Learning unification-based grammars and the treatment of
undergeneration

Miles Osborne
Department of Computer Science
University of York
Heslington
York 5DD
England

Abstract

We present a framework for learning plausi-
ble unification-based natural language gram-
mars. Our framework uses both model-
based and data-driven learning without being
committed to any particular configuration of
these two learning schemes. We use learning
to overcome the problem of undergeneration
in natural language grammars. This paper
presents work that is still in progress: the
model-based learning component has been
built but the data-driven learning component
has not. Full evaluation of the framework
awaits a complete implementation.

1 Introduction

1.1 Undergeneration

Derek Bridge
Department of Computer Science
University of York
Heslington
York 5DD
England

and so it would generate the sentence:
Sam chases the cat

but not:

Sam chases the happy cat

This is an example of undergeneration. Any attempt
to deal computationally with unrestricted natural lan-
guage must face this problem.

Undergeneration has many causes:

e The engineering task of writing a grammar is
made difficult by the syntactic complexity of nat-
ural languages. Deliberate or accidental omissions
are therefore commonplace.

e Empirical work on building large grammars by
Sampson et al. led to the conclusion that finite
grammars do not exist [Sam87]. This is because
people will always generate sentences containing

An application of learning natural language grammars
is the treatment of undergeneration. A grammar un-
dergenerates when it fails to generate some sentence
which human informants judge to be grammatical.
Undergeneration undermines the successful processing
of natural language.

Consider the grammar:

S — NP VP
NP — Det N1
VP — V NP
NI — N¢O

NP — NI
Sam : NP
chases : V
the : Det
happy : Adj
cat : NO

This grammar does not contain the rule:

NI — Adj N1

syntactic novelties. Sampson’s position is contro-
versial (pace Briscoe et al. [Bri87]).

Grammars are static theories which do not reflect
the dynamics of language change.

Reactions towards undergeneration vary [Osb92]:

e Formal grammars can be abandoned in favour

of stochastic grammars. A stochastic grammar
will assign any sentence, no matter how ungram-
matical, a measure of grammaticality. In this
way undergeneration is replaced by overgener-
ation. Examples of such an approach include

[LF79] [GLS87] [SO90] [LY90] [0’D91] [MMO1].

Formal grammars can be manually extended to
cope with each individual case of undergenera-
tion. An example of manual extension occurred
when the Alvey Natural Language Tools Gram-
mar [GBCB92] was used to parse dictionary def-
initions [Bri87]. Manual extension is labour in-
tensive, tedious, skilled work, and may be a never
ending task.



e The grammar can be dynamically extended. An
example of this is Weischedel’s Meta-rules. The
meta-rules extend the grammar in an unprinci-
pled manner. As a result the extended grammar
will admit ungrammatical sentences [Wei83].

e Procedures can be written which can map input
strings that are not covered by the grammar into
sentences that are covered by the grammar. This
assumes we can determine the intended syntactic
form of the sentence (which is a strong assumption
to make). Examples of this approach are NO-
MAD and error-correcting parsers for computer

languages [Gra83] [HRS84].

In our approach we overcome undergeneration by
learning grammatical rules during parsing. It is useful
to make a distinction between performance and com-
petence grammars [Lyo68]. A good competence gram-
mar does not overgenerate (in the sense that all sen-
tences that humans judge to be grammatical should be
generated by the grammar), it does not overgenerate
(meaning that sentences judged to be ungrammatical
are not generated), and it assigns ‘appropriate’ con-
stituency analyses to well-formed strings (i. e. the way
it groups words into constituents should produce con-
stituents that are judged to be ‘natural’).

A performance grammar, on the other hand, is usu-
ally designed to generate all possible utterances (not
necessarily only those judged to be grammatical, but
possibly also those understandable but ungrammati-
cal utterances that can arise because of factors such as
nervousness, tiredness, boredom, and so on.). Thus,
by competence grammar criteria, performance gram-
mars often overgenerate. Arguably, there is also less
concern over assignment of ‘appropriate’ constituency
analyses in performance grammars.

Our position is that it is appropriate to use compe-
tence grammars, as these are theories of syntactic well-
formedness. The performance factors identified above
(nervousness, etc. ) are best explained by theories of
psycholinguistics.

1.2 Unification-based grammars

To be useful a grammar formalism should be computa-
tionally tractable. A computer should be able to pro-
cess the grammar efficiently. This requirement favours
explicit formalisms over implicit formalisms. Exam-
ples of implicit formalisms include stochastic gram-
mars and grammars couched in terms of a domain the-
ory.

A grammatical formalism should also be parsimonious.
A context free grammar (CFG) does not capture im-
portant linguistic generalisations and consequently a
CFG will be larger than an equivalent grammar in a
more parsimonious formalism. A parsimonious formal-
1sm will help reduce the computational cost of parsing

with large grammars [Ber87, p.251] [Shi86].

Unification-based formalisms meet these conditions.
In a unification-based grammar each symbol in a CFG
is replaced by a category. A category consists of fea-
tures and the feature’s wvalues. A value can be ei-
ther atomic or another category. An example category
might be:

[cat V]

This category has a single feature cat which has the
value V.

A unification-based rule might be:

[catS] — [catNP] [catVP]

A CFG might express such a rule as:
S — NP VP!

If we now introduce a variable (shown as ?7) into the
unification-based rule we might have:

cat S . cat NP cat VP
person 71 person 71 person 71

For this rule to be used during parsing the person fea-
ture must be bound with the same value in all three
categories. This parsimoniously enforces subject-verb
agreement. For example such a rule can be used to
generate:

Toby likes Early Music
and not:
*Toby like Early Music?

Unification 1s a form of pattern matching and is best
explained with examples. The unification C' of cate-
gories A and B is shown as:

C=AUB

For example,
cat NP U cat NP | cat NP
person 3 person ?1 | — | person 8
An example of unification failing might be:
cat NP L cat NP
person 3 person 2
Unification is undefined in this last example as there is
no generalisation of the feature person that is consis-

tent with the values 2 and 3. A feature can only have
one binding.

'From now onwards we shall sometimes use a context
free formalism as a notational variant for a unification-
based formalism. This is intended to aid in legibility.

2By convention, sentences that are prefixed with aster-
isks are ungrammatical.



The parsimony of a unification-based formalism 1s
shown by comparison with how we would express
agreement within a context free grammar. A CFG
would need three rules as opposed to the single
unification-based rule.

Therefore our approach to undergeneration is to learn
unification-based rules as opposed to simple context
free grammar rules.

2 Review of grammar learning
approaches

In this section we shall briefly look at four contrast-
ing grammar learning systems. The four approaches
can be classified as being either model-driven or data-
driven.

A model-driven approach learns grammar by con-
structing a ‘proof’ of the grammaticality of a sentence
from a model of grammaticality. Model-driven ‘de-
duction’ does not require exposure to data to learn
grammar. The deductive closure of the model could
be computed, yielding a grammar accounting for un-
dergeneration. Therefore a model-driven approach
can learn a competence grammar because the model
defines grammaticality. Model-based learning relies
upon the model being complete: its incompleteness
can prevent the system from coping with undergener-
ation.

A data-driwven approach relies upon finding regulari-
ties within the sentences as they are processed. Data-
driven learning can only acquire a performance gram-
mar, as there is no model to guide learning. Unlike
model-driven learning this style of learning is not re-
liant upon a model.

2.1 Model-driven approaches

In Berwick’s approach [Ber85], when faced with a fail-
ure to parse, the system tries to construct a rule using
a set of simple actions. These actions are the model
of grammaticality and inspired by Government and
Binding Theory (GB) [Hae91]. GB has a set of princi-
ples that are parameterised to a particular language
and these principles interact to account for senten-
tial grammaticality. Co-ordination cannot be learnt
as Berwick’s model is incomplete. Rules learnt are
context free.

Liu and Soo use a model that is based on the feature
instantiation principles of Generalised Phrase Struc-
ture Grammar (GPSG) [LS92] [GKPS85]. GPSG is a
unification-based formalism that specifies local trees,
partly in terms of unification-based rules and partly
in terms of feature instantiation principles. When a
case of undergeneration is encountered, Liu and Soo’s
system prompts the user for a parse tree to be given
manually. The model then helps to fill out uninstan-

tiated features in this given parse tree. It could be
argued that Liu and Soo use a model of grammatical-
ity that is part GPSG-based and part human. The
rules learnt are unification-based.

2.2 Data-driven approaches

Wolf presents an approach that is entirely data-driven
[Wol87] (which Hutchinson further develops [Hut88]).
Wolf’s system takes a stretch of text and treats it as
if it were generating a single production. For example
the sentence:

Toby had a bread basket
would be generated by the rule:

S — NP V Det NO NO

This rule would then be refined by looking for regular-
ities:

S — NP V Det «
o — NO NO

As there 1s no model of grammaticality, the rules learnt
are not necessarily linguistically plausible.  Rules
learnt are context free.

Vanlehn and Ball learn syntax by searching through
a space of grammars [VB87]. The grammars generate
the positive example sentences and reject the negative
examples that are presented to it during learning. As
soon as a new positive example is encountered, a new
set of grammars is created. These grammars are ex-
tensions of the old grammars capable of parsing the
new sentence. The new grammars are pruned by re-
moving any grammar that either generates one of the
negative examples or fails to generate a new positive
example. In order to manage the search process, Van-
lehn and Ball use a version space [Mit78]. Each node in
the space is a grammar. The grammars are ordered by
language inclusion. To make this ordering computable,
Vanlehn and Ball restrict the form of the rules within
each grammar. An example restriction is to disallow
rules with an empty right hand side. This particular
restriction means that long-distance dependencies can-
not be generated easily. Long-distance dependencies
typically involve a sentence having some constituent
displaced. The place where the constituent originated
will have an empty category (known as a gap). An
example long-distance dependency is:

Who does Sam chase.

Here the the object of chase is missing. The usual
analysis would be to introduce an NP gap at the end
of the sentence. This cannot be done without rules
with empty right hand sides.

The formalism of the rules learnt 1s context free.



2.3 Analysis

The two model-driven approaches that we discussed
learn competence grammars. Both of these approaches
have no mechanism for dealing with incompleteness
within the model.

The data-driven approaches learn performance gram-
mars. Performance grammars are inadequate theories
of language as they generate ungrammatical sentences.
Vanlehn and Ball cannot learn plausible natural lan-
guage grammars given their restriction on rules learnt.
Wolf’s approach will also generate ungrammatical sen-
tences because he tries to learn recursion when given
only finite sequences of constructs. A finite instance
of a recursive construct cannot be distinguished from
a finite instance of a finite construct.

Whilst Berwick’s approach is unsupervised, Liu and
Soo require human intervention and is therefore super-
vised. Supervision prevents natural language process-
ing being autonomous. Vanlehn and Ball’s approach
uses negative examples which constitutes supervision.

Liu and Soo’s approach is the only one to learn a par-
simonious (unification-based) formalism.

These approaches can be summarised as follows:

Approach Competence Unsupervised Unification-based
Berwick Yes Yes No
Vanlehn and Ball No No No
Wolf No Yes No
Liu and Soo Yes No Yes

2.4 Criteria for successful learning

None of the approaches reviewed meets the criteria we
believe are required of a system for learning grammar
for the treatment of undergeneration. Our criteria are:

e A competence grammar should be learnt. In part
this 1s a philosophical decision regarding our view
of what a grammar should be. We take the view
that a grammar should be a theory of grammat-
icality. Performance data is accounted for by a
competence grammar in conjunction with theo-
ries of human language processing.

e A parsimonious formalism should be used. We ex-
plained why grammars for natural language need
to be expressed succinctly.

e Linguistically plausible rules should be capable of
being learnt. The learning strategy should not
place restrictions upon the formal complexity of
the rules.

e There should be little or no supervision. Supervi-
sion 1s largely a method of dealing with inadequa-
cies in an approach and prevents natural language
processing being successful.

3 Model and Data-driven grammar
learning

3.1 Introduction

To deal with undergeneration we need to learn a com-
petence grammar expressed in a parsimonious formal-
ism. We need to learn grammar without supervision.
Our approach is to use both model-driven and data-
driven learning. We use sentences to guide the model-
based learning when considering which rules to learn
and data-driven learning both to overcome problems
of model incompleteness and to provide an alterna-
tive learning scheme. This guidance is similar to the
use of training examples that Mitchell et al. give in
their formulation of model-based learning [MKKC86].
Our framework requires no a priori decisions to be
made about the balance between being model-driven
or data-driven. We can experiment using anything
from being purely model-driven to being purely data-
driven. This freedom allows us to empirically deter-
mine the ‘optimal’ balance between the two extremes.

3.2 Overview

Learning begins as soon as parsing fails for some input
string. The grammar is augmented with the super rule:

[1=111]

which will match any unmatched pair of mothers in
the parse tree to be completed. The super rule inten-
sionally expresses all binary rules capable of being ex-
pressed in our grammar, and so its usage will always
lead to a derivation sequence begin completed. The
next task is to reject linguistically implausible instan-
tiations of the super rule as soon as they are proposed
for use in the parse. This is currently carried out by
the model, and in future will be also carried out by the
data-driven learner. Surviving instantiations of the su-
per rule are linguistically plausible and can be used to
complete the parse of the input string and added to
the grammar for future use. After parsing the input
string, the super rule is removed from the grammar.
If no instantiation is plausible, then the input string
is ungrammatical. Qur approach assumes a complete
lexicon and possibly some sort of initial grammar.

We use the chart parser of the Grammar Develop-
ment Environment (GDE) as a basis for learning. A
chart parser gives us all possible substrings for a sen-
tence and from these substrings rules are learnt®. Our
scheme is only partially implemented so far. It aug-
ments the GDE with 2000 lines of AKCL Common
Lisp and runs on a Sun 3/50 workstation.

*This is similar to Hall’s work on learning by failing to
explain [Hal86]



3.3 Model-driven

Our model currently consists of GPSG Linear Prece-
dence (LP) rules [GKPS85]and semantic types [Cas88].
These are the two components of our model that we
have investigated so far. We intend to consider some
of the many other grammatical theories when deter-
mining how to augment our model.

LP rules are restrictions upon local trees. A local tree
is a tree of depth one. An example of an LP rule might

be [GKPS85, p.50]:
[SUBCAT] < ~ [SUBCAT]
This rule should be read as “if the SUBCAT feature is

instantiated (in a category of a local tree) then the
SUBCAT feature of the linearly preceding category
should not be instantiated”. The SUBCAT feature is
used to help indicate minor lexical categories. This
rule states that verbs will be initial in VPs, deter-
miners are initial in NPs, and so on. In our learning
system, any putative rule that violates an LP rule is
rejected.

We construct our syntax and semantics in tandem, ad-
hering to the principle of compositionality and pair a
semantic rule to each syntactic rule [DWP81]. Our
semantics uses the typed A-calculus with extensional
typing. For example, the syntactic rule:

S— NP VP
has a semantic rule of:
VP(NP)
which should be read as “the functor VP takes the
argument NP”*. The functor VP is of type :
<<<et>t>t>
and the argument NP is of type:
<<et>t>
The result of composing VP(NP) is the type
[

For many newly-learnt rules, we are able to construct
the corresponding semantic rules and types. These
types are checked and a type clash results in the asso-
ciated syntactic rule being rejected. For example, the
syntactic rule:

VP — VP VP

will have the ill-formed semantics of VP(VP). Type
checking constrains the space of syntactic rules by re-
jecting those syntactic rules that are semantically im-
plausible.

*Syntactic categories are written in a normal font and
semantic functors and arguments are written in a bold
font.

To illustrate semantic types we shall give the types
and semantics of the grammar introduced earlier:

S — NP VP: VP(NP)

VP — V NP: V(NP)

NP — Det N1: Det(N1)

NP — NI: N1

NI — NO: NO

chases : V: AP[AQ[Q(Ax[P(Ay[chases(x,y)])])]]
Sam : NP : AP[P(saml)]

the : Det: AP[AQ[3x(P(x) A Q(x))]]

happy : A : AP[Ax[happy(x) A P(x)]]

cat : NO : Ay[catl(y)]

The types of the syntactic categories are:

S:t

VP : <<< et >, 1 >t >
Vi<<<et>t> <<< et >t >t>>
NP : << et >,t >

Nl:<et>

NO: <et>

A<<et><et>>

Det : << et >, << e, >t >>

From the types it follows (for example) that a syn-
tactic rule’s right hand side can contain an adjectival
category and a nominal category. The left hand side
of such a rule will be the result of this composition and
thus nominal. Note that these types are only a partial
filter upon the space of possible rules. For example the
types predict that a rule such as:

S— NI NP

is well-formed. This is clearly (syntactically) wrong.

Here is an example of our model in action. We shall use
the grammar, types and LP rules previously mentioned
to learn the rule:

NI — Adj N1

which is is (explicitly) missing from our grammar.
Note that the lexical entry for the adjective 1s present.
The trace is taken using the Grammar Development
Environment’s chart parser [CGBB8S].

If the sentence:
Sam chases the happy cat

is parsed then undergeneration will occur. There is no
rule that accounts for adjectives:

4 Parse>> Sam chases the happy cat
350 msec CPU, 567 msec elapsed

13 edges generated

No parses

Now suppose that the super rule [] — [][] is added
to the grammar. This will generate all possible parses:



6 Parse>> Sam chases the happy cat
2809467 msec CPU, 167781083 msec elapsed
10870 edges generated

8619 parses

Somewhere within this set of parses may be the correct
parse(s). We need to restrict ourselves a little and
reject bad rules.

In the next example we reject instantiations of the
super rule that violate the LP rules:

10 Parse>> Sam chases the happy cat
559150 msec CPU, 15616100 msec elapsed
4118 edges generated

3375 parses

The number of parses has been halved and because
bad rules are rejected immediately the search space
is approximately a sixth of the space when using no
constraints.

The effect of just using type checking, as opposed to
LP rules, to reject implausible instantiations of the
super rule gives the following result:

16 Parse>> Sam chases the happy cat
4367 msec CPU, 30233 msec elapsed
31 edges generated

1 parse

Only a single parse is generated. The search space is
also drastically smaller than the previous examples.

If both LP rules and type checking are used then a
single parse is generated but after exploring even less
of the search space:

22 Parse>> Sam chases the happy cat
1333 msec CPU, 2733 msec elapsed
31 edges generated

1 parse

The resulting parse tree is shown in figure 1. From the
tree (figure 1) the rule:

NI — Adj N1

can be extracted. Remember that in reality this rule
1s unification-based.

3.4 Data-driven learning

Our data-driven theory is still provisional. It has
not been implemented. However we can motivate the
choice of theory:

e The theory should prefer rules that are similar to
rules that have been previously used.

e The theory should take into account the local syn-
tactic context when deciding if a rule is to be ac-
cepted or not.

We are considering training our data-driven learner
with a treebank and, from this treebank, to calcu-
late dominance probabilities. A treebank is a set of
parsed sentences [LGI1]. A dominance probability is
the probability of some category A dominating cat-
egory B within the treebank. Leech describes dom-
inance probabilities in detail [Lee87]. We shall gen-
eralise her approach from using a CFG to using a
unification-based grammar. Dominance probabilities
help relate the left hand side of a rule to the right
hand side and help determine the plausibility of local
trees (and hence rules). The size of the treebank re-
quired for successful data-driven learning will need to
be determined empirically.

Other ideas that we are investigating include:

e Rule monotonicity. What happens if we lose con-
fidence in a rule?

e Probationary rules and first-class rules. When
does anewly induced rule prove its value? How do
probationary rules relate to first-class rules when
parsing?

e Determining the left hand side of a rule. From
Gold’s theorem we know that we cannot learn re-
cursion from just a text [Gol67]. This means that
we cannot determine the left hand side properly.
We therefore intend to consider disjunctive fea-
tures [Shi86] to express this non-determinism and
let the usage of this rule refine the selection.

e When do we re-estimate dominance probabilities?
If we re-estimate the probabilities too soon then
we shall be biased towards rules that we have just
induced. If we re-estimate the probabilities too
late then we may swamp some rule that is heavily
used within a small stretch of a text.

4 Discussion

We introduced undergeneration and said why it is a
problem. We gave a number of solutions for this prob-
lem and found them all to be inadequate. Our so-
lution was to learn grammar when undergeneration
occurs. We then motivated unification grammars as
the formalism to use. After considering four schemes
for learning grammar we determined the conditions for
successful grammar learning. Our theory meet these
condition in a flexible way.

What we call ‘model-driven’ learning can be seen as
Frplanation-based learning (EBL) [ElI89] and what we
call ‘data-driven’ learning can be seen as Similarity-
based learning (SBL) (e. g. [Leb90]). ‘Undergen-
eration’ can be called the Incomplete domain theory
problem [MKKC86] [OM90] [FD89]. We therefore can
be said to be investigating the relationship of EBL to
SBL and dealing with incompleteness both within the
grammar and in the model.



|
Sam

A% NP
|
chases
Det N1
|
the
Ady N1
happy NO
|

cat

Figure 1: The parse tree after inducing the rule N7 — Adj N1

There are a number of assumptions (or problems) with
our approach:

e The lexicon is complete. We assume that each

word encountered has a lexical entry present in
the lexicon. This is arguably a strong assump-
tion. Briscoe and Waegner suggest that contrary
to Sampson the major cause of undergeneration
will be lexical and not syntactic [BW92]. This
suggests that we have finessed the learning prob-
lem. However we believe that we can assume a
(reasonably) complete lexicon. The Core Lan-
guage Engine is an example of a system that has a
lexical acquisition component [Als92]. This com-
ponent uses machine readable dictionaries, lexi-
cal inference, lexical correction and a battery of
other techniques to deal with lexical incomplete-
ness. We cannot comment as to whether under-
generation is lexically or syntactically determined
as of yet but from the arguments about the causes
of undergeneration our intuition is that the cause
is syntactic.
An allied problem is the amount of information
present in the lexicon. Lexically-orientated for-
malisms such as Head-driven Phrase Structure
Grammar encode much of their grammar within
the lexical entries [PS87]. If we have a full richly
specified lexicon then we will not need to learn
grammar. The lexical acquisition mentioned pre-
viously does not use such a rich lexical formalism
and so for the general case we will have to rely
upon a relatively poor lexical formalism.

e The feature space is complete. In the same paper
Briscoe and Waegner comment that their feature
space did not need to be extended. If this is true
then we can use their features and not have to
consider learning new features.

Our discussion of future work was mainly in the section

on data-driven learning. Once we have developed the
data-driven scheme we shall empirically determine the
plausibility of the grammars we have learnt. Grammar
evaluation 1s difficult and there is no widely-accepted
evaluation metric. We will therefore have to consider
how we can evaluate grammars. We shall also con-
sider enriching the model-based learning mechanism,
possibly by using principles from GB.

Obvious applications of our work include:

e Corpus parsing.
e Machine translation.
e Text summarising.

e Any other system that attempts to process exten-
sive quantities of natural language.

Acknowledgements

We should like to thank Sara Climpson for reading
drafts of this paper, John Carroll for technical help
with the chart parser, and Andy Fisher for helping
typographically. The first author is supported by a
Science and Engineering Research Council grant.

References

[Als92] Hiyan Alshawi, editor. The CORE Lan-

guage Engine. The MIT Press, 1992.

[Ber85] Robert C. Berwick. The acquisition of syn-
tactic knowledge. MIT Press, 1985.

[Ber87] Robert C. Berwick. Computational Com-
plexity and Natural Language. MIT Press,
1987.

[Bri87] Ted Briscoe. Noun Phrases are Regu-

lar: a Reply to Professor Sampson. In



[BW92]

[Cas88]

[CGBBSS]

[DWP81]

[E1I89]

[FD89]

[GBCBY2]

[GKPS85]

[GLS87]

[Gol67]

[Gra83]

[Hae91]

W. Meijs, editor, Corpus Linguistics and
Beyond. Rodopi, 1987.

Ted Briscoe and Nick Waegner. Ro-
bust Stochastic Parsing Using the Inside-
Outside Algorithm. In Proceedings of the
workshop on statistically-based techniques
i Natural Language Processing, San Jose,

California, 1992.

Claudia Casadio. Semantic Categories and
the Development of Categorial Grammars.
In Richard T. Oehrle, editor, Categorial
Grammars and Natural Language Struc-

tures, pages 95-123. D. Reidel, 1988.

John Carroll, Claire Grover, Ted Briscoe,
and Bran Boguraev. A Development En-
vironment for Large Natural Language
Grammars. Technical report number 127,
University of Cambridge Computer Labo-
ratory, 1988.

D.R. Dowty, R.E. Wall, and S. Peters.
Introduction to Montague Semantics. D.

Reidel Publishing Company, 1981.

T. Ellman. Explanation-based learn-
ing: a survey of programs and perspec-
tives. ACM Computing Surveys, 21:163—
222, 1989.

Nick Flann and Tom Dietterich. A Study
of Explanation-based methods for Induc-
tive learning. Machine Learning, 4:187—

226, 1989.

Claire Grover, Ted Briscoe, John Carroll,
and Bran Boguraev. The Alvey Natu-
ral Language Tools Grammar (Third Re-
lease). Technical report, University of
Cambridge Computer Laboratory, 1992.

G. Gadzar, E. Klein, G.K. Pullum, and

ILA. Sag. Generalized Phrase Structure
Grammar.  Harvard University Press,
1985.

R. Garside, G. Leech, and G. Sampson,
editors. The Computational Analysis of
English: A Corpus-based Approach. Long-
man, 1987.

E. M. Gold. Language Identification to the
Limit. Information and Control 10:447-
474, 1967.

Richard H. Granger. The NOMAD Sys-
tem: Expectation-Based Detection and
Correction of Errors during Understand-
ing of Syntactically and Semantically IlI-
formed Text. Computational Linguistics,

9:188-196, 1983.

Liliane Haegerman. Introduction to Gov-
ernment and Binding Theory. Basil Black-
well, 1991.

[Hal86]

[ARS84]

[Hut88]

[Leb90]

[Lee87]

[LF79]

[LGI1]

[LS92]

[LY90]

[Lyo68]

[Mit78]

[MKKC86]

R. J. Hall. Learning by failing to ex-
plain. In Proceedings of the 5'* Inter-
national Conference on Artificial Intelli-

gence, pages 568-572, 1986.

K Hammond and V.J. Rayward-Smith.
A Survey on Syntactic Error Recovery
and Repair. Computer Language, 9:51-67,
1984.

Alan Hutchinson. Building Grammars
from Natural Text. In Proceedings of the
374 European Working Session on Learn-
wng, Turing Institute, Glasgow, pages 45—
52, 1988.

Michael Lebowitz. The Utility of
Similarity-Based Learning in a Wprld
needing Explanation. In Yves Kodratoff
and Ryszard Michalski. editors, Machine
Learning:  An Artifical-Intelligence Ap-
proach, volume III, pages 399-422. Mor-
gan Kaufmann, 1990.

Fanny Leech. An approach to probabilistic
parsing. MPhil Dissertation, 1987. Uni-
versity of Lancaster.

S. Y. Lu and K. S. Fu. Stochastic tree
grammar inference for texture synthesis
and discrimination. CGIP, 9:234-245,
1979.

Geoffrey Leech and Roger Garside. Run-
ning a grammar factory: The production
of syntactically analysed corpora or “tree-
banks”. In Stig Johansson and Anna-
Brita Stenstrom, editors, English Com-
puter Corpora: Selected Papers and Re-
search Guide. Mouten de Gruyter, 1991.

Rey-Long Liu and Von-Wun Soo. Aug-
menting and Efficiently Utilizing Do-
main Theory in Explanation-Based Nat-
ural Language Aquisition. In Proceed-
ings of the 9" International Conference
on Machine Learning, Aberdeen Univer-
sity, Scotland, pages 282-289, 1992.

K. Lari and S. J. Young. The estimation
of stochastic context-free grammars using
the Inside-Outside Algorithm. Computer
Speech and Language, 4:35-56, 1990.

John Lyons. Introduction to Theoretical
Linguistics. Cambridge University Press,

1968.

T. M. Mitchell. Version Spaces: An Ap-
proach to Concept Learning. PhD thesis,
Stanford University, 1978.

T. Mitchell, R. Keller, and S. Kedar-
Cabelli.  Explanation-based generaliza-
tion: A unifying view. Machine Learning,

1.1:47-80, 1986.



[MM91]

[0'D91]

[OM90]

[Osb92]

[PS87]

[Sam87]

[Shi86]

[SO90]

[VB87]

[Wei83]

[Wol87]

D. Magerman and M. Marcus. Pearl: a
probabilistic chart parser. In Proceed-
ings of the 2% International Workshop
on Parsing Technologies, Cancun, Mezico,

pages 193-199, 1991.

Tim O’Donoghue.  The Vertical Strip
Parser: A Lazy Approach to Parsing. Re-
port 91.15, University of Leeds School of
Computer Studies, 1991.

Dirk Ourston and Raymond Mooney.
Changing the Rules: A Comprehensive
Approach to Theory Refinement. In Pro-
ceedings of the 8" National Conference
on Artifical Intelligence,, pages 815-820,
1990.

Miles Osborne. Text Parsing and the treat-
ment of undergeneration. First Year DPhil
Report, 1992. University of York.

Carl  Pollard and Ivan A. Sag.
Information-Based Syntaz and Semantics:
Volume 1: Fundamentals. Center for the
Study of Language and Information, 1987.

G. Sampson. Evidence against the ‘Gram-
matical/Ungrammatical’ Distinction. In
W. Meijs, editor, Corpus Linguistics and
Beyond. Rodopi, 1987.

Stuart M. Shieber. An Introduction to
Unification-Based Approaches to Gram-
mar. Center for the Study of Language
and Information, 1986.

Clive Souter and Tim O’Donoghue. Prob-
abilistic Parsing wm the COMMUNAL
Project. Report 90.2, University of Leeds
School of Computer Studies, 1990.

Kurt Vanlehn and William Ball. A Version
Space Approach to Learning Context-free
Grammars. Machine Learning, 2.1:39-74,
1987.

Ralph M. Weischedel. Meta-rules as a Ba-
sis for Processing Ill-formed Input. Com-
putational Linguistics, 9:161-177, 1983.

J. G. Wolft. Cognitive Development as Op-
timisation. In Leonard Bolc, editor, Com-
putational Models of Learning, pages 161—
205. Springer-Verlag, 1987.



