Learning unification-based grammars using
the Spoken English Corpus

Miles Osborne and Derek Bridge
Department of Computer Science, University of York, Heslington,
York YO1 5DD, U. K.
{miles,dgb }@minster.york.ac.uk

July 12, 1994

Abstract

This paper describes a grammar learning system that combines model-
based and data-driven learning within a single framework. Our results
from learning grammars using the Spoken English Corpus (SEC) suggest
that combined model-based and data-driven learning can produce a more
plausible grammar than is the case when using either learning style in
isolation.

1 Introduction

In this paper, we present some results of our grammar learning system acquir-
ing unification-based grammars using the Spoken English Corpus (SEC). The
SEC is a collection of monologues for public broadcast and is small (¢irea 50,000
words) in comparison to other corpora, such as the Lancaster-Oslo-Bergen Cor-
pus [JLGT78], but sufficiently large to demonstrate the capabilities of the learning
system. Furthermore, the SEC is tagged and parsed, thus side-stepping the prob-
lems of constructing a suitable lexicon and of creating an evaluation corpus to
determine the plausibility of the learnt grammars.

In contrast to other researchers (for example [BMMS92, GLS87, Bak79, LY90,
VB8T]), we try to learn competence grammars and not performance grammars.
We also try to learn grammars that assign linguistically plausible parses to sen-
tences. Learning competence grammars that assign plausible parses is achieved
by combining model-based and data-driven learning within a single framework
[OB93b, OB93a]. The system is implemented to make use of the Grammar De-
velopment Environment (GDE) [CGBBS88] and it augments the GDE with 3300

lines of Common Lisp.

Our aim in this paper is to show that combining both learning styles pro-
duces a grammar that assigns more plausible parses than is the case for grammars
learnt using either learning style in isolation. Plausibility is important in Natural
Language Processing as it is very rare that applications need just to determine
whether a sentence is grammatical: applications need also to determine the inter-
nal structure of sentences (a plausible parse). A grammar that assigns plausible
parses is therefore preferable over one that does not assign plausible parses.

The structure of this paper is as follows. Section 2 gives an overview of
the combined model-based and data-driven learner. Section 3 then describes
the method used to generate the results, which are then presented in section 4.
Section 5 discusses these results and points the way forward.

2 System overview

2.1 Architecture

We assume that the system has some initial grammar fragment, G, from the
outset. Presented with an input string, W, an attempt is made to parse W using
G. If this fails, the learning system is invoked. Learning takes place through the
interleaved operation of a parse completion process and a parse rejection process.

In the parse completion process, the learning system tries to generate rules
that, had they been members of G, would have enabled a derivation sequence for
W to be found. This is done by trying to extend incomplete derivations using
what we call super rules. Super rules are the following unification-based grammar
rules:

[]—=[][] (binary)
[J=1] (unary)

The binary rule says (roughly) that any category rewrites as any two other cate-
gories, and the unary rule says (roughly) that any category rewrites as any other
category. The categories in unification grammars are expressed by sets of feature-
value pairs; as the three categories in the binary super rule and two categories in
the unary super rule specify no values for any of the grammar’s features, these
rules are the most general (or vacuous) binary and unary rules possible. These
rules thus enable constituents found in an incomplete analysis of W to be formed
into a larger constituent. In unifying with these constituents, the categories on
the right-hand side of the super rules become partially instantiated with feature-
value pairs. Hence, these rules ensure that at least one derivation sequence will
be found for W.

Many instantiations of the super rules may be produced by the parse com-
pletion process described above. Linguistically implausible instantiations must

be rejected and we interleave this rejection process with the parse completion
process. Rejection of rules is carried out by the model-driven and data-driven
learning processes described below. Note that both of these processes are mod-
ular in design, and it would be straightforward to add other constraints, such
as lexical co-occurrence statistics or a theory of textuality, to help select correct
analyses.

If all instantiations are rejected, then the input string W is deemed ungram-
matical. Otherwise, surviving instantiations of the super rules used to create the
parse for W are regarded as being linguistically plausible and may be added to
G for future use.

2.2 Model-driven learning

A grammatical model is a high-level theory of syntax. In principle, if the model
is complete, an ‘object’ grammar could be produced by computing the ‘deductive
closure’ of the model (e.g. a ‘meta’-rule can be applied to those ‘object’ rules that
account for active sentences to produce ‘object’ rules for passive sentences). An
example of purely model-based language learning is given by Berwick [Ber85].
More usually, though, the model is incomplete and this leads us to give it a
different role in our architecture.

Our model currently consists of GPSG Linear Precedence (LP) rules [GKPS85],
semantic types [Cas88], a Head Feature Convention [GKPS85] and X-bar syntax
[JacTT].

o LP rules are restrictions upon local trees. A local tree is a (sub)tree of depth

one. An example of an LP rule might be [GKPS85, p.50]:
[SUBCAT] < ~ [SUBCAT]

This rule should be read as ‘if the SUBCAT feature is instantiated (in a
category of a local tree) then the SUBCAT feature of the linearly preceding
category should not be instantiated’. The SUBCAT feature is used to help
indicate minor lexical categories, and so this rule states that verbs will be
initial in VPs, determiners will be initial in NPs, and so on. In our learning
system, any putative rule that violates an LP rule is rejected.

o We construct our syntax and semantics in tandem, adhering to the prin-
ciple of compositionality, and pair a semantic rule to each syntactic rule
[DWPS81]. Our semantics uses the typed A-calculus with extensional typ-
ing. For example, the syntactic rule:

S — NP VP

is paired with the following semantic rule:

VP(NP)

which should be read as ‘the functor VP takes the argument NP’'. The
functor VP is of type®:

<<<et> >, t>
and the argument NP is of type:
<<et>1>
The result of functionally applying VP(NP) has the type:
[

For many newly-learnt rules, we are able to check whether the semantic
types of the categories can be functionally applied. If they cannot, then the
syntactic rule can be rejected. For example, the syntactic rule:

VP — VP VP
has the semantic rule VP(VP), which is ill-formed because the type
<<<et>t>,1>

cannot be functionally applied with itself.

e Head Feature Conventions (HFCs) help instantiate the mother of a local
tree with respect to immediately dominated daughters. For example, the
verb phrase dominating a third person verb is itself third person.

o X-bar syntax specifies a restriction upon the space of possible grammar
rules. Roughly speaking, the RHS of a rule contains a distinguished cate-
gory called the head that characterises the rule. The LHS of the rule is then
a projection of the head. Projecting the head category results in a phrasal
category of the same syntactic class as that of the head. For example, the
rule NP — Det N1 has a nominal head and a NP projection.

Model-based learning consists of filtering out instantiations of the super rules
that violate any aspect of the model, or refining instantiation of a super rule such
that they comply with some aspect of the model. LP rules and semantic types
filter instantiations, whilst the Head Feature Convention and X-bar syntax refine
instantiations.

!Syntactic categories are written in a normal font and semantic functors and arguments are
written in a bold font.

?The exact details of these types is not important to understanding the thrust of this section
and so they are not given any detailed justification.

4

2.3 Data-driven learning

Our data-driven component can prefer learnt rules that are ‘similar’ to rules
previously seen by the parser. For this to work at all well, the system will
need some prior training using a pre-training corpus. This can then be used in
subsequent learning to score instantiations of the super rules.

In pre-training the frequencies of mother-daughter pairs (MDPs) found in
parses of sentences taken from the pre-training corpus are recorded [LG91]. For

example, the tree (S (NP Sam) (VP (V laughs))) has the following MDPs:
ple, (S () (VP (ghs))) g

<S,NP>
<S,VP>
<VP,V>

The frequencies of these MDPs in the parse trees of the pre-training corpus are
noted. From these frequencies, the score of each distinct MDP can be computed:
if pair <A, B> occurs with frequency n out of a total number of N MDPs, then
the MDP’s score, f, is:

f(< A, B>)=n/N

The set of MDP frequencies is computed in advance of using our system for
learning. During learning, after parse completion by the super rules, local trees
in completed parses can be scored. The score is computed recursively, as follows:

e For local trees of the form (A (B C)) whose daughters are leaves, the score
of the local tree is:

score(A) = gm(f(< A, B >),
f(< A, C>))

where gm is the geometric mean. We take the geometric mean, rather than
the product, to avoid penalising local trees that have more daughters over
local trees that have fewer daughters [MMO91].

e For interior trees of the form (B (C D)), the score of the local tree is:

score(B) = gm(score(C) x f(< B,C >),
score(D) x f(< B, D >))

(This does leave the problem of dealing with MDPs that arise in completed parses
but which did not arise in the pre-training corpus. These can be given a low score.
Giving them a score ensures that all trees can be scored, and thus the data-driven
learner is ‘complete’, i.e. it can always make a decision.)

After scoring, instantiations of the super rule that have daughters whose scores
exceed some threshold can be accepted. Other instantiations can be rejected. The
higher the threshold, the fewer the number of rules accepted®.

The approach we have described is a generalisation of the work of Leech,
who uses a simple phrase structure grammar, whereas we use a unification-based
grammar [Lee87].

3 Method

We predicted that the plausibility of grammars learnt using both model-based and
data-driven learning would be better than the plausibility of grammars obtained
by using either learning style in isolation. Plausibility is determined as how
‘close’, for the same sentence, a test parse is to a benchmark parse, taken (in our
case) from the SEC. The following algorithm defines closeness between the test
tree (7T) and the benchmark tree (B):

e Each tree is normalised to use the same labelling scheme.
o The list Ly is a preorder walk of T and the list Lg is a preorder walk of B.

o Construct the set of lists M as follows. Find (3, the longest list that is
common to both Lt and Lg and add § to M. Remove 3 from Ly. Repeat
removing lists until either Lz is the empty list or no list can be found that

is both in Ly and Lg.

o Closeness is then the arithmetic mean of the list lengths of M divided by
the list length of Lg. The nearer this figure is to unity, the better the
match. A figure of 0 indicates no match at all.

For example, if Ly was the list (a b ¢ d) and Lg the list (c a b ¢), then § would
initially be (a b ¢). Removing from Ly results in Ly becoming the list (d). As
there are no lists common to both Ly and Lg, matching halts, with M being {(a
b ¢)}. The closeness score would then be 3/4.

The matching algorithm is designed to allow a certain degree of fuzziness in
matching. For example, it is the case that manually produced trees in the SEC
are relatively shallow, whilst those generated using the learnt grammars are steep.
However, taking a preorder of the trees and searching for longest common lists
helps overcome this in-built mismatch. The matching algorithm is our attempt
to strike a pragmatic balance between computational efficiency and achieving
reliable matches.

To test the prediction, the following steps were taken:

3We have not investigated the effect of varying the threshold. Clearly, this would be inter-
esting future work.

Three disjoint sets of sentences were arbitrarily selected from the SEC.
These were pretrain (less than 20 sentences), train (60 sentences) and test
(60 sentences).

A grammar, GG, was used as the initial grammar. This was manually con-
structed and consisted of 97 unification-based rules with a terminal set of

the CLAWS2 tagset [BGL93].

The Model was configured to consist of 4 LP rules, 32 pairings of semantic
types and corresponding syntactic categories, and a Head Feature Conven-
tion.

Pretrain was used to calculate scores of MDPs, thus providing an initial
estimate of grammaticality for the data-driven learner.

Train was then processed using interleaved parsing and learning with the
following configurations of the learner:

Configuration Grammar produced
(A) No learning G

(B) Data-driven learning only G1
(C) Model-based learning only G2
(D) Both learning styles together | G3

Note that X-bar syntax is such a vital aspect of acquiring plausible gram-
mars that it is not optional and hence all configurations used this aspect of
the model. Configuration A is the base case for comparison with the other
configurations.

Test was then parsed, without learning, using each of these grammars and
the number of sentences successfully parsed was recorded.

The set of sentences plausible was created as being 15 sentences in test that
could be generated by grammars G1, G2 and G3. Plausible contained no
sentence that could be generated by grammar G and hence guaranteed that
each sentence needed at least one learnt rule in order to be generated. As
a yardstick, 15 other sentences (yardstick) that could be generated using G
were selected from test.

Plausible was then parsed using grammars G1, G2 and G3 and the first 10
parses produced for each sentence was sampled. Out of these 10 parses, the
score of the most plausible parse was noted.

Yardstick was parsed using grammar G and the same process was carried
out to derive 10 plausibility scores.

Learning grammars in the manner outlined previously is computationally in-
tractable. For example, using the binary super rule may lead to a number of
parses equal (at least) to the Catalan series with respect to sentence length.
This is because, as a worst case, the binary super rule will create all possible
binary branching parses for some sentence [CP82]. In order to generate results
therefore, steps were taken to place resource bounds upon the learning process.
These bounds were to halt when n parses or m edges had been generated (n=1,
m=3000) for some sentence. Increasing n leads to more ambiguous attachments
being learnt. The motivation for the m limit follows from Magerman and Weir
who suggest that large numbers of edges being generated might correlate with
ungrammaticality [MW92]. In effect, the parser spends a lot of time searching
unsuccessfully for a parse and this is reflected in the large number of edges gen-
erated. The other constraint upon the system was that we only used the binary
super rule during interleaved parsing and learning. This is because use of the
unary rule greatly increases the search space that needs to be explored. The
effect of only learning binary rules, however, will be to decrease the plausibility
of the parses produced.

4 Results

In the following table, showing some characteristics of the various grammars, the
size column is the number of rules in the grammar, coverage is the percentage of
sentences in test generated by each grammar, and plausibility is the arithmetic
mean of the closeness scores of yardstick using G and plausible with G1, G2 and

G3.

Configuration | Size | Coverage | Plausibility
A 97 | 26.7 0.103
B 129 | 75.0 0.086
C 128 | 65.0 0.095
D 129 | 75.0 0.098

5 Discussion

From the previous table, it is clear that extending the initial grammar G using
learning reduced G’s undergeneration considerably. For example, G could only
parse 26.7% of the sentences in test, but G3 could parse 75.0% of these sen-
tences. As predicted, combining model-based and data-driven learning produces
a grammar that assigns more plausible parses than do grammars learnt using
either approach in isolation (as shown by the plausibility score for configuration
D being higher than the score for configuration B or C). Learnt grammars are
less plausible than the original manually constructed grammar (again, as shown

by comparing the plausibility score for configuration A with that of the other
configurations). The low score given to grammar plausibility is due to difficul-
ties in matching the fine-grained, steep parses produced by the unification-based
grammar with the coarse-grained, shallow parses that were manually constructed
for the SEC sentences. The uneven quality of the SEC parses does not help in
plausibility determination. However, the plausibility results are encouraging and
suggest that using both learning styles together is a viable way of allowing formal
grammars to be used for corpus parsing.

Future work will evaluate how much the learnt grammars overgenerate. We
also intend investigating other constraints upon grammaticality, such as to be
found in Government and Binding Theory [Cho81], punctuation [Num90], or
textuality [HH76, dBD81]. Furthermore, we intend to consider using a lexically-
based formalism in place of the current rule-orientated formalism currently used.

6 Acknowledgements

We would like to thank Eric Atwell (Leeds University) for allowing access to the
SEC, the anonymous referee for providing comments upon this paper, and Ted
Briscoe (Cambridge University) for supplying the grammar G. The first author
is supported by a Science and Engineering Research Council grant.

References

[Bak79] J. K. Baker. Trainable grammars for speech recognition. In D. H.
Klatt and J. J. Wolf, editors, Speech Communication Papers for the
97" Meeting of the Acoustical Sociely of America, pages 547-550.
1979.

[Ber85] Robert C. Berwick. The acquisition of syntactic knowledge. MIT
Press, 1985.

[BGLI3] Ezra Black, Roger Garside, and Geoffrey Leech, editors. Statistically
driven computer grammars of English the IBM-Lancaster approach.
Rodopi, 1993.

[BMMS92] Eric Brill, David Magerman, Mitchell Marcus, and Beatrice San-
torini. Deducing Linguistic Structure from the Statistics of Large
Corpora. In AAAI-92 Workshop Program: Statistically-Based NLP
Techniques, San Jose, California, 1992.

[Cas88| Claudia Casadio. Semantic Categories and the Development of Cate-
gorial Grammars. In Richard T. Oehrle, editor, Categorial Grammars
and Natural Language Structures, pages 95-123. D. Reidel, 1988.

[CGBB88] John Carroll, Claire Grover, Ted Briscoe, and Bran Boguraev. A

[Cho81]

[CP82]

[dBDS1]

[DWPS1]

[GKPS85]

[GLS8T]

[HHT76]

[JacTT7]

[JLGTS]

[Lee87]

[LGO1]

[LY90]

Development Environment for Large Natural Language Grammars.
Technical report number 127, University of Cambridge Computer
Laboratory, 1988.

Noam Chomsky. Lectures on Government and Binding. Dordrecht:

Foris, 1981.

K. Church and R. Patil. Coping with syntactic ambiguity or how to
put the block in the box on the table. Computational Linguistics,
8:139-49, 1982.

Robert de Beaugrande and Wolfgang Dressler. Introduction to Text
Linguistics. Longman, 1981.

D.R. Dowty, R.E. Wall, and S. Peters. Introduction to Montague
Semantics. D. Reidel Publishing Company, 1981.

G. Gadzar, E. Klein, G.K. Pullum, and 1.A. Sag. Generalized Phrase

Structure Grammar. Harvard University Press, 1985.

R. Garside, G. Leech, and G. Sampson, editors. The Computational
Analysis of English: A Corpus-based Approach. Longman, 1987.

M. A. K. Halliday and Ruqaiya Hasan. Coherence in English. Long-
man, 1976.

Ray S. Jackendoft. X-Bar Syntaz: A Study of Phrase Structure. The
M.LT Press, 1977.

S. Johansson, G. Leech, and H. Goodluck. Manual of Information
to Accompany the Lancaster-Oslo/Bergen Corpus of British English,
for Use with Digital Computers. Technical report, Department of

English, University of Oslo, 1978.

Fanny Leech. An approach to probabilistic parsing. MPhil Disserta-
tion, 1987. University of Lancaster.

Geoffrey Leech and Roger Garside. Running a grammar factory:
The production of syntactically analysed corpora or “treebanks”. In
Stig Johansson and Anna-Brita Stenstrom, editors, English Computer
Corpora: Selected Papers and Research Guide. Mouten de Gruyter,
1991.

K. Lari and S. J. Young. The estimation of stochastic context-free
grammars using the Inside-Outside Algorithm. Computer Speech and
Language, 4:35-56, 1990.

10

[MMO91]

[MW92]

[Num90]

[OB93a]

[0B93b]

[VBS7]

D. Magerman and M. Marcus. Pearl: a probabilistic chart parser. In
Proceedings of the 2 International Workshop on Parsing Technolo-
gies, Cancun, Mexico, pages 193-199, 1991.

David Magerman and Carl Weir. Efficiency, Robustness and Accuracy
in Picky Chart Parsing. In Proceedings of the 30" ACL, University
of Delaware, Newark, Delaware, pages 40-47, 1992.

G. Numberg. The linguistics of punctuation. Center for the Study of
Language and Information, 1990.

Miles Osborne and Derek Bridge. Inductive and deductive grammar
learning: dealing with incomplete theories. In Grammatical Inference
Colloquim, Fssex University, 1993.

Miles Osborne and Derek Bridge. Learning unification-based gram-
mars and the treatment of undergeneration. In Workshop on Machine
Learning Techniques and Text Analysis, Vienna, Austria, 1993.

Kurt Vanlehn and William Ball. A Version Space Approach to Learn-
ing Context-free Grammars. Machine Learning, 2.1:39-74, 1987.

11

