 ¥ and oy ¥ are partial orders, (oy ® o2) ¥ is not necessarily a
partial order. Since maxima are not defined for arbitrary relations it is necessary
to extend the definition of maxima to do this.

The maxima of a partial order C are usually defined as

Definitionl. 1 C S={z e SVyeS:z2Cy=ac=y} .

The usual method for determining maxima of an arbitrary relation @ is to take
the reflexive transitive closure, ®*, of that relation, thus giving a pre-order, and
then taking the maxima of the partial order over the equivalence classes gener-
ated by the equivalence relation ® = {(p, ¢)|p®*gAq®*p}. A different approach
will be taken here, generalising the concept of maxima to apply to arbitrary re-
lations, avoiding the necessity of generating either the reflexive transitive closure
or the equivalence classes.

Since, for a partial order, (x Cy => 2z =y) = (t Cy = y C z), Def. 1 is
equivalent to

Definition2. M C S={zeSVyeS:z2Cy=>yCx} .

and this will be taken as the definition of the “maxima” of any relation, i.e. ‘C’
in Def. 2 may be any arbitrary relation.
Definition (2) has the following properties:

Property 1 N(5@)=no~!
Property 2 M (&' Va?) D (Ma') N (Ma?) .

Property (1) states that the maxima of the negation of a relation are equivalent
to the maxima of the inverse of the relation. This can be useful, since the inverse
of a partial order is a partial order, while the negation is not. Property (2)

ensures that the intersection of the maxima of two relations will be an acceptable
approximation of the maxima of the disjunction of those relations.

These, and other properties, given in this paper are stated without proof.
Proofs are given in [18].

A sufficient condition for the inclusion in Prop. 2 to be an equality is that
the two relations involved have a degree of consistency in their inverses. If x is
less than y in the first ordering, and greater than y in the second, then it must
also be greater than y in the first, and vice versa. Le. if, for all z and y in S:

(z'yAy’ec=2>ydla) A (z@iyAydts=yda) (1)

then
nN@e've?)s=((eh)Aama?)s .

Since this condition holds if @' V @? is a partial order, then, in this case, the
intersection of the maxima will be the maxima of the disjunction.

These results can be applied to determine the maxima of a relation con-
structed by application of the boolean operators. This can be done by taking
the disjunctive normal form of the boolean expression and determining, in par-
allel, the maxima of the constituent terms of the normal form, and then taking
the intersection.

2.4 Filters

Another possibility is to first “filter” the set through some predicate before
applying the maximising function. Normally a filter will take a predicate, and
when applied to a set will give a subset of that set. In keeping with the approach
taken in the rest of this paper a filter here will take a relation over a type, and
apply it to a seed to give the predicate that will be applied to a set. The symbol
“q” will be used for filters.

a:(r > 71— bool) 57— {r} = {7}
ad¥S={zxeS|zdv}

Filters can be used to express concepts such as “only when” and “except
when”. Filters can also be used to construct more complex preferences. A feature
of a case may be a set of constituents. Filters can then be used to select cases
containing a minimum (or maximum) set of constituents, to eliminate cases
containing (or not containing) some specific constitutent, or even, in combination
with the operators given in Sect. 2.1, to order cases according to the closeness
of their list of constituents to some ideal.

Filters can be expressed as similarity measures. Given a relation @ that is to
be applied in a filter, it is possible to define a similarity measure og, such that,
except for one special case, < @& = M og. The exception is when « & S = 0, in
which case Mog S = S.

Property 3 Let @ be any binary relation. Define og, by og ¥ vy = y®p. Then
4 Pp =TI Og .

Applying og makes it possible to combine filters with similarities by applying
the two following properties:

Property 4 (1« @) (No) =1 (0g Vo) ,
Property 5 (Mo)~ (<« @) =M (0 Vo Aog) .

2.5 Priorities and Preferences

Another possible type of connective is one which will take one similarity measure
as being more significant than another. There are two possible approaches to
this. The first applies to the similarity measures themselves, the second to the
process of determining maxima. The first of these will be referred to as a priority
(after [23]), the second as a preference (after [8]).

Priorities. The prioritisation of relation &' over relation ®2, notation &' >
®2, is a generalisation of lexicographic ordering defined for relations, and is the
relation defined by:

Definition 3. z (&' > @)y = 22 ' yA-(y2'2))V(z® ' yAyD s Az D?y) .

The two terms (z @'y A ~(y @' z) and 2 @' y Ay @' z Az @?y) in this dis-
junction satisfy (1), since both antecedents in this condition will be false. As a
consequence, the intersections of the maxima of the two terms will be equal to
the maxima of the the prioritisation.

A prioritisation of similarity measures is a prioritisation of relations “lifted”
to similarity measures:

(01> 02) p=(01p) > (02 p) -

Property 6 When taking mazima of priorities the first term (z®'yA—(y Dl z))
may be replaced by © &'y, since x ' yA-(y ®'z) = y otz A=(z @l y) is
equivalent to x &'y = y ®' x.

The prioritisation of similarity o1 over similarity oy will therefore be defined as:
Definition4. o, > 05 =01 V (01 A 01_1 Aos) .
thus avoiding the need for negation.

Property 7 Prioritisation distributes to the right over disjunction and, when
taking mazima, if the two similarity measures being disjoined satisfy (1), also to
the left.

Preferences. An alternative approach is to first select maxima for the first
similarity measure, and then take the maxima over these according to the second
— 1i.e. the second similarity measure is applied only to discriminate between
the maxima of the first. The preference of similarity measure oy over similarity
measure oo is defined by:

Definition 5. M (o1 > o2) = (Mo2) - (Mo1) -

Relating Priorities and Preferences. Priorities and preferences satisfy the
following, for o1, o9 pre-order generating similarities:

Property 8 (Moy) N (Mo2)¥S CN(oy>o2)¥S C Mo > 03)98S C
|_|0'1'l95 .

3 Cardinal Similarity Measures

Another type of similarity measure is one which returns a numeric value for a
case, rather than a partial order on cases — i.e. rather than a similarity measure
being a function ¢ :: @ - @ — @ — bool it will be a function that “scores”
cases oN,, i1 @ = @ — Ny, or, alternatively, ojp,1] :: @ — @ — [0,1]. This
scoring approach is less general that the one developed in Sect. 2 because the
orders defined by the scores are always total; it does not, for example, allow
the possibility of incomparable cases. But [20] numeric measures may have the
advantage of giving cardinal as well as ordinal information to the user.

The definition of cardinal similarity measures again begins by considering
comparison of individual elements of a case to seed values, and then considers
how to combine the atomic measures, including the use of weightings.

3.1 Atomic Similarity Measures

The particular difficulty in defining numeric measures is how to treat elements
of a case that have non-numeric types, e.g. how to score a case whose spiciness
is mild, when the seed specifies a desired value of hot. One approach is to order
cases as in Sect. 2.1 and then convert from the order to a numeric score. This is
discussed in Sect. 3.3, where it is shown that introducing the necessary cardinal
information after ordering is problematic.

The alternative is to map non-numeric values to numeric ones. In what fol-
lows, functions that carry out this mapping will be denoted as f. Obviously, for
numeric valued attributes of cases, f will typically be the identity function, or,
if the similarity measures are to return normalised values — i.e. some value in
[0,1], rather than N, — a normalising function. In most work on numerical
measures, equality of a value in a case to the seed is taken as a sign of similarity
(corresponding to is below), or the difference between two values is taken as a
sign of dissimilarity (corresponding to best below). But numeric correlates of
flat, minimal and maximal can also be defined. In the definitions in Fig. 3, the
higher the measure, the less similar the cases (some would call this a distance
measure or dissimilarity measure). An additional family of similarity measures,
const, e z = n, can be defined which will be useful in discussing weightings in
Sect. 3.2. These measures will return a constant value for any case. Clearly, flat
is a special case of const,, with n = oo, and taking the inverse of a measure
(subtracting, rather than adding the score given by that measure) is equivalent
to multiplying by const_;.

flat is
isex =0,
flate z = co ffe=fe
= Cx),
otherwise
maximal minimal
maximale z = fe— f z, minimalexz = f e — f =,
iffe<fe iffe>fe
= o0, = o0,
otherwise otherwise
best id
beste x = |f v — f €] dex=fzx

Fig. 3. Cardinal similarity measures

Other structures. It is also possible to derive cardinal similarity measures from
the structures discussed in Sect. 2.2 — trees, DAGs, graphs, user defined struc-
tures. All that is required is that a distance function (such as — in Sect. 2.2)
be defined for these structures which can then be used to give the “score” for
each case, rather than using the distance to define an ordering, as was done in
Sect. 2.2.

This could even be applied to numeric valued features by defining a distance
function on numbers — e.g. a logarithmic distance function — and applying
this directly. This provides an alternative to defining some function f and using
operations such as best.

3.2 Combining Numeric Measures

Numeric similarity measures can be combined using basic arithmetic operations
in a manner analogous to that presented in Sect. 2.3. Using the operators +, —
(unary and binary), and x, measures can be added, subtracted, multiplied and,
using the const,, measures and multiplication, weighted. Again, a normal form
can be derived — a sum of products — and the products computed in parallel.

3.3 Switching Types of Similarity Measure

It is fairly easy to switch from cardinal to ordinal similarity measures. To trans-
form a cardinal measure to an ordinal measure the cardinal information can be
used to generate an ordinal measure by comparing values. If on_, is a cardinal
similarity measure an ordinal measure can be defined:

cdzy=(on_ ¥2z)>(on_ Fy),

The scores determine the ordering. Obviously the cardinal information — how
much more highly one case scores than another — is lost in the transformation.

The transformation from an ordinal measure to a cardinal measure is more
complex. The problem is in creating ordinal information where none was previ-
ously available, and in transforming a partial order to a total order. One possi-
bility is to take the number of cases that can be found between two cases as an
ordinal measure of the similarity of those two cases. Note that, as before, the
higher the measure, the less similar the cases. However, if the cases are incom-
parable, there will be no objects between the two cases, and the measure will
have to be adapted to deal with this. A possible transformation is, therefore

oN,, Vx =00, if {ylt(c)y(cd)IVI(cd)y(cd)z} =0
Hylz (¢ 9) y (¢ 9) 9V I (o0 9)y (09) z}|, otherwise

Note that if 9 and z are related, then the cardinality of the set of elements ap-
pearing between ¥ and z will never be zero, since both ¢ and = appear “between”
¥ and z.

This measure can, however, give possibly counter-intuitive results. Consider
the ordering, for seed A:

A

R0
B° C D
\Et/

T —Q—m

The cardinal measure proposed will return a higher (worse) value for F than for
H, because there are five values between A and F' (including A and F' them-
selves), and only four between A and H. An alternative would be to take the
shortest path between the elements, given by:

minpath z 9 = oo, if —(z (¢ ¥) 9) A =(I (0 9) z)
=0,if =9
=1+ min {minpath z' J|z' € neighbours}, otherwise

where neighbours = {ylz @y Az #yA Az ¢ {z,y} 2D 2Dy}
=00, if z(c9)d
= (o ¥)7!, otherwise .

4 Conclusions

We have presented a repertoire of tools for constructing similarity measures,
both numeric and symbolic. These tools make it possible to construct similarity
measures systematically and/or incrementally, in which a more refined similarity
measure is derived from the result of applying a simpler measure.

The implied loss of efficiency that the use of more flexible similarity mea-
sures entails can be compensated for by the opportunities this method offers for
parallel evaluation.

A system has been developed that demonstrates the ideas presented [17, 18].
Currently this provides a graphical demonstration of the method. Work is in
progress [7] at York to develop this into a realistic, efficient system, and to extend
the work to cover other knowledge manipulation systems.

A An Example

A.1 The Case Base

Consider the problem of taking a guest out for a meal. The meals under con-
sideration — the case base — are given in Fig. 4. The fields indicate the name
of the dish, the set of ingredients, the type of meat, the degree of spiciness (one
of mild, medium mild, medium, medium hot, hot, extra hot, killer and suicide), the
number of calories, and the price. These fields will be accessed by the projection
functions Thame, Tingrs Tmeats Tspicy Teal A Tprice Tespectively. The two letter
abbreviations to the left of the cases will be used to identify the cases.

Im | lamb {meat,tomato} lamb medium mild 700 £12
casserole

vb | vegetable {tomato,nuts,chilli} none medium 650 £ 8
biryani

cv | chicken {meat,nuts,chilli} chicken extra hot 700 £15
vindaloo

ps | pasta {tomato,chilli} none extra hot 850 £ 8

tm|truite {fish} fish mild 650 £16
meuniere

bb | beeuf {meat,tomato,onion} beef =~ medium mild 800 £13
bouguignone

pl | paella {fish,meat,onion} chicken mild 850 £17

cc |couscous {onion,chilli,tomato} none killer 800 £15

|9 [seed {meat,nuts,tomato} turkey hot 0 £15])

Fig. 4. A simple case base and a seed

A.2 Atomic Similarity Measures

Assume your guest likes meat, nuts and tomato; their preferred meat is turkey;
they like their food hot; and they are watching their weight. In addition, you
require the meal to cost less than £15. A seed — also given in Fig. 4 — can be
defined reflecting these requirements.

The budgetary restraint can be achieved by applying a filter: < (mprice <).
The simplest of the guest’s requirements to model is their weight watching,
as this is simply the inverse of the usual ordering on integers: mca) id~!. Their
desire for hot dishes is also fairly simple, requiring an application of the best
similarity measure, which will “break the back” of the spiciness ordering at hot.
The required dishes will be selected by mgpic best.

The remaining two preferences are slightly more complex. For the desired
list of ingredients a directed acyclic graph can be defined — the standard lat-
tice representing the subset ordering on sets of ingredients — and the distance
function for DAGs applied to order sets of ingredients according to their prox-
imity to the ideal set of ingredients. The ordering generated — which will be
called Cpag ingr — reflects the fact that the distance function in this DAG is a
measure of the number of elements common to the seed and the set under con-
sideration. The meals best fitting the desired list of ingredients will be selected
by Tingr (Cpag ingr).

The final preference requires a tree to be defined representing a taxonomy
of meat types, to which a distance function can be applied to select those meat
types most similar to turkey. This tree is given in Fig. 5. The required meals will
be selected by mmeat (CTree meat). The four orders discussed here are presented
in Fig. 6.

PN

non-veg. ng.
fish meat none
red white

/N

lamb beef chicken turkey

Fig. 5. A taxonomy of meat types

A.3 Retrieval

Assume that we first wish to filter out the more expensive meals, and then select
according to our guest’s preferences. Assume also that our guest’s preferred list of
ingredients and desire for meat similar to turkey is to be given priority over their
weight watching and preference for hot food. The “best” meals will be selected
by: ((Tingr (Cpag ingr) A Tmeat (CTree Meat)) > (Teal idt A Tspic best)) ~
(Tprice < <), applied to d. Application of the transformations presented in this
paper shows this to be equivalent to the disjunctive normal form:

(7Tprice U<)

cv,pl vb,tm
Im,vb,cv,bb T cv,ps vb T
T Im,bb T T Im,cv
ps,pl,cc t cc lm,bb 1
) tm 1 bb,cc
tm) tm,pl 1
ps,vb,cc pl,ps
Tingr (CpAG INGY)||Tmeat (CTree Meat)|| mspic best ||meal id~!

Fig. 6. Some atomic similarity measures

(Wingr (EDAG ingr) 7\\ Tmeat (ETree meat) 7\\ Tprice U<)
(Wingr (EDAG ingr) 7\\ Tmeat (ETree meat) 7\\ Tingr (EDAG ingr)il

-~

~ 1 1~ ~
A Tmeat (CTree Meat) ™" A Teal id™ " A Tspic best A Tprice 0<) -

v
v

The three terms in this expression will select as maximal cases {lm, vb, ps, bb,
pl}, {lm, bb, cv} and {lm, vb, cv, tm, pl, ps, cc} respectively, the intersection
of which is {lm}. Consequently, the recommendation will be to serve the lamb
casserole.

References

1.

2.
3.

A. Aamodt and E. Plaza. Case based reasoning: Foundational issues, methodolog-
ical variations and system approaches. AI Communications, 7(1):39-59, 1994.

R. Altermann. Adaptive planning. Cognitive Science, 12:393-421, 1988.

K.D. Ashley and E.L. Rissland. A case-based approach to modeling legal expertise.
IEEE Egpert, 3(3):70-77, 1988.

R. Bareiss, J.A. King, J. Ashley, K. Kolodner, B. Porter, and P. Thagard. Panel
on “similarity metrics”. In Proceedings of DARPA Case Based Reasoning Work-
shop, pages 66—84. Morgan Kaufmann, 1989.

R. Barletta and W. Mark. Explanation-based indexing of cases. In Proceedings of
AAAI-88, pages 541-546, 1988.

M. Brown. A Memory Model for Case Retrieval by Activation Passing. PhD the-
sis, Department of Computer Science, University of Manchester, 1994. Technical
Report 94-2-1.

D. K. G. Campbell, H. R. Osborne, A. M. Wood, and D. G. Bridge. Generic oper-
ations for CBR in LINDA. Technical Report (to appear), Department of Computer
Science, University of York, 1996.

A.D. Griffiths and D.G. Bridge. Formalising the knowledge content of case memory
systems. In Ian D. Watson, editor, Progress in Case-Based Reasoning: First United
Kingdom Workshop in Case-Based Reasoning, pages 32—41. Springer Verlag Lecture
Notes in Computer Science; 1020; Lecture Notes in Artificial Intelligence, 1995.
T.R. Hinrichs. Problem Solving in Open Worlds: A Case Study in Design.
Lawrence Erlbaum, 1992.

10

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

P. Klahr and G. Vrooman. Commercialising case based reasoning technology. In
IM. Graham and R.W. Milne, editors, Research and Development in Ezpert Sys-
tems VIII, pages 18-24. Cmabridge University Press, 1991.

J.L. Kolodner. Maintaining organization in a dynamic long-term memory. Cogni-
tive Science, 7:243-280, 1983.

J.L. Kolodner. Judging which is the “best” case for a case-based reasoner, 1989.
published as part of [4], pages 77-81.

J.L. Kolodner. Case Based Reasoning. Morgan Kaufmann, 1993.

P. Koton. Reasoning about evidence in causal explanations. In Proceedings of
AAAI-88, pages 256—261, 1988.

R. McCartney and K.E. Sanders. The case for cases: A call for purity in case-based
reasoning. In Proceedings of AAAI Symposium on CBR, pages 12-16, 1990.

P. Myllyméaki and H. Tirri. Massively parallel case-based reasoning with proba-
bilistic similarity measures. In S. Wess, K.D. Althoff, and M.M. Richter, editors,
Proceedings of the 1st European Workshop on Case-Based Reasoning, Lecture Notes
in Computer Science No. 837, pages 144-154. Springer Verlag, 1994.

Hugh Osborne and Derek Bridge. Parallel retrieval form case bases. In Ian D.
Watson, editor, Proceedings of the 2nd UK CBR Workshop, pages 43—-54, 1996.
Hugh Osborne and Derek Bridge. A formal analysis of case base retrieval. Tech-
nical report, Department of Computer Science, University of York, 1997.

B.W. Porter. Similarity assessment: Computation vs. representation. In Proceed-
ings of DARPA Case Based Reasoning Workshop. Morgan Kaufmann, 1989.
M.M. Richter. Classification and learning of similarity measures. In Proceedings
der Jahrestagung der Gesellschaft fir Klassifikation, Studies in Classification, Data
Analysis and Knowledge Organisation. Springer Verlag, 1992.

M.M. Richter. The knowledge content of similarity measures. Invited talk at
ICCBR, Sembria, Portugal, 1995.

M.M. Richter and S. Wess. Similarity, uncertainty and case-based reasoning in
PATDEX. In R.S. Boyer, editor, Automnated Reasoning: Essays in Honour of Noody
Bledsoe, pages 249-265. Kluwer, 1991.

M. Ryan. Prioritising preference relations. In S.J.G. Burn and M.D. Ryan, editors,
Theory and Formal Methods 1993: Proc. Imperial College Department of Computer
Science Workshop on Theory and Formal Methods. Springer Verlag, 1993.

B. Smyth and M. Keane. Adaptation-guided retrieval: Using adaptation knowl-
edge to guide the retrieval of adaptable cases. In Proceedings of the 2nd UK
Workshop on CBR, pages 2-15, 1996.

This article was processed using the BTEX macro package with LLNCS style

