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Abstract. In forestry, it is important to be able to accurately determine
the volume of timber in a harvesting site and the products that could
potentially be produced from that timber. We describe new terrestrial
scanning technology that can produce a greater volume of higher qual-
ity data about individual trees. We show, however, that scanner data
still often produces an incomplete profile of the individual trees. We de-
scribe Cabar, a case-based reasoning system that can interpolate missing
sections in the scanner data and extrapolate to the upper reaches of the
tree. Central to Cabar’s operation is a new asymmetric distance function,
which we define in the paper. We report some preliminary experimental
results that compare Cabar with a traditional approach used in Ireland.
The results indicate that Cabar has the potential to better predict the
market value of the products.

1 Introduction

Forest planners are responsible for deciding how the set of commercially-cultivated
forests that are under their control should be developed and eventually harvested.
At any given time, a number of different forests are available, and planning how
best to utilize them can be a difficult task. For example, forest planners must
combine information that comes from processing plants (e.g. sawmills) with in-
formation about their forests to decide which forests to use and which trees
within those forests to fell.
? This work was carried out while the first author was a member of the Cork Constraint
Computation Centre (4C) at University College Cork. The project was an Innovation
Partnership (IP/2006/370/), jointly funded by Enterprise Ireland and TreeMetrics,
a company that provides forestry measurement systems.



Poor decisions in this planning process are commonplace. But they are not
necessarily due to poor judgement. They are often caused by inadequate infor-
mation at the root of the supply chain, the forest. Forests exhibit high inherent
spatial variability (e.g. two trees growing side by side may exhibit different char-
acteristics due to differences in genetics and micro-climate) and temporal vari-
ability (e.g. trees continue to grow after being measured). In the vast majority of
cases the characteristics of a forest are only vaguely known. This means that re-
sources that have been cultivated over periods of thirty to more than a hundred
years are often underutilized based on ill-informed decisions made quickly at the
end of their life cycles [1–4]. These poor decisions and the lack of quality forest
information naturally have knock-on effects right through the supply chain.

In this paper, we focus on three forest planning tasks:

Tree taper estimation: The task here is to estimate the diameter of a tree
stem at different heights. Diameters tend to taper, i.e. they decrease with
height, and this is why this is known as taper estimation.

Stem volume estimation: The task here is to estimate the volume of timber
that a tree will produce. This may be based on estimates of tree taper.

Product breakout estimation: The task here is to estimate what products
can be produced from a tree, e.g. size and quality of planks, amount of
wood-chip, and so on. This may be based on estimates of stem volume.

The rest of this paper is structured as follows. Section 2 presents state-of-
the-art methods for the tasks listed above; it explains the role of new scanner
technologies; it motivates the use of Case-Based Reasoning (CBR) to exploit the
scanner data; and it describes related work in CBR. Section 3 presents Cabar, our
case-based reasoning system for the tasks listed above. The focus in the section is
on case and query representation, along with a new asymmetric distance function
that we have defined. Section 4 describes experiments we have conducted and
presents our preliminary results.

2 The State of the Art: Motivating the Use of CBR

2.1 Current Practices

Much of current practice revolves around the prediction of the expected volume
of a forest, i.e. the amount of timber a forest is expected to yield. This aids the
selection of which of a set of forests to harvest.

In Ireland, a common approach is to take a set of measurements about a
forest and use them to access a simple set of look-up tables that translate these
measurements into volume figures. The forest manager conducts a survey of
the forest, which records the diameter at breast height (DBH) and, perhaps, the
height of a number of sample trees.5. From these measurements, and perhaps also

5 In some parts of the world, the survey may also include assessments of stem shape,
curvature, and quality (e.g. size of branches, scarring, rot, wood density, etc.) [5].



the forest age and the thinning strategy, the manager can then read-off predic-
tions of the expected volume and, sometimes, the typical dimensions of saw-logs
that the forest can yield. The look-up tables are compiled from extensive field
measurements and mathematical models. The disadvantages of this approach
include: the tables that are available to the manager may not adequately reflect
local conditions (soil, weather, tree species, species mixture, etc.); the predic-
tions are made from only a sample of trees in the forest and from only one or
two measurements about each tree; and the prediction is only a crude estimate
of overall forest volume, and not individual tree volume.

An alternative is to predict volumes on a tree by tree basis. This is usually
done by predicting the diameter of the tree stem at different heights along the
stem, from which the volume of the tree can be calculated. The equations for
predicting diameters are known as taper equations. For the most part, the in-
put parameters are the DBH and the height of the tree [6, 7]. In many cases, the
height is not measured; rather, it is estimated from the DBH using a height model
[8, 9]. Many different taper equations exist, each making different assumptions
about tree shape, and hence using different geometrical principles and mathe-
matical functions. It is necessary to choose the right equation for the species of
tree and to calibrate the equation based on local conditions and historical data.
The disadvantages of this approach include: the equations that are available to
the manager may not adequately reflect local conditions; and the equations use
only small amounts of data about the tree (sometimes just the DBH).

From full taper and volume predictions, it is possible to estimate the product
breakout, i.e. the products that might be produced from a tree [10]. Some forest
managers use software to do this. The software simulates the algorithms that
are used in the field by harvesting machines, as explained below.

Trees are rarely transported from the forest as complete units. They are
usually first cross-cut into smaller units (logs). The harvesting machine’s on-
board software decides how to cross-cut a tree. Obviously, its decisions have a
major bearing on what products the sawmill will ultimately be able to produce.
The harvester is pre-loaded with data about the products to be cut and their
priorities (in the form of a set of weights). The harvester begins by taking hold
of the base of a tree; it then both measures and infers the dimensions of the tree;
and it uses a priority cutting list or a mathematical programming technique
(e.g. dynamic programming [11], branch-and-bound [12], network analysis [13])
to determine the optimal or near-optimal way to cross-cut the tree.

By simulating the harvesting machine’s decisions in advance on taper and
volume predictions, a forest manager can decide which trees to harvest. But the
disadvantages include that poor predictions of taper and volume may render
estimates of product breakout too unreliable to be useful in practice.

2.2 New Technologies

New technologies offer the potential to overcome the lack of information about
forests. They may enable us to obtain a greater volume of higher quality data,
and to do so at low cost.



In our research, for example, we have been working with a company called
TreeMetrics, who provide forestry measurement systems (www.treemetrics.com).
TreeMetrics has developed a portable 3-dimensional terrestrial laser scanning
technology [14, 15]. Their technology makes it possible to capture 3D data about
standing trees in a forest prior to harvesting. For each individual tree in a scanned
plot the scanner can record hundreds of laser readings. TreeMetrics’ software
takes a set of readings, tries to work out which tree each reading belongs to,
and calculates tree diameters at fixed intervals along the length of the tree. For
each diameter, the centre point is also calculated and so curvature information
about the tree is also obtained. Such information makes it possible to accurately
determine the volume and a quality attribute (from the curvature data) of trees
in a forest in advance of harvesting.

2.3 A Role for Case-Based Reasoning

Although TreeMetrics’ technology provides vastly more tree information than
some more traditional approaches, it is not guaranteed to provide a complete
picture of each tree. Readings for some sections of a tree may be missing due
to occlusion by branches or other trees. This becomes increasingly common the
further up the tree the readings are sought due to the effects of branching and
the limitations of the laser at increased distances.

This leaves us with a tree profile prediction task, both in terms of interpolat-
ing the missing sections and also in terms of extrapolating to the upper reaches
of a tree. There is also the task of smoothing or replacing diameter readings
which contain noise. In this paper we outline a Case-Based Reasoning (CBR)
approach which accomplishes these tasks.

We expect various advantages to accrue from the combined use of better data
in greater volumes and the use of CBR in place of pre-compiled look-up tables
and equations. These advantages include:

Flexibility: As described in Section 2, in Ireland the traditional approach is
to make predictions from measurements taken at fixed points, such as the
diameter at breast height. Even when more measurements are available, such
approaches cannot capitalize on the extra data. Equally, they cannot be used
to make predictions if the data they need is not available. The CBR system
that we propose can make predictions based on whatever readings are avail-
able. In particular, the new similarity measure that we define (Section 3.2)
handles any number of readings, and accommodates information about the
certainty of those readings.

Localized predictions: In traditional approaches, models (e.g. systems of equa-
tions) can be calibrated to local circumstances. However, this is complex
and the costs of doing it are typically high. Hence it is common to gener-
alize over broad regions, which means that the models often fail to capture
finer-grained local variations. CBR offers an approach that can be readily
localized. The case base used for Sitka Spruce forests in southwest Ireland,
for example, need not be the same as the case base used for Norway Spruce



forests in southeastern Norway. Case bases can be built from harvester data
or field measurements that come from the particular area in which the case
base will be used, thus implicitly capturing the local characteristics of that
area. This is not cost-free, but it is simpler than model calibration.

Immediate use of data: With CBR, there is no need for model calibration.
In some sense, calibration is implicit: the particular cases in the case base
calibrate the system to its local circumstances. Equally, since CBR is a strat-
egy for both problem-solving and learning, by judicious case base update,
case bases can be tailored to local conditions over time.

2.4 Related Work

Applications of CBR in forestry, while few in number, have a long history. In
1997, Goodenough et al. [16] described the SEIDAM system that tries to keep
forest inventories up-to-date through the integration of images and digital maps.
Their use of CBR is quite different from ours: they use it to form plans of
map update operations. In 1998, Kelly and Cunningham [17] investigated an
algorithm for selecting an initial case base from a database of Irish forestry data.
Our data is about individual trees, whereas the records in their database provide
information about forest ‘sub-compartments’. Their CBR system is judged by
how well it predicts the proportion of a sub-compartment that should be planted
with a particular species. There are also a number of examples of problems within
forestry, including the problem of estimating taper on unmeasured portions of a
felled tree stem while the stem is being harvested, for which solutions based on
k-NN have been suggested [18–20, 4].

3 Cabar: A CBR Forestry System

Cabar is the name of the CBR system that we have developed.6 Cabar is designed
to deal with the particular characteristics of tree stem data, especially the kind
of data that we can obtain from TreeMetrics’ laser scanner technology. The
emphasis is on taper prediction, which we then use for stem volume prediction,
which we use in its turn for product breakout estimation. Cabar’s design and
operation are explained in the next three subsections.

3.1 Cases and Queries

Each case in our case base represents one tree and contains a sequence of real
values, which denote the diameter of the tree, usually at 10 cm intervals along
its entire length. Sometimes cases come from manual field measurements. But
they are also readily available from harvester machines. The on-board software
records an overbark profile of each tree that the harvester cuts. There is no
solution part to the cases.
6 “Cabar” is the Gaelic word, often spelled “caber” in English, for a wooden pole.
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Fig. 1. Scanner readings and harvester measurements of the diameter of a tree

Queries in our system are also described by sequences of real values, denoting
the diameter of the tree at different heights. Whereas cases may be standing trees
that we have measured manually or trees that a harvester has previously felled
and measured, queries usually describe standing trees whose taper and volume
we wish to predict. They have been scanned, and we have a set of readings from
the laser scanner. Hence, we say that cases contain measurements and queries
contain readings.

However, as mentioned above, due to occlusion and the limitations of the
scanning technology, a query is often a fairly incomplete impression of the tree
profile. This is illustrated in Figure 1, which shows the profile of a tree as recorded
by TreeMetrics’ scanning device (diamonds) and the profile of the same tree as
recorded by a harvester after felling (squares).

The figure shows that the scanner data is noisy (due, e.g., to nodal swelling,
dead branch stubs, dead needles, partially hidden stem, etc.), and there are
sections of the tree for which the scanner has no readings. Taper prediction
involves interpolation of missing sections, extrapolation to the upper reaches of
the tree, and smoothing of noise.

In fact, for each reading in a query, we also have a confidence measure. This is
a measure of the confidence the TreeMetrics software has in the accuracy of the
reading. The software uses 3D image recognition techniques: the 3D coordinates
recorded by the scanner are assigned to different trees. The height at which a
reading is taken can be determined to a high level of accuracy, but diameters are
less reliable due, e.g., to occlusion by parts of neighbouring trees. (There is no



equivalent to these confidence measures in cases because, as we described above,
cases describe trees that have been properly measured, either manually or by a
harvester. We assume that all readings in cases are ones we can be confident in,
although this can be achieved only under carefully controlled circumstances.)

Formally, a case c is a set of pairs, c = {〈i1, x1〉, . . . , 〈im, xm〉}, where x1, . . . , xm

are measurements, usually stem diameters, and i1, . . . , im are the heights at
which the measurements were made, e.g. 〈5, 300〉 means that at a height of 5 m
from the base, the tree’s diameter is 300 mm. For each case, it is expected that
i1, . . . , im will be consecutive heights.

A query q is a set of triples, q = {〈i1, x1, w1〉, . . . , 〈in, xn, wn〉}, where x1, . . . , xn

are stem diameters calculated from scanner readings, i1, . . . , in are the heights
at which the readings were taken, and w1, . . . , wn measure confidence in the
readings. For queries, it is typically not the case that heights i1, . . . , in are con-
secutive.

3.2 Similarity

We need to be able to compute the similarity between cases and queries. In fact,
we define a distance function, rather than a similarity measure, whose design
is informed in part by the following observations about cases (usually harvester
data) and queries (scanner data):

Sequence data: Cases and queries both have the characteristics of sequence
data. Each data point xj has a definite relationship with those either side of
it, xj−1 and xj+1. The data is effectively the description of a shape. There
is an analogy here between our cases and temporal cases, where values are
recorded at different points in time.

Varying lengths: Stems vary in height and the raw series data reflect this.
Since measurements and readings are taken at fixed intervals, the length
of a sequence varies from stem to stem. Cases need not be the same length;
queries need not be the same length; and queries need not be the same length
as cases. This means that any vector-based similarity measures that assume
fixed-length vectors cannot be used directly.

Partially incomplete: Both the cases (harvester data) and queries (scanner
data) can be incomplete sequences, in the sense that there may not be mea-
surements or readings at certain heights. However, they are incomplete in
distinct ways. The harvester data will have a measurement at every interval
up to a certain height but may not completely record the final taper of the
stem. The point at which the sequence terminates varies with each individ-
ual file. The scanner data in contrast contains many missing sections of data
due to occlusion from branches and other trees. These effects become more
prominent further up the stem. As a result there is typically more informa-
tion about the sequence at the base of the tree; readings are fewer and more
sparsely distributed further up the stem.

We investigated a number of variations of an existing shape-based similarity
measure [21], but without great success. We believe that this is because this



measure, the variants we tried, and others like it tend to assume that cases and
queries are quite homogeneous and symmetric. In our forestry system, however,
we have seen that cases and queries are quite different from each other.

For this reason, we have defined ASES, our own asymmetrical sequence-based
Euclidean distance function, which we believe is well-suited to the task at hand:

ASES (q, c) =

√∑
〈i,x,w〉∈q w × diff (i, x, c)∑

〈i,x,w〉∈q w
(1)

where

diff (i, x, c) =
{
x2 if i 6∈ {i′|〈i′, x′〉 ∈ c}
(x− x′)2 such that 〈i, x′〉 ∈ c otherwise (2)

In essence, this global distance measure is a weighted sum of local distances,
where the weights are the confidence measures from the query. For each reading
in the query, a local distance is computed. If the query contains a reading 〈i, x, w〉
and the case contains a measurement that was taken at the same height i (i.e. if it
is the case that 〈i, x′〉 ∈ c), then the local distance is the square of the difference
between the query reading and the case measurement, (x−x′)2. If the case does
not contain any measurement taken at height i (i.e. i 6∈ {i′|〈i′, x′〉 ∈ c}), then
the local distance is the square of the whole amount of the reading, x2. This has
the effect of penalizing cases that are too short to match all the readings in the
query.

3.3 Retrieval and Reuse

Of the four phases in the CBR cycle the two most critical in Cabar are the
retrieval and reuse phases. At present, we have experimental results only for
quite simple versions of these phases. We have tried more sophisticated tech-
niques, but we will not describe them here because they have not been verified
experimentally. We explain how we carry out tree taper prediction, stem volume
prediction, and product breakout estimation.

Tree Taper Prediction Given a query q, we retrieve its k nearest neighbours
using the ASES distance measure. In the simple approach for which we have
experimental results, we use only k = 1. We use this nearest neighbour c for
query completion. In fact, the only approach for which we have experimental
results is the very simplest one: we take the whole of c unchanged (i.e. without
adaptation) in place of q.

Stem Volume Prediction Stem volume prediction is trivial once the query
has been completed. It involves no more than computing the volume based on
the inferred diameters.



Product Breakout Estimation Product breakout estimation is the most com-
plex task that we carry out. Basically this involves giving a prospective process-
ing plant such as a sawmill a sense of the likely products that can be produced
from the stems captured by the scanning device.

As explained in Section 2.1, given a specification of the products that a pro-
cessing plant is interested in, we can use a cross-cutting algorithm to simulate the
actions that a harvester machine would carry out in the forest. Such cross-cutting
algorithms are commonly used in forestry and we have designed and developed
an adaptation of one which can utilize the extra 3D information captured by the
TreeMetrics scanning device. The extra information gives the algorithm knowl-
edge of tree curvature. Our algorithm therefore gives more accurate estimates of
the breakout because it better takes problems of curvature into account.

The cross-cutting algorithm we use is an adaptation of the branch-and-bound
approach proposed by Bobrowski, which is proven to produce the optimal solu-
tion [12]. As each possible solution path in its search tree is evaluated, our variant
of Bobrowski’s algorithm ensures that any restrictions the products place on ac-
ceptable curvature levels are taken into account.

4 An Experimental Evaluation of Cabar

Although being able to examine Cabar in real world situations is the ultimate
proof of concept, such studies often contain multiple sources of error. Such errors,
especially when unquantifiable, make it difficult to properly assess the perfor-
mance of a new technology and impossible to isolate different areas of failure.
In this paper we wish to examine and quantify the performance of Cabar over
a range of different scenarios, in particular where there are varying quantities
of data and varying levels of noise. To achieve this we developed a testbed to
simulate these situations.

The benchmark against which we compare Cabar’s performance is similar to
many used in forestry and much the same as those described in Section 2.1. It
predicts tree taper and then stem volume using a taper equation whose parame-
ter is a DBH measurement, and it estimates product breakout using a harvester
simulation model.

We first describe our experimental data; then we describe our benchmark
system; finally we present the results of our experiments.

4.1 Experimental Data

In our experiments we use harvester data, which we assume to be accurate.
Obviously, this is the source of our case data. But it is also the source of our
query data. We applied ablation and noise functions to harvester data in order
to simulate scanner data of varying quality. The reason we create queries from
harvester data is that we need to have a known ‘ground truth’ against which we
can compare Cabar’s predictions. What we need in future are readings produced
by laser scanning a stand of trees paired with harvester measurements on the



same trees after felling. Lacking enough data of this kind, we were obliged to use
harvester data alone. We expect this to be remedied in the future.

In particular, the harvester files used in our experiments are Sitka Spruce
tree files from Ireland. We removed from this set of harvester files any which did
not have a complete set of readings up to the 70 mm diameter point and also
any files in which substantial discontinuities occurred. This left a set of 389 tree
stems. We then split the remaining data into two separate, equal-sized data sets.
One set was used to generate queries of simulated scanner data; the other formed
a case base. We applied ablation and noise functions to the measurements in the
query data in order to simulate scanner data, as described in detail below. In
our experiments, confidence levels in the query data are all set to 1.

4.2 Ablation and Noise Functions

To decide whether to retain or delete a measurement 〈i, x〉 in a query, we sample a
random distribution. If a sampled value r is greater than probability of retention
P (α, β, i), then 〈i, x〉 is retained, and otherwise it is deleted. Retention/ablation
probabilities are based on the generalized exponential distribution [22]:

P (α, β, i) = e−
(i−α)
β (3)

α defines the shape of the distribution, and β is a scaling factor. We can adjust
the extent to which the readings that are higher in the tree are retained by
changing the value of β. For the remainder of this document we will refer to β
as the ablation factor.

Figure 2 shows an example harvester tree stem to which we have applied
our ablation function. The points remaining after ablation are shown as squares.
In this figure the effects of adding noise can also be seen (stars). The noise
we added was normally distributed with a variance set to be a percentage of
the original diameter. Our Treemetrics expert informally confirmed that this
simulated scanner data strongly resembles real scanner data.

We applied varying degrees of ablation and noise to the queries. We altered
the noise levels from no noise at all up to a noise level of 20%.7 The ablation
factor took on the values 1, 1.5 and 2.

4.3 The Malone Kozak Benchmark System

In order to benchmark the performance of the CBR system against a realistic
alternative, we developed a system similar to one of the approaches described
in Section 2.1. One important element of this estimate mechanism is the taper
equation used. We used a taper equation called the Malone Kozak. The Malone
Kozak has been especially calibrated for Sitka Spruce in Ireland [10]. This taper

7 Noise levels of up to 20% seemed reasonable at the time these experiments were run.
Data we have recently acquired for South Australian stems shows that we may need
in future to use a slightly larger variance.
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Fig. 2. A example of a query and the harvester stem data from which it was created

equation uses DBH and height measurements as its inputs. But since height
measurements are often not available, the Malone Kozak comes with a height
model that predicts height based on DBH. Since our data-sets did not give us
height measurements, we used the height model in our experiments. In generating
queries from harvester data (above), we were careful to ensure that we did not
ablate the DBH of each of the query trees and that we did not apply noise to the
DBH. The Malone Kozak would be particularly susceptible to such noise and
would be unusable without a DBH measurement.

For product breakout estimation, the benchmark system uses the same cross-
cutting algorithm as the one we developed for Cabar (Section 3.3).

4.4 Experimental Methodology

We took the queries and applied a particular level of ablation and noise. We then
used Cabar to predict tree taper, stem volume, and product breakout market
value. We repeated this 20 times using the same noise and ablation factors,
and averaged the results. We then changed the noise and ablation factors and
repeated this process for each different level of noise and ablation.

The Malone Kozak system, on the other hand, was run only once on the
query set. Only one run is needed because we ensure that the noise and ablation
factors do not alter the true DBH, which is the only input in the Malone Kozak
equations that we use (Section 4.3).



Table 1. A description of the products harvested from an Irish forest

Product Length (m) SED (mm) Market Value
4.9 Saw log 4.9 200 39
Pallet 3.1 140 25
Stake 1.6 70 19

To perform product breakout estimation, we need an example of product
demand. For this, we chose a small set of products which are typical of those
harvested in Ireland. A description of these products can be seen in Table 1.
The single most important feature of each product is its length. However, each
product is further described by other characteristics that restrict whether certain
sections of a given tree can produce such lengths. We use the small end diameter
(SED), which describes the minimum diameter that the upper or smaller diam-
eter of a cut section is allowed to be. These restrictions are taken into account
by our cross-cutting algorithm.

The cross-cutting algorithm also needs priorities, denoting the importance of
each type of product. For our experiments, we used indicative market values as
the set of weights describing the priorities.

The final outcome of the cross-cutting algorithm is the estimated overall
value of the whole query set using the market values in Table 1. We compare
these estimates from both systems to the ‘ground truth’, i.e. the market value of
the products that can be cross-cut from the original, noise-free, unablated query
tree data. We report the percentage error.

4.5 Results

Figure 3 shows the percentage error in the estimates of total product breakout
market values for the query set. Two systems are compared: Cabar and Malone
Kozak (with a generic height model). In the case of Cabar, there is a separate
trend line for each of the three ablation factors that we used. The graph plots the
error against different levels of noise. The Malone Kozak system is insensitive to
this, as explained in Section 4.4, because we use only the DBH and we ensured
that this was noise-free and never ablated. It can be seen that Cabar’s error
levels are far below the Malone Kozak levels. Of course, if the Malone Kozak
system had been calibrated not just for Sitka Spruce in Ireland, but for the
particular stand of trees used in the data-set, then its performance would be
more competitive. This reinforces the point about the importance (and cost) of
model calibration in approaches like this one. Similarly, supplying tree height
readings if they had been available instead of using the height model would have
made the Malone Kozak system more competitive.

The source of Cabar’s greater accuracy becomes clearer when we look at the
product breakout predictions for particular noise and ablation factors. Figure 4,
for example, shows the product breakout volumes by product type when the
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Fig. 3. Product breakout market value error results

noise and ablation values are 0.15 and 1.5 respectively. Cabar’s predictions are
generally reasonably close to the figures produced by the cross-cutting algorithm
on the actual stems (first two bars in each group of three). Malone Kozak,
by contrast, tends to greatly overestimate the sizes of the trees and hence the
product breakout volumes (third bar in each group). This indicates that the trees
used in the harvester data-set were shorter and had greater taper than predicted
by the Malone Kozak equations and height model.

5 Conclusions and Future Work

Improvements in terrestrial scanner technology mean that it is now possible to
collect far more information about a forest in advance of it being harvested.
However, this data does not offer complete profiles of the trees in the forest.
Systems that can ‘fill in the gaps’ are needed. Traditional approaches to these
estimation tasks were not designed with such rich data sources in mind and
are unable to exploit them. In this paper we presented Cabar, a Case-Based
Reasoning approach, which is better suited to dealing with the abundance of
scanner data but also the challenges such data poses. Our preliminary results
demonstrate that Cabar provides a viable alternative solution to some of the
challenges currently hindering the adoption of terrestrial scanning in forestry.

Although the work we have presented demonstrates that a CBR approach to
this problem is promising, there are several possible ways in which it might be
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Fig. 4. Product breakout volumes (noise factor 0.15; ablation factor 1.5)

improved. The first step would be to extend our system to operate on the k near-
est neighbours for k > 1 and to develop a more sophisticated approach to case
completion from the nearest neighbours. We are also contemplating alternative
distance functions that take account of area rather than diameter, which would
tend to give greater weight to differences nearer the base of the tree. We are
also considering how to make more use of the curvature data that the scanning
technology gives us. We use it in our cross-cutting algorithm, but it is not used
in the distance function. Using it in the distance function raises methodologi-
cal problems because no harvester measures this attribute, hence ‘ground truth’
figures would not be readily available. More empirical evaluation is also called
for. We are collecting further data sets on which experiments can be run. In
particular, it is likely that we will have data that contains scanner readings and
harvester measurements for the same trees. With this, we will not need to use
simulated queries, and we can investigate the role of the confidence measures.
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