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Abstract. We investigate automatic classification of posts to Internet
forums. We use collective classification methods, which simultaneously
classify related objects — in our case, the posts in a thread. Specifically,
we compare the Iterative Classification Algorithm (ICA) with Condi-
tional Random Fields and with conventional classifiers (k-Nearest Neigh-
bours and Support Vector Machines). The ICA algorithm invokes a local
classifier, for which we use the kNN classifier. Our main contributions
are two-fold. First, we define experimental protocols that we believe are
suitable for offline evaluation in this domain. Second, by using these
protocols to run experiments on two datasets, we show that ICA with
kNN has significantly higher accuracy across most of the experimental
conditions.
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1 Introduction

Internet forums are places for debate and discussion, for the sharing of expe-
rience, and for collaborative problem-solving. Users assume a variety of roles.
They be consumers, seeking information from existing posts; as contributors,
they might initiate new threads or add posts to existing threads; and as moder-
ators, they might monitor discussions and intervene to enforce forum policies.

Forums display the posts within a thread in a linear order, most commonly
in chronological order. But a thread’s argument structure may not be linear. A
post may respond to a post other than the one that immediately precedes it.
As the thread becomes longer, contributors, who may be unwilling to read all
previous posts, may repeat previous posts, insert unrelated posts, or even start
new threads that replicate existing threads. This makes it more difficult for the
different categories of users to achieve their goals.

We are interested in forum management software that infers the argument
structure and uses it to assist users. For example, for consumers, the software
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might summarise a whole thread, or present it in a hierarchical fashion, or sup-
press redundant or irrelevant posts. For contributors, it might provide guidance
for increasing the usefulness of a contribution. For moderators, it might help
identify such things as: spam posts, misplaced posts, flame wars, troll users, or
threads that need locking, merging or deleting.

In this paper we are investigating post classification. We wish to classify each
post using a label that denotes the post’s role within its thread. In a trouble-
shooting forum, the labels might include ‘question’, ‘answer’, ‘clarification’, and
so on. We make the simplifying assumption in this work that each post has a
single label. This is fairly reasonable for a trouble-shooting forum, but more
questionable for forums where threads are more discursive. We may lift this
assumption in future work. We believe that classifying posts by their role in the
thread is a useful precursor to the kinds of tasks we mentioned in the previous
paragraph, for example inferring the argument structure so that threads can be
presented hierarchically.

In traditional classification, objects are considered in isolation, and classified
independently. However, it may be the case that objects are inter-related. In this
case, classification accuracy can often be improved by taking into account infor-
mation from the related objects. When this information includes the predicted
labels of the related objects, the term collective classification is used.

We compare two collective classifiers. One is a Conditional Random Fields
(CRF) classifier, and this approach has already appeared in the literature [9].
The other is the Iterative Classification Algorithm (ICA) [14]. ICA has not to
our knowledge been previously used for post classification. We expect collective
classifiers to obtain higher classification accuracy than traditional classifiers.

The Iterative Classification Algorithm, which we explain fully in Section 2.1,
repeatedly invokes another, ‘local’ classifier [14]. In principle, the local classi-
fier can be any classification algorithm. In practice, the local classifier must be
cheap to train because it is re-trained repeatedly on a changing training set. The
training set is updated on each iteration with the latest predicted labels of the
related objects. For our local classifier, we use a k-nearest neighbours case-based
classifier. Case-based classifiers are lazy learners and, as such, have negligible
training costs, making them ideal for use within ICA.

In Section 2, we describe the task of post classification in general and we
describe the two collective classifiers that we are comparing in this paper (ICA
and CRF). Section 3 describes the two datasets which we use in our experiments.
Section 4 defines our experimental protocols. Section 5 presents the results of
some of the experiments that we have run. The final sections present related
work (Section 6) and conclusions (Section 7).

2 Post Classification

A forum comprises a set of threads T . Each thread t ∈ T comprises a sequence
of posts, t = 〈p1, p2, . . . , pn〉. Each post has a label c(pi, t) which is drawn from a
finite set of labels C. Note that the label may depend on both the post, pi, and the



thread in which it appears, t: in principle, an identical post in a different thread
might receive a different label. The task of the classifier is to predict the label,
ĉ(pi, t). It might seem more natural to assume that the label and predicted label
of a post pi both depend only on the preceding posts in the thread, {pj |j < i},
rather than the whole thread, t. Certainly, in the experiments we report in this
paper, we only use the preceding posts. But, a formalism that allows the label
to depend on the whole thread leaves open the possibility that classification
can depend on reactions to a post — which come later in the thread. This is
something we may experiment with in the future.

Each post pi will be described by attributes. Three categories of attributes
may be used:

– Attributes derived from observations of pi itself, e.g. author information
and lexical attributes such as word counts and counts of the number of
punctuation symbols.

– Attributes derived from observations of other posts in the thread, pj ∈ t, j 6=
i, e.g. pj ’s author information and lexical attributes, or the degree of simi-
larity between the titles of pi and pj . In some cases, it may be possible to
observe the labels of other posts in the thread, e.g. if they are given as part
of training data, in which case attributes derived from these would also fall
into this category. But, for most posts we cannot observe their labels; we
can only predict them, and so their labels fall into the third category.

– Attributes derived from the predicted labels of other posts in the thread,
ĉ(pj , t) where pj ∈ t, j 6= i, e.g. the predicted label of the previous post, or a
count of the number of previous posts that are predicted to have a certain
label.

Attributes in the first two categories are called observed attributes, whereas at-
tributes in the third category are called unobserved attributes. Alternatively,
attributes in the first category are non-relational attributes, whereas attributes
in the last two categories are relational attributes.

A classifier that uses only the first of these categories is said to be a non-
relational classifier ; one that uses the second of these is said to be a relational
classifier ; and one that uses the third is said to be a collective classifier [14].

Collective classifiers are more usually formalised for the case of a graph. The
job is to predict labels for a subset of the nodes in the graph — those whose
labels are not already known. In addition to a node’s attributes, the classifier may
use relational attributes, i.e. the attributes and labels of other nodes. Usually,
there is a definition of neighbourhood within the graph, and a node’s relational
attributes come only from the other nodes in its neighbourhood. In this paper,
we are taking the special case where the graph is a chain — a linear arrangement
of posts.

Collective classifiers fall into two main types: those that make use of a local
classifier, and those that define and optimize a set of weights in a global objec-
tive function [15]. We will explain one representative of the first of these two
approaches (ICA) and one representative of the second approach (CRF).



Algorithm 1 Iterative Classification of Forum Posts

t = thread of posts 〈p1, p2, . . . , pn〉
m = the index of the first unlabelled post in t, m ∈ [1, n + 1]
MO = local classifier that uses observed attributes only
MU = local classifier that uses observed and unobserved attributes

// Step 1: Initial classification
// Step 1a: Derive observed attributes
for all i← 1 to n do

oi ← pi’s observed attributes
end for
// Step 1b: Classify unlabelled posts using observed attributes only
for all i← m to n do

ci ←MO(oi)
end for
// Step 2: Iterative classification
repeat

// Step 2a: Derive unobserved attributes
for all i← m to n do

ui ← pi’s unobserved attributes
end for
// Step 2b: Re-classify unlabelled posts using all attributes
for all i← m to n do

ci ←MU (oi,ui)
end for

until class labels have stabilized or a certain number of iterations has elapsed
return ci for each pi, i ≥ m

2.1 Iterative Classification Algorithm

The Iterative Classification Algorithm (ICA) is probably the simplest collective
classifier. Algorithm 1 presents the version that we use for forum post classifi-
cation. We allow for the possibility that we already know the labels of some of
the posts in thread t; for example, where they are supplied in a training set. We
use index m ∈ [1, n + 1] to designate the first thread whose label is not known.
In other words, we know the labels of posts pi for i < m; and we must predict
the labels of posts pj for j ≥ m. If m = 1, then we have not been given any true
labels in this thread; if m = n+ 1; all posts are already labelled, and there is no
work to be done.

Step 1 of ICA is to establish initial labels for the unlabelled posts. This is done
using a local classifier which only considers the post’s observed attributes. Step
2 continually re-classifies posts, but now using all attributes, until predictions
have stabilized or, as in our experiments, a certain number of iterations (in this
paper, 10) has been performed. Specifically, Step 2a computes the unobserved
attributes. These may simply be the currently predicted labels of the other posts,
or attributes that are derived from these. In Step 2b, posts are re-classified using
both observed and unobserved attributes.



Note that we make the assumption that posts are processed by the algorithm
in chronological order (for-loops run up to n). More sophisticated versions of ICA
include steps for choosing the order of processing, e.g. based on the degree of
uncertainty of the currently predicted label (e.g. [14]).

For both local classifiers, MO and MU , we use a k-nearest-neighbours case-
based classifier [12]. Its case base contains posts, described by a full set of at-
tributes. Each post is stored with its label. To classify a new post, we retrieve
its k-nearest neighbours. The local distance measure we use to compare one
attribute-value with another is the range-normalised absolute difference [20];
the global distance measure is simply an unweighted average of the values of
the local distance measures for each attribute. MO, however, only computes dis-
tances over the new post’s observed attributes, whereas MU computes distances
over all attributes. The predicted class is obtained by a distance-weighted vote
of the nearest neighbours. In Section 1, we explained why a lazy learner, such
as a case-based classifier, is especially well-suited for use in ICA.

2.2 Conditional Random Fields Classification

The main alternative way to carry out collective classification seeks to optimize
a global objective function, e.g., one that weights individual feature functions.
In collective classification, techniques include Loopy Belief Propagation (LBP)
[18] and Mean-Field Relaxation Labelling (MF) [19]. Although rarely presented
as collective classification, Conditional Random Fields (CRFs) are similar [10];
indeed, LBPs are partly inspired by CRFs [18].

However, post classification does not require the full generality of these algo-
rithms, since the posts form a chain, and not an arbitrary graph. The problem
simplifies to a sequence labelling problem. For sequence labelling, classifiers in-
clude Maximum Entropy Markov Models (MEMMs) [11] and Linear Chain Con-
ditional Random Fields. We will use a Linear Chain CRF, since it overcomes
the label bias problem exhibited by MEMMs [10]. Specifically, we use CRF++,
which is an open source Linear Chain CRF.1

There is another reason for choosing to use Linear Chain CRFs: they were
the best-performing approach in an earlier post classification study by Kim et al.
[9], where they were compared with a conventional Maximum Entropy learner
(ME) and a Structural Support Vector Machine (HMM-SVM) [8]. Here, we are
able to compare CRFs to a more competitive approach (ICA) and to do so using
the experimental protocols that we define in Section 4, which we believe give
more reliable results.

3 Datasets

Our goal is to compare post classification using ICA with the Linear Chain
CRF that was used in [9] and with conventional classifiers, namely k-nearest-

1 http://crfpp.sourceforge.net/



neighbours (kNN) and Support Vector Machines (SVM). We use two datasets,
which we describe here.

The first, the CNET dataset, is the one created by Kim et al. for the work
they describe in [9]. It comprises 320 threads but five of them include some
unlabelled posts, so we use only the remaining 315 threads; these contain a total
of 1332 posts from CNET forums that deal with trouble-shooting for operating
systems, software, hardware and web development.2

For the CNET dataset, the set C contains twelve labels. The two main la-
bels, Question and Answer, are sub-divided into sub-categories, having double-
barrelled names. For example, a post whose label is Question-question contains
a new question. A post whose label is Question-add contains information which
supplements some other question, e.g. providing additional information or asking
a follow-up. Similarly, Answer-answer offers solutions to problems or answers to
questions posed in question posts, and Answer-add provides information that
supplements some other answer. The other labels are Question-confirmation,
Question-correction, Answer- confirmation, Answer-correction, Answer-objection,
Resolution, Reproduction and Other. Note that one label (Answer-correction)
never occurs.

The true labels of each post were assigned by two human annotators, with
adjudication in the case of disagreement. In the original dataset, 65 posts were
assigned multiple labels. It is not clear how [9] handles these. For each of these,
we made a judgement about which label was best and discarded other labels.

The second dataset, the FIRE dataset, is also from a forum dealing with
trouble-shooting for computers3, which was used by Bhatia et al. in [1]. It com-
prises 100 threads, containing a total of 556 posts. Bhatia et al. use a set C
of just eight labels: Question, Repeat Question, Clarification, Further Details,
Solution, Positive Feedback, Negative Feedback and Junk.

We extracted a set of attributes from each post in the two datasets. We based
the attributes on those described in [9]. All attributes are numeric-valued. The
observed non-relational attributes are:

– Punctuation: Punctuation marks can help identify the nature of a post.
The number of explanation marks in a post and the number of question
marks in a post are used as two attributes.

– URLs: Posts which contain URLs are more likely to be in one of the Answer
classes. The number of URLs in a post is used as an attribute.

– Thread Initiator: The user who starts a thread is less likely to post answers
in that thread. We use a binary feature which indicates whether the post’s
author is also the person who initiated the thread.

– Post Position: The position of a post in a thread is important, not least
since the first post is always a question. This attribute records the relative
position of the current post in its thread, i.e. the ratio of its position to the
number of posts in the thread.

2 http://forums.cnet.com/
3 http://www.isical.ac.in/~fire/



– Author Profile: Some users ask more questions than they answer, and vice
versa. We use the class priors for that user. In other words, we have |C|
attributes, one for each class label, where each is the probability that this
user creates posts of this class, calculated from the labels of the user’s posts
in the training set.

The observed relational attributes are:

– Title Similarity: A post whose title is similar to the title of a previous post
is often some form of reply to that previous post. We compute the cosine
similarity between the post’s title and the titles of all previous posts. We
find the previous post whose title is most similar to that of the current post.
The relative position for that post is used as the attribute. (This attribute
is not used in the experiments with the FIRE dataset because its posts do
not have titles.)

– Post Similarity: Similarity of content is also a sign of one post responding
to another. This attribute is the same as the previous one, but this time
based on cosine similarity of post content, rather than post title.

The unobserved relational attributes are:

– Previous Post: This attribute records the label of the previous post in the
thread. To make it numeric-valued, we use one-hot encoding, i.e. we use |C|
attributes, one for each class label, setting them all to zero except for the
one that corresponds to the class of the previous post, which is set to one.

– Previous Post from Same User: This attribute records the label of the
previous post in the thread by the author of the current post. Here again we
used one-hot encoding.

– Full History: This attribute records the labels of all previous posts in the
thread. Again there are |C| attributes, but this time they are counts: the
number of previous posts having each label.

– User History: This attribute records the labels of all previous posts of
the author of the current post. Like Full History, there are |C| attributes,
represented as counts: the number of posts having each label.

Notice that we have no lexical attributes (such as unigram and bigram fre-
quencies). In their experiments, Kim et al. did not run the CRF with lexical
attributes because there were too many such attributes. They claim the CRF
does not scale well to large numbers of attributes. We confirmed this: CRF++
crashed on 1000 attributes. To keep the comparison fair, we do not use such
attributes for the ICA even though the local classifiers that we are using cope
reasonably well with high-dimensional data. In any case, Kim et al. found that
their other classifiers (ME and HMM-SVM) were not very accurate when trained
on lexical attributes, possibly because the amount of training data (just 1332
posts of fewer than 100 words each) was too small to allow useful generalization.

Our experimental protocols (next section) work in a chronological fashion,
thus requiring that each post have a timestamp. These were missing from the
CNET dataset, so we scraped them from the original forum.



4 Experiments

Both Kim et al. and Bhattia et al. use a 10-fold cross-validation methodology.
While this gives robust accuracy estimates, it fails to model the way that threads
grow over time and the fact that a later post must be classified using the possibly
erroneous class labels of previous posts in the same thread. We define incremental
protocols instead, giving a more realistic setting for the experiments.

In each protocol, we train classifiers on all posts with their true labels from
the first 100 days of the dataset. We then ask the classifier to predict labels for
all of the next day’s posts, and we measure accuracy against the true labels.
We repeat this on a daily basis until the dataset is exhausted. Thus we have an
accuracy figure for each day subsequent to the 100th day.

Where the protocols differ is whether and how they retrain the classifiers at
the end of each day.

Static (S): In this protocol, classifiers are not re-trained. The classifiers that
are built from the first 100 days of the training set are used unchanged to
classify each of the remaining days’ posts.

Supervised Incremental (SI): In this protocol, at the end of each simulated
day (after the classifiers have made predictions for that day’s posts), the
classifiers are re-trained on a dataset that is extended by all of that day’s
posts with their true labels. In other words, when classifying posts submitted
to the forum on day i + 1, the classifiers will have been trained on all posts
up to day i. Re-training includes updating the priors for the Author Pro-
file attribute so that they reflect the distribution of labels in the extended
training set.

Semi-Supervised Incremental (SSI): This protocol is similar to the previ-
ous one except that the training sets are extended each day with that day’s
posts but with their predicted labels, rather than their true labels. In other
words, when classifying posts submitted on day i+1, the classifiers have been
trained on posts from the first 100 days with their true labels and posts from
the next i− 100 days with their predicted labels.

Careful Semi-Supervised Incremental (CSSI): This protocol is similar to
SSI, however not all posts are included when retraining. Only when the
classifier’s confidence in its prediction exceeds a threshold does that post
and its predicted label get added to the training set. Posts from day i for
which this threshold is not met are reclassified on day i + 1 along with the
new posts from day i+1. Each of the classifiers can output a probability that
its prediction is correct, and it is this that we compare with the threshold
to decide what will happen with the post.

The SI protocol models the situation where forum moderators make decisions
about each new post on a daily basis: a classifier might advise the moderator but
the moderator always makes the final decision. Hence, the training set only ever
contains posts with true labels. By contrast, the SSI protocol models the situa-
tion where there is no on-going moderator intervention: the classifier’s decision



Protocol Dataset Unobserved attributes used

S CNET Previous Post from Same User
S FIRE Previous Post from Same User
SI CNET Previous Post, Full History, User History
SI FIRE Previous Post, Previous Post from Same User, User History
SSI CNET Previous Post, Full History, User History
SSI FIRE User History
CSSI CNET Previous Post, Full History, User History
CSSI FIRE Previous Post

Table 1: Unobserved relational attributes used by ICA in different experiments

is always final. Hence, training set posts up to day 100 have their true labels
but subsequent posts have their predicted labels. The CSSI protocol attempts
to reduce the misclassification rate of SSI by taking a more cautious approach.

It is informative to investigate the results of these somewhat extreme proto-
cols. In practice, on a real forum performance will lie somewhere between the
extremes. For example, there might be a triage system: if the classifier has low
confidence in its decision, a moderator may be asked to review it.

One other aspect of the methodology should be mentioned. Before running
these protocols, we use a model selection step. For the conventional kNN clas-
sifier, model selection chooses a good value for k (from k = 5, 7, 11, 15); for
ICA using kNN as its local classifier, model selection chooses a good value for k
and also decides which (non-empty) subset of the unobserved attributes to use;
for CRF, model selection chooses between two optimization methods and pa-
rameters for optimization and regularization; and for the SVM, model selection
chooses a penalty coefficient and a coefficient for the kernel (for which we use
the Radial Basis Function). For all classifiers, model selection also chooses the
best confidence threshold to use in the CSSI protocol.

Model selection uses the first 100 days’ posts (with their true labels). We train
different versions of the classifiers (e.g. kNN with different k) on approximately
the first 70% of these days’ posts, we measure accuracy of predictions on the
remaining posts, and then we select the best version of the classifier for use in
the protocols described above.

Table 1 shows, for each experiment (protocol plus dataset), which unobserved
attributes model selection chooses for ICA.

5 Results

Figure 1 shows the results for the Static protocol — where there is no re-training.
On the CNET dataset, ICA outperforms all other classifiers tested; in the case
of the FIRE dataset, ICA performs best, but in this instance, its performance is
matched by kNN.

By way of comparison, we calculated the accuracy of a majority-class clas-
sifier, taking the majority class from the 100 days of training data and seeing



Fig. 1: Accuracy for the Static protocol

Fig. 2: Accuracy for the Supervised Incremental protocol

how often this would be the correct prediction for the remaining posts. The ma-
jority classifier has an accuracy of 40.74% for the CNET dataset and 36.87%
for the FIRE dataset. ICA is about 70% and 60% accurate on these datasets
respectively.

Figure 2 presents the results from experiments with the Supervised Incre-
mental protocol — where daily re-training uses the true labels of the new posts.
On the CNET dataset, ICA is again the best performing technique. However,
with this protocol there is an increase in the accuracy of all the classifiers, and
the difference in performance is smaller than that seen for the CNET dataset
using the S protocol. This is to be expected as the classifiers have access to more
properly labelled training data for each day. We can make similar observations
about the FIRE dataset and this time kNN is not matching ICA.



Fig. 3: Accuracy for the Semi-Supervised Incremental protocol

Figure 3 presents the results for the Semi-Supervised Incremental protocol
— where daily re-training uses the predicted labels of the new posts. For the
CNET dataset, ICA continues to achieve the best performance. In this case,
kNN is also able to achieve good accuracy, but it still falls short of ICA’s. The
results for the FIRE dataset are similar, with ICA performing best, followed by
kNN and, in this case, SVM close behind.

As we would expect, accuracies with this protocol (SSI) are lower than the
figures we saw with the SI protocol. Although the training data grows over time,
there is no guarantee that the labels in the new training instances are correct:
they are predicted labels. It is also the case that, with the exception of kNN,
the accuracies of the classifiers see little if any improvement over the accuracies
obtained in the S protocol experiment, which implies that the benefits of the
extra training data are largely outweighed by the error in the predicted labels.

Finally, the results for the Careful Semi-Supervised Incremental protocol are
in Figure 4. Once again, ICA achieves the best results on the CNET dataset. The
results for the other classifiers are a little improved relative to the SSI protocol
experiment. The results for the FIRE set are more unusual. In this case, SVM
performs very well initially. However towards the end, ICA, kNN and SVM all
achieve similar accuracy.

Looking across the experiments, we see that ICA is generally the most accu-
rate classifier for forum posts. We tested for significance using McNemar’s Test
[7] with a value of 1 for the continuity correction term [5] and p = 0.05. We
did this on just the final day’s test data. The tests confirm that ICA is signif-
icantly better than the other classifiers for all experiments except one: there is
no significant difference between ICA and kNN on the FIRE dataset for the S
protocol.

ICA is also the most robust classifier: variations in the experimental protocol
have little effect on its accuracy. The other classifiers have room to improve their



Fig. 4: Accuracy for the Careful Semi-Supervised Incremental protocol

CNET ICA kNN CRF SVM FIRE ICA kNN CRF SVM
S 72.47 47.82 57.83 52.09 S 63.20 63.80 39.47 51.34
SI 77.57 72.01 68.95 61.72 SI 64.39 55.19 43.62 57.27
SSI 75.81 68.67 58.94 49.58 SSI 63.80 57.27 31.45 54.90
CSSI 74.91 67.01 62.76 57.97 CSSI 63.28 60.91 47.86 60.30

Table 2: Average accuracy across all test instances

accuracy when given more training data and, as we would expect, in general
being given new training instances with true labels (SI) is better than being
given new instances with confidently-predicted labels (CSSI) which, in turn, is
better than being given new instances with predicted labels without regard to
prediction confidence (SSI).

We have also summarized the results by computing average accuracy across
all test instances: see Table 2. Again we tested for significance using McNemar’s
Test. In the Table, figures in bold are significantly better than all others on that
protocol.

From the Table, we observe that, in nearly all cases, ICA is significantly
better than the other classifiers. The exceptions are found on the FIRE dataset
using the S protocol, where ICA is not significantly better than kNN, and on the
FIRE dataset using the CSSI protocol, where there is no significant difference
between ICA, kNN and SVM.

It is interesting too to note from the graphs and table the relatively poor per-
formance of CRFs across our experiments. In [9], Kim et al. used a 10-fold cross-
validation methodology to compare CRFs with a Maximum Entropy learner and
a Structural SVM on their dataset (CNET). They found CRFs to have the high-
est accuracy. They did not compare with ICA. We repeated their experiment,
using their methodology, to compare CRF with ICA: in this experiment, we
found ICA and CRF accuracy to be very similar. However, we believe that Kim



et al.’s methodology lacks sufficient fidelity to the way that forum post classi-
fication happens in practice. Their test set contains randomly-chosen threads.
This means that entire thread structure is preserved also in the training set.
This enables the CRF to build a good model. For the more realistic chronologi-
cal protocols that we have described in this paper, CRF loses its advantage and
ICA becomes the most accurate.

We should add a word of warning about detailed comparisons of classifiers
across different graphs in this paper. Although each graph plots accuracy for,
e.g., a kNN classifier, the kNN classifier in one graph is not strictly comparable
with the kNN classifier in another graph since they may be using different values
for k. This is due to the model selection phase in our experimental methodology
(described in Section 4). The same applies to all the other classifiers, e.g. ICA
may be using a different value for k but also different unobserved relational
attributes (Table 1).

6 Related Work

The most closely related piece of work is by Kim et al. [9], since we set out to com-
pare collective classifiers that use local classifiers (ICA) with CRFs, which were
the best-performing classifiers in their experiments. We also use their dataset
and, as best we could, the same attributes that they used. Their paper also
applies CRF to link classification, i.e. the task of predicting thread structure.

Bhatia et al. also report work on post classification [1], and we use the same
dataset that they use (the FIRE dataset). However, they do not use collective
classification: all their attributes are observed attributes. They experiment with
several classifiers from the Weka machine learning tool-kit [6] and report the
results of just the logit model classifier (72.02% accuracy).

There has been work on classification for online debates and spoken debates.
For example, Somasundaran & Wiebe classify stance (pro or con) in online de-
bates [16, 17]. In [2], transcripts from the US congress are classified based on
support or opposition to a topic. This paper makes use of collective classifica-
tion techniques.

A related topic is the classification of speech acts in email conversation. This
is explored in [4] and then revisited in [3] using collective classification techniques.
The collective classifiers were able to achieve better results.

More generally, there are several overviews and comparisons using collective
classification, e.g. [15, 12]. The accuracy of the collective classifiers that use local
classifiers can often be improved by using ‘cautious’ variants of the algorithms,
which take account of the uncertainty in the predicted labels. These cautious
collective classifiers are presented in, e.g., [14, 13].

Accordingly, we too used a cautious variant of ICA (the one that [14, 13]
designates ICAC) in our experiments. However, in our experimental protocols,
we did not find ICAC to be better than ICA. We omitted the results from this
paper to reduce clutter in our graphs.



7 Conclusions

In this paper, we have investigated the task of classifying posts to Internet fo-
rums. We compared ICA —a collective classifier that uses a local classifier (in
our case, kNN)— with Linear Chain CRFs —a classifier that optimizes global
probability functions— and with some conventional classifiers (kNN and SVM).
We compared them on two datasets, and we defined a number of experimen-
tal protocols for robust testing of these classifiers. ICA out-performed all other
classification techniques tested across all the protocols for the CNET dataset.
It out-performed all other classification techniques for all but two of the pro-
tocols for the FIRE dataset: it was matched by kNN in one protocol; and in
another, there was a period during which SVM out-performed ICA, but their
end-of-period accuracies were the same.

There are many ways in which we can improve ICA. We can try other at-
tributes, including lexical attributes and also relational attributes that are based
on later posts in the thread as well as those that are based on earlier posts in
the thread. We can improve the kNN local classifier; for example, we can use
attribute weights in the distance computation [12]. We can try other local clas-
sifiers, such as Näıve Bayes, or even ensembles of classifiers. Additionally, Gibbs
Sampling is another collective classification technique which uses local classifiers.
It is possible that this will further improve the accuracy seen in our experiments.
However, Gibbs Sampling comes with a considerable time cost compared to ICA,
and it remains to be seen whether any improvements would be worth the added
expense. We can also trying collective classifiers that do not use local classifiers
(other than CRF), such as Loopy Belief Propagation.

More generally, we plan to look at identifying argument structure in threads
and then techniques that can be incorporated into the kind of forum management
software that we described in Section 1.
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