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Abstract. We show how case bases can be compiled into Decision Di-
agrams, which represent the cases with reduced redundancy. Numerous
computations can be performed efficiently on the Decision Diagrams. The
ones we illustrate are: counting characteristics of the case base; comput-
ing the distance between a user query and all cases in the case base;
and retrieving the k best cases from the case base. Through empirical
investigation on four case bases, we confirm that Decision Diagrams are
more efficient than a conventional algorithm. Finally, we argue that De-
cision Diagrams are also flexible in that they support a wide range of
computations, additional to the retrieval of the k nearest neighbours.

1 Introduction

Speed of response is important in Case-Based Reasoning (CBR). It is important
in embedded case-based systems: in a rapidly changing environment, actions
must be timely. It is important in interactive case-based systems: users will only
wait so long for an answer. The challenges of providing timely responses to users
of interactive case-based systems are increasing because the systems must now
support a wider range of computations. In conversational recommender systems,
for example, systems must increasingly support question selection [4] and the
computation of explanations [6].

Compilation has a long history in Computer Science as a way of improving
performance. But it is rarer in CBR. One example is Case Retrieval Nets, where
we can think of the case base as having been compiled into a graph of information
entities [3]. Another example is any system that automatically constructs an
index structure into the case base (e.g. the k-d trees described in [8]).

In this paper, we compile the case base into a Decision Diagram. Decision
Diagrams are described by Wilson [9], extending the approach of [1]. They, along
with [1, 2], represent a strand of research into compiling Constraint Satisfaction
Problems (CSPs). Our contribution is to apply them to CBR, especially case-
based retrieval and to current conversational recommender systems.

* The support of the Informatics Commercialisation initiative of Enterprise Ireland is
gratefully acknowledged; this work was also supported by Science Foundation Ireland
under Grant No. 00/PI1.1/C075. We are grateful to Dr. Lorraine McGinty and Mr.
James Reilly for making their Laptops and Cameras data available to us.



|Locati0n|Bathr00ms | Furnished|Bedrooms|

Chelsea |1 Yes 2
Chelsea |1 No 2
Chelsea |2 Yes 4
Chelsea |2 Yes 3
Clapham |2 Yes 2
Clapham |1 Yes 2
Clapham |1 No 2

Fig. 1. Example case base.

In Section 2.1, we explain how to compile a case base into a Decision Dia-
gram; in Section 2.2 we use the Decision Diagram to efficiently count properties
of the case base; in Section 2.3 we show how to use the Diagram to efficiently
compute the distance between a user’s query and every case in the case base;
and in Section 2.4 we explain how to efficiently retrieve the best k cases from the
Diagram. Section 3 reports empirical results on four case bases, comparing oper-
ation counts and timings, and showing much improved performance when using
Decision Diagrams. Finally, in Section 4, we argue that Decision Diagrams are
also extremely flexible in that they support a wide range of useful computations.

2 Decision Diagrams

A Decision Diagram is a directed graph, having distinguished Source and Sink
nodes. Each complete path, i.e. from Source to Sink, represents a solution to the
Constraint Satisfaction Problem (CSP), or a case in the case base, from which
the Decision Diagram was compiled. Values representing the degree to which
constraints are satisfied, or the degree to which cases match a user’s query, are
propagated and aggregated across the graph to efficiently implement key CSP
and CBR operations.

In our work, we assume that cases are ‘flat’ vectors of attribute-value pairs.
The case base we use as a running example is shown in Figure 1. The exam-
ple case base contains seven case descriptions of the kind used in case-based
recommender systems. Here, each is a London property rental.

Figure 2 shows one possible Decision Diagram for the example case base. For
m attributes, there are m+ 1 layers (columns) of nodes, which we will refer to as
layers 0 to m. In the example, four attributes gives five layers of nodes. There is
only one node in layer 0, referred to as Source, and one node in layer m, referred
to as Sink. In our specialisation of the Decision Diagram formalism [9], each of
layers 0 to m—1 is associated with a case attribute, and the edges that connect to
the next layer are labelled with values for that attribute. In the example, Source
is associated with the Location attribute and so edges that connect to the next
layer are labelled with values Chelsea or Clapham; the next layer is associated
with the Bathrooms attribute and so edges that connect to the next layer are
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Fig. 2. DD(7): One possible Decision Diagram for Figure 1’s case base.
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Fig. 3. DD(3): Another possible Decision Diagram for Figure 1’s case base.

labelled with values 1 or 2; and so on. Sink is not associated with any attribute.
Each complete path through the graph, from Source to Sink, corresponds to a
case in the case base. In Figure 1 there are seven cases; in Figure 2 there are
seven complete paths.

Now consider Figure 3, which is another Decision Diagram for the same case
base. Nodes which were separate in Figure 2 have, in effect, been merged in
Figure 3. The number of layers is the same and, crucially, there are still seven
paths through the Decision Diagram, corresponding to the seven cases.

We define the width of a Decision Diagram at any point to be the number
of edges connecting layer ¢ to layer ¢ + 1. For example, in Figure 3, the width
between layers 0 and 1 is two. We define the width of the Decision Diagram as a
whole to be the average of the widths between each layer, rounded to the nearest
integer. The width of Figure 2 is therefore seven: it is this wide at all points. The
width of Figure 3 is three: (244444 3)/4. In this paper, we use the width as a
concise way of referring to a Diagram: the Diagram in Figure 2, we call DD(7);



Algorithm 1 Building a Decision Diagram from case base CB, whose set of
attributes is A = {ag,...,am-1}.

insert a new node, Source, at layer 0
for all c€ CB do

current := Source
R:={}
P=A

for i := 0 upto m — 1 do
insert attribute-value pair {(a;,v) from case ¢ into set R
remove attribute a; from set P
if there is already an edge, labelled by value v, from current to some node next
then
current := next {i.e. traverse the edge}
else {i.e. need a new edge}
slice := wp(or(CB))
if there already exists a node nezt at layer i + 1 for which slice(next) = slice
then
insert an edge current —— neaxt
else {i.e. need a new node as well}
insert a new node next at layer i + 1
slice(next) := slice
insert an edge current 5 next
end if
end if
end for
end for

and the one in Figure 3, we call DD(3). Obviously, DD(3) is more compact than
DD(7): it is narrower at all points. It is this reduction in redundancy that will
give us performance improvements over traditional case retrieval algorithms.

2.1 Compiling a Decision Diagram from a Case Base

Our algorithm for creating a Decision Diagram from a case base, Algorithm 1, is
a novel specialisation of the one described in [9] for compiling a Decision Diagram
from a CSP. We will explain this algorithm with reference to the first two cases
in the case base shown in Figure 1.

Figure 4 depicts the Decision Diagram after we have processed the first case
in the case base. The Decision Diagram initially contained only the Source node.
Hence, edges were created for each attribute-value pair in the first case. Alongside
the nodes, we show case base ‘slices’. These are explained in the next paragraph.

Now consider processing the second case in the case base. If possible, we
follow an existing path through the Decision Diagram; we only insert new edges
and nodes if necessary. We start at Source. The case’s first attribute-value pair is
(Location, Chelsea) and there is an edge in Figure 4 labelled Chelsea emanating
from Source; so we follow this edge. The next attribute-value pair in the case is
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Fig. 4. Building the Decision Diagram: the result of processing the first case.

(Bathrooms, 1). There is an edge in Figure 4 labelled 1, and so we are able to
follow this edge. We are now at the third node from the left in Figure 4.

The next attribute-value pair is (Furnished, No). There is no edge in Figure 4
labelled No emanating from our current node. One thing is certain: we will need
to insert a new edge into the Diagram. The question is: will we also insert a new
node as the destination of this edge, or will we be able to use an existing node?
This is where the case base slices are used.

In our specialisation of the Decision Diagrams in [9], slices are computed
using ¢ and m, which are the standard select and project operators of relational
algebra [5]. In the select operator, or(S), R is a Boolean condition. The operator
returns all tuples (cases) in S that satisfy R: a kind of horizontal subset. In the
project operator, mp(S), P is a set of attributes. The operator returns all tuples
(cases) in S but confined to the attributes in P: a kind of vertical subset.

In our algorithm, R contains the attribute-value pairs that we have looked at
so far from the case that we are processing. In the example, we have looked at
{(Location, Chelsea), { Bathrooms, 1), ( Furnished, No)}. So, in forming our new
slice, we select cases that agree with these attribute-value pairs. In our algorithm,
P is the set of attributes that we have not looked at so far in the case that we
are processing. In the example, there is just one attribute that we have not yet
looked at: Bedrooms. So, in forming our new slice, we project the result of the
selection operator on this attribute. Hence, in this example, we are computing:

T{ Bedrooms} (0—{(Loca7§ion7 Chelsea),(Bathrooms,1),{ Furnished,No) } ( CB))

The resulting slice contains just one tuple, having one attribute, and the value
of this attribute in that tuple is 2. Figure 5 shows that, because this new slice
equals a slice already associated with a node in the destination layer, we do not
need to insert a new node. Instead, we insert an edge to the node whose slice
equals the new slice.

This concludes processing of the second case in the case base. The other cases
are each processed in a similar fashion, giving rise to the Decision Diagram that
we showed in Figure 3.

Of course, as can be seen in Figure 5, each slice can be computed incremen-
tally from the previous one; it does not need to be computed ‘from scratch’.



Location Bathrooms Furnished Bedrooms
1,Yes 2

1,No, 2
Yes, 2

aves .

2.Yes3 No, 2

O o O~

\
sourcd ) The slice associated with the destination of this edge is: () sink
Since this slice is the same as an existing slice, a new
node is not inserted. Instead, this edge is routed to the
existing node.

Fig. 5. Building the Decision Diagram: the result of processing the second case.

When we run our algorithm, we employ a heuristic that generally increases
the opportunities for merging of nodes, thereby reducing the size of the Diagram.
Specifically, we sort the attributes by ascending domain size. We have already
done this in Figure 1: the Bedrooms attribute, whose domain size is three, comes
after the other attributes, all of which have domain sizes of two. The order of
the cases in the case base, however, is not significant: irrespective of their order,
the algorithm produces the same Decision Diagram.

A newly-retained case can easily be incorporated incrementally into the De-
cision Diagram. In essence, this involves running just the inner for-loop in Algo-
rithm 1. However, computing and comparing slices means inserting a case into
a Decision Diagram will be slower than inserting a case into a flat case base.

2.2 Counting cases

We have shown how we compile a case base into a Decision Diagram, which is
usually more compact than the original case base. What remains to be shown
is how we can efficiently compute with the Decision Diagram. This involves the
propagation and aggregation of values across the graph. We begin with some-
thing simple: counting properties of the case base from its Decision Diagram.
We look at this first because doing so aids the exposition: it has the virtue of
being readily understandable and it generalises to more useful operations.
Each node n in a Decision Diagram is associated with two values, which we
refer to as its f-value and its g-value. We define f(n) inductively as follows:

1 if n = Source
f(n) :def{ > f(n') otherwise (1)
n’—mn
where n’ — n signifies an edge from n’ to n. In other words, the f-value of n
is the sum of the f-values of its ‘parents’ over all edges entering n.
We define g-values analogously, this time summing g-values of ‘child’ nodes
over all edges leaving n:

1 if n = Sink
9(n) =qef > g(n') otherwise (2)

n—mn'’
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Fig. 6. Decision Diagram with f- and g-values for counting solutions. (The asterisk is
referred to in the text.)

We can use a breadth-first ‘search’ from Source to Sink to compute f-values.
A breadth-first ‘search’ from Sink to Source will compute g-values. The com-
plexity of these procedures is linear in the size of the Decision Diagram.

Figure 6 shows f- and g-values computed in this way. For example, the node
labelled by an asterisk has three edges entering it. We obtain its f-value by
summing, for each edge entering the node, the f-values of the parent: 2+2+41 =5
(by Equation (1)). We obtain its g-value by summing, for each edge leaving the
node, the g-values of the child: 1 (by Equation (2)).

We see that f(Sink) and g(Source) both denote the number of paths (cases)
in the graph, in this case seven.

The f-value at a node n summarises information about paths from Source
to n; the g-value at n summarises information about paths from n to Sink. For
example, the node labelled with an asterisk in Figure 6 is reached by five paths
from Source and by one path to Sink.

Why would we want to compute both f- and g-values? Together, they allow
us to compute how many complete paths pass through a node n. We do this
by multiplying f(n) x g(n). For example, the number of complete paths passing
through the node labelled with an asterisk is 5 x 1 = 5. In a similar vein, we
can find out how many complete paths include a particular edge n — n’ by
multiplying f(n)x g(n’). For example, the number of complete paths that include
the edge between the node with an asterisk and Sink is 5 x 1 = 5.

This can be used to compute how many complete paths (cases) contain a
particular attribute-value pair. For example, we can determine in how many of
the rental properties Furnished = Yes. We sum the number of complete paths
that pass through each edge labelled Yes. There are three such edges, and the
value we compute is 2 x 1 +1 x 241 x 1 = 5. Assuming f- and g-values have
already been computed, the complexity of this computation is proportional to
the width of the Diagram at this point. While this may, in the worst-case, be
equal to the number of cases, it will often, as in the example, be much lower.

In the next section, we will generalise these ideas to similarity-based retrieval.



2.3 Similarity-Based Retrieval

A user’s query or probe ¢ is a set of attribute-value pairs. We may wish to
compute, for each case c in the case base, its degree of similarity to the query.
In fact, our presentation will be in terms of distance, rather than similarity. We
assume a set of local distance measures dist,, one for each attribute a € A. We
take global distance dist to be a weighted sum of the local distances:

dist(q, ¢) =gef Z wq X dist,(q.a, c.a) (3)
acA

where w, are the weights and ¢.a and c.a are ¢’s and ¢’s values for attribute a.
We will constrain weights and local distances to be in [0, 1], hence global distance
will be in [0, m], where m is the number of attributes, with 0 being the ‘best’
value and m being the ‘worst’.

We use f- and g-values to propagate and aggregate the measures of distance.
But, additionally, we associate with every edge n — n’ a value, which, following
[9], we denote by a(n — n'). It is important to appreciate that the a-value of
an edge is distinct from the attribute-value of that edge. The attribute-values are
the values that label the edges in Figures 2-5, e.g. that the Location is Chelsea.
a-values, by contrast, denote local distances.

Initially, all a-values are set to 0. For each attribute-value pair a = v in the
user’s query, we update the a-values of all edges that emanate from nodes that
are in the layer of the Decision Diagram pertaining to attribute a. Specifically, if
node n is in the layer that pertains to attribute a and there is an edge n — n’
labelled with attribute-value v’, then

a(n — n') == w, x disty (v, ") (4)

Now, f- and g-values are defined inductively as follows:

0 if n = Source

f(n) =qef min (f(n') + a(n’ — n)) otherwise (5)
0 if n = Sink

g(n) =def minl(a(n — n/) —+ g(n/)) otherwise (6)

As before, a breadth-first search from Source to Sink will compute f-values.
But, in fact, we reduce effort by starting, not from Source, but from leftmost
nodes entered by an edge with an altered a-value. We compute g-values in the
opposite direction and starting from rightmost nodes exited by an edge with an
altered a-value. The cost of computing these f- and g-values is, as before, linear
in the number of edges in the Decision Diagram.

We show an example in Figure 7. In the example, the user prefers two
bathrooms. We take dist gathrooms(2,1) = 0.5 and dist gathrooms(2,2) = 0. She
would also like to live in Pimlico, and we will assume that distrecation (Pimlico,
Chelsea) = 0.1 and dist ;ocation (Pimlico, Clapham) = 0.7. We take all weights
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Fig. 7. Decision Diagram with f- and g-values for computing distances. The user query
is Bathrooms = 2, Location = Pimlico. Where a-values are not shown, they are 0. (The
asterisk is referred to in the text.)

to be one. As shown in Figure 7, the local distances are used to update the
a-values of all edges emanating from layers 0 and 1. The a-values of all other
edges remain at 0, and are not shown in the figure in order to reduce clutter.

The node labelled by an asterisk has two edges entering it. We obtain its f-
value by taking the minimum, over each edge entering the node, of the f-values
of the parent added to the a-value of the edge: min(0.1 + 0.5,0.7 4+ 0.5) = 0.6
(by Equation (5)).

We see that f(Sink) and g(Source) both denote the distance between the
best case in the case base and the user’s query: the two properties in Chelsea
with 2 bathrooms are 0.1 distant from the query.

We can use these f- and g-values in ways that are analogous to the uses we
found in Section 2.2. We can compute the distance from the query of the best
complete path that passes through a node n by adding f(n)+ g(n). For example,
the best complete path passing through the node labelled with an asterisk has
a distance of 0.6 + 0 = 0.6 from the query. And, we can compute the distance
from the query of complete paths that include a particular edge n — n’, again
by adding f(n) 4+ a(n — n’) + g(n'). For example, the best complete path that
includes the edge labelled Yes that emanates from the node with an asterisk is
0.6 +0+ 0 = 0.6 distant from the query. And, we can compute the least distance
from the query of complete paths that contain a particular attribute-value pair.
For example, suppose we ask this question of furnished properties. For each edge
n — n’ labelled Yes, we compute f(n)+ a(n — n’) + g(n’), and we take the
minimum of these values. There are three such edges, and the value we compute
is min(0.6 +0+0,0.1+040,0.7+0+0) = 0.1.

2.4 k Nearest Neighbours

Of course, in CBR rarely would we just want to know how distant the best case
is from the user’s query. Rather, we wish to retrieve the best case, or the best k
cases, or the cases whose distances are less than some threshold 6.

Algorithm 2 is a new algorithm that efficiently retrieves the best k cases from
the Decision Diagram. An analogous algorithm can extract those cases whose



Algorithm 2 Retrieving the & best cases from a Decision Diagram.

bestK :={}
create agenda, an empty priority-ordered queue
create a path p containing just Source
cost(p) :== 0
insert p into agenda
while |bestK | < k A agenda is not empty do
remove path p from front of agenda
n := the last node in path p
if n = Sink then
insert p into bestK
else
for all edges n — n’ do
p’ := p extended by n — n’
cost(p’) := cost(p) + a(n — n’)
insert p’ into agenda where the priority of p’ is cost(p’) + g(n’)
end for
end if
end while
return bestK

distances are less than 6.

The algorithm maintains a priority-ordered queue of paths and repeatedly
extends the best of these paths until it has found k paths that reach Sink or it
has run out of paths to extend. It is like an A* search inasmuch as the items on
the queue are ordered by a combination of their path cost so far and an estimate
of the cost of the cheapest path from the current node to Sink (cost(p’) + g(n’)
in the algorithm). However, there is a crucial difference. Typically in A* the
estimated part of the cost is truly an estimate, computed by some heuristic. In
our algorithm, by contrast, it is not an estimate at all: it is the g-value, which
is the actual cost of the cheapest path from the current node to Sink.

When a path p’ is inserted onto the queue, it should be placed ahead of any-
thing already on the queue of the same or lower priority. Then the algorithm will
unerringly enumerate the best k cases from the Diagram in increasing order of
cost. And, assuming f- and g-values have already been computed, its complexity
will be approximately linear in & and m (the number of attributes): it will not
depend on the size of the Diagram or the number of cases.

3 Efficiency Experiments

We compiled Decision Diagrams from four case bases: Travel, Laptops, Cameras
and Lettings. Prior to compiling, we ordered the attributes by ascending domain
size. Characteristics of the case bases and the corresponding Decision Diagrams
are given in Table 1. We see from the table (row F) that between 83% and
94% of these case bases are repetitions of the same attribute-value pairs. In
the Decision Diagrams, this redundancy is reduced to between 68% and 80%



Table 1. Characteristics of case bases and corresponding Decision Diagrams.

Travel Laptops Cameras Lettings

Case Bases

# of cases 1470 693 210 794
# of attributes 8 14 9 6
Domain sizes — smallest 4 2 5 2

— largest 839 438 165 175

— average 119 37 35 46
# of attribute-value pairs 11760 9702 1890 4764 (A)
# of distinct attribute-value pairs 954 520 317 273 (B)
Size as text file (kb.) 132 105 15.8 431 (C)
Decision Diagrams
# of edges 3771 2598 1006 1100 (D)
Width — at narrowest point 4 2 5 4

— at widest point 1387 438 195 601

— average 471 186 112 183
Size as serialised Java object (kb.) 301.5 230.5 99.6 62.7 (E)
Build time (ms.) averaged over 10 runs 1156 718 156 266
Comparison
Redundancy in case base (A — B as % of A) 92%  90% 83% 94% (F)
Redundancy in DD (D — B as % of D) 5%  80% 68% 5% (G)
Size saving (D as % of A) 2%  28% 53% 23% (H)
Size cost (E as % of C) 228% 220%  630%  145% (1)

(row G). In terms of the representation of attribute-value pairs, the Decision
Diagrams save between 23% and 53% of the representation of the case base (row
H). However, because Decision Diagrams are more complex data structures, with
greater space overheads, their memory footprint is larger than that of a case base
in a text file. In two of the case bases, the footprint doubles in size; in one it is a
little less than double; in another it is considerably more (row I). However, none
of the footprints is unreasonable: all are less than 302kb (row E).

In fact, for each case base, we built two Decision Diagrams. In one we dis-
allowed ‘merging’ of nodes, hence these Diagrams are like the one depicted in
Figure 2. In the other, we allowed ‘merging’, as explained in Algorithm 1, hence
these Diagrams are more like the one depicted in Figure 3. It is the latter Dia-
grams that are characterised in Table 1. (The characteristics of the former are
basically the same as the characteristics of the case bases themselves, e.g. they
have uniform width which is, at every point, the same as the number of cases.)

Recall that we refer to Diagrams using their average width. So the two
Travel Decision Diagrams (one without and one with ‘merging’) are referred
to as DD(1470) and DD(471); the two Laptops Decision Diagrams are DD(693)
and DD(186); the two Cameras Decision Diagrams are DD(210) and DD(112);
and the two Lettings Decision Diagrams are DD(794) and DD(183).
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To evaluate efficiency, we ran experiments to compare the number of opera-
tions and the times needed to compute twenty nearest neighbours. We used the
leave-one-in methodology: each case in the case base is taken in turn and used
to form queries. From a given case, we form all queries that comprise just one
attribute-value pair taken from the case; then we form all queries that include
two attribute-value pairs from the case; and so on until we form a query that
involves using all the attribute-value pairs from the case. Hence, the number of
queries is "C7 + ™Cy + -+ + ™C,,, where m is the number of attributes. In
the histograms (Figures 8 and 9), we have columns for each query size and also
columns (the rightmost) for all queries taken together, irrespective of size.

The queries are evaluated by three different systems. The first, denoted kNN,
is an implementation of the nearest neighbours algorithm applied to the original
case base: it does a linear search through all the cases of the case base, but it
includes a degree of caching to give it a fairer chance against Decision Diagrams.
The second system uses the Decision Diagram in which merging is disallowed,
and the third system uses the Diagram in which merging is allowed.

Operation counts and timings both have well-recognised weaknesses as ways
of comparing the efficiency of different algorithms. We hope by including both
counts and times that the weaknesses of using one are compensated for by using
the other. In any case, both sets of results tell much the same story.

In Figure 8 we show, for each system on each case base, the number of
operations needed to compute the global distance between the query and every
case in the case base. Hence, we are counting the number of local distances that
the systems compute and the number of addition operations needed to aggregate
the local distances into global distances. In these operation counts, we exclude
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Fig. 9. Average time (ms.) by query size and for all queries.

any consideration of retrieving the best k cases. We did this because the different
systems (kNN on the one hand and Decision Diagrams on the other hand) use
such different ways of retrieving the winning cases that we could not find a fair
basis for comparison in terms of operation counts. However, retrieval is included
in the timing results reported in Figure 9 below.

We see in Figure 8, as we would expect, that the narrower Diagrams always
perform fewer operations than the other two systems. Taken over all queries,
irrespective of size, the narrower Decision Diagrams perform 67%, 68%, 30%
and 85% fewer operations than kNN on Travel, Laptops, Cameras and Lettings
respectively. Interestingly, Decision Diagram performance is much less variable
over different query sizes than is kINN performance.

In Figure 9 we show, for each system on each case base, the time in millisec-
onds needed to retrieve the twenty nearest neighbours of the query. Hence, we
are measuring how long it takes to compute distances and to retrieve the twenty
winning cases. The figures used are averages over ten runs.

The Figure shows that the narrower Decision Diagrams are never outper-
formed, but there is a handful of query sizes where kN NV is competitive on some
of the case bases. Taken over all queries, irrespective of size, the narrower De-
cision Diagrams take 46%, 64%, 25% and 79% less time than kNN on Travel,
Laptops, Cameras and Lettings respectively.



4 Concluding Discussion

We have shown two uses of the f- and g-values in Decision Diagrams: efficiently
propagating and aggregating counts and distances. But the values can be gen-
eralised further for even greater flexibility; this is the way Decision Diagrams
are presented in [9]. There it is shown that the f- and g-values can be drawn
from any semiring. In [9], a semiring is defined as a set of values S containing
different elements 0 and 1, and two operations on S, @ and ®, that satisfy
the following properties: @ is associative and commutative with identity 0 (i.e.
a®bdc)=(adb)Pc,adb=0bPaand a® 0 = a); ® is associative and
commutative with identity 1 (i.e. a® (b ®¢) = (a®b) ® ¢, a ®b =b® a and
a®1 =a); 0is a null element (i.e. a ® 0 = 0); and ® distributes over & (i.e.
a® (b®dc)=(a®b)® (a®c)). It is important to note that 0 and 1 are special
elements of set .S; they are not necessarily the integers 0 and 1.
Then, in general, f- and g-values are defined as follows

1 if n = Source

T =det { D (f(n')®a(m’ — n)) otherwise (7)
1 if n = Sink

9(1) =def { P (a(n — n')@g(n')) otherwise (8)

Initially, prior, e.g., to the imposition of user preferences, a-values are 1.

In Section 2.2, where we were counting properties of the case base, we were
using the following: S = N, the natural numbers (including zero); 0 = 0; 1 = 1;
® = +; and ® = x. Equations (1) and (2) are instantiations of Equations (7)
and (8) where ® = x and the a-value of every edge is 1.

One way of viewing what we were doing in Section 2.3, where we were using
distance measures, is: S = [0, m], the real numbers between 0 and m, where m
is number of attributes; 0 = m; 1 = 0; @ = min; and ® = +.! You can see
that Equations (5) and (6) are special cases of Equations (7) and (8). What this
also means is that Algorithm 2, our new algorithm for efficiently extracting best
paths from a Decision Diagram, can be used for many semirings. The changes
required are that path costs be initialised to the semiring’s 1 element and, where
addition occurs in Algorithm 2, it be replaced by the semiring’s ® operator.
However, the semiring must additionally satisfy the addition-is-max property
[9]: for all a,b € S either a® b = a or a®b = b. This property ensures that there
is a total order on S, which is necessary for ordering elements on the queue.

The great advantage of this generalisation is that the same framework (and,
indeed, the same software) can be used in multiple ways, requiring only a change

! In fact, strictly, in order to satisfy the requirement that the O element (in this
case, m) be a null element (i.e. a ® 0 = 0), we cannot let ® = +. Instead, we let
® :ﬁ, where —T— is simply addition in which the result is not allowed to exceed z:

T j— Y =def Min(z + y, 2). —n|Z does have m as its null element. However, this nicety
plays no part in our software because, the way we are computing with local distances,
they will never sum to more than m.



of semiring. For example, suppose we wished to do exact-matching, instead of
using distance measures. In other words, we want to find cases that ezactly match
the attribute-values in the user’s query. We need only switch to the following
semiring: S = {true, false}; 0 = false; 1 = true; & = V; and ® = A.

In our software, we allow the nodes of the Decision Diagram to have multiple
f- and g-values, based on possibly different semirings, so that we can simulta-
neously compute and store different consequences of the user’s query.

In ongoing work, we are using Decision Diagrams to build recommender sys-
tems. We believe that the efficiency and flexibility of the Diagrams give an ideal
foundation. For example, a number of recommender systems now use a two-stage
approach, in which an exact-matching stage precedes an inexact-matching stage
(e.g. [7]); as we have explained, both forms of matching are supported by Deci-
sion Diagrams. Entropy-based approaches to question selection (e.g. [4]) rely on
dynamically counting cases, in the light of incrementally-supplied user prefer-
ences; as we have shown, counting is efficient in Decision Diagrams; incremental
processing is also easy. Explanations of retrieval failure are also important, es-
pecially in systems that use exact matching (e.g. [6]). Although not described
here, we have generalised the ideas in [1] to allow us to efficiently support com-
putations related to retrieval failure.
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