
Denoising Dictionary Learning Against Adversarial Perturbations

John Mitro, Derek Bridge, Steven Prestwich
{j.mitro, d.bridge, s.prestwich}@insight-centre.org

Insight Centre for Data Analytics
Department of Computer Science
University College Cork, Ireland

Abstract

We propose denoising dictionary learning (DDL), a simple
yet effective technique as a protection measure against adver-
sarial perturbations. We examined denoising dictionary learn-
ing on MNIST and CIFAR10 perturbed under two different
perturbation techniques, fast gradient sign (FGSM) and ja-
cobian saliency maps (JSMA). We evaluated it against five
different deep neural networks (DNN) representing the build-
ing blocks of most recent architectures indicating a successive
progression of model complexity of each other. We show that
each model tends to capture different representations based
on their architecture. For each model we recorded its accu-
racy both on the perturbed test data previously misclassified
with high confidence and on the denoised one after the recon-
struction using dictionary learning. The reconstruction qual-
ity of each data point is assessed by means of PSNR (Peak
Signal to Noise Ratio) and Structure Similarity Index (SSI).
We show that after applying (DDL) the reconstruction of the
original data point from a noisy sample results in a correct
prediction with high confidence.

Introduction
The observation of adversarial perturbations indicated in the
seminal work by (Szegedy et al. 2013), is formulated as
an attack against DNN models (Papernot et al. 2016b). It
describes a mechanism for devising noise taking into ac-
count the models’ output. This misbehavior is described as a
high confidence involuntary misclasification on the models’
part, which could potentially undermine the security of en-
vironments where these models are deployed. We examined
five DNN models, (i) multilayer perceptron (MLP), (ii) con-
volutional neural network (CNN), (iii) auto-encoder (AE),
(iv) residual network (RNet), (v) hierarchical recurrent neu-
ral network (HRNN), of varying complexity and topology, in
order to identify how they respond under adversarial noise.

We investigate and visualize which parts of the data max-
imize the output of the model and verify whether those areas
are contaminated under these perturbation attacks. Further-
more, we propose denoising dictionary learning as a mea-
sure of protection against adversarial perturbations. It ex-
hibits desirable properties such as robustness (Gregor and

Copyright c© 2018, Association for the Advancement of Artifi-
cial Intelligence (www.aaai.org). All rights reserved. To appear in
AAAI18 workshop.

Figure 1: Deep neural network models tested against adver-
sarial perturbations (Veen 2016).

leCun 2010), (Kavukcuoglu, Ranzato, and LeCun 2010) and
flexibility (Szlam, Gregor, and LeCun 2012), (Thom, Rapp,
and Palm 2015) since it can be incorporated in any super-
vised learning algorithm (Mairal et al. 2008). Furthermore, it
can operate without the presence of noisy samples which in-
dicates a common use case in adversarial attacks where only
the test data are perturbed and presented to the model. In
comparison to (Wang et al. 2016) denoising dictionary learn-
ing has the ability to recover signals from heavily noised
samples, moreover, it does not render the data unreadable
compared to (Wang et al. 2016) which performs a non in-
vertible transformation. After the transformation the data are
deemed noninterpretable therefore it would require the stor-
age of both datasets, prior to and after the transformation,
for interpretability of the results. This not only increases
the storage space but is also computationally inefficient in
real world scenarios. Current DNN models can be easily ex-
ploited by a varying number of different attacks (Papernot et
al. 2016c), (Grosse et al. 2016), (Moosavi-Dezfooli, Fawzi,
and Frossard 2015), (Carlini and Wagner 2016), (Robin-
son and Graham 2015), (Narodytska and Kasiviswanathan

ar
X

iv
:1

80
1.

02
25

7v
1

 [
st

at
.M

L
]

 7
 J

an
 2

01
8

2016), (Sethi and Kantardzic 2017), some of them require
knowledge of the intrinsic structure of the model (Good-
fellow, Shlens, and Szegedy 2014) while others can oper-
ate without any prior knowledge of the loss function of the
model (Papernot et al. 2016a). These perturbations can be
categorized in three categories. 1. Model specific perturba-
tions, 2. White-box perturbations, 3. Black-box perturba-
tions. It is important to notice that there might be an overlap
between different perturbation techniques. For the experi-
ments conducted in this study two adversarial perturbation
attacks have been utilized. The first one called fast gradient
sign (Goodfellow, Shlens, and Szegedy 2014), described as
the gradient of the loss of the model multiplied by a scalar.
The second one is called jacobian saliency map (Papernot et
al. 2015) and is exploiting the forward derivative rather than
the cost function emitting information about the learned be-
havior of the model. The differentiation is applied with re-
spect to the input features rather than the network param-
eters. Instead of propagating gradients backwards it prop-
agates them forward which permits to find those pixels in
the input image that lead to significant changes in the net-
work output. Our contributions in this study are two fold.
First, we provide an intuitive explanation of the main build-
ing operations or components of DNN, how they operate and
how they can be utilized to build more complex models. In
addition, we describe which components remain unchanged
and how they might cause adversarial perturbations. Finally,
we provide a defense mechanism against adversarial pertur-
bations based on sparse dictionary learning to alleviate the
problem.

Theoretical Background
In the following Section we provide the necessary informa-
tion required to understand how DNN operate given their
basic building blocks. Based on that information we show
how to construct more complex models and identify the
main problematic components leading to adversarial pertur-
bations. The “Adversarial Perturbations” Section describes
two well known adversarial perturbations utilized during the
experiments indicating which components are harnessed in
order to devise the perturbations. Finally, the “Dictionary
Learning” Section describes in detail how the proposed de-
fense mechanism is devised, constructed and how it operates
to reverse the effect of the perturbations.

Deep Neural Network Components
Each of the models illustrated in Figure 1 is color coded
in order to denote the different building components. Each
block describes a different operation. Here we provide a for-
mal representation of each models’ structure starting from a
model as simple as a mulitlayer perceptron (MLP) up until
to an LSTM unit. An (MLP) with one hidden layer can be
described as a function f : Rd → Rp where d is the size
of the input vector ~x and p is the size of the output vector
~y = f(~x). Using matrix notation we formulate it as:

~y = α(W(`) α (W(`−1) ~x + ~b(`−1)) + ~b(`)) (1)
where α(·) is the activation function. Setting h(~x) =

α(W(`−1) ~x + ~b(`−1)) we can rewrite the above equation

as:
~y = α(W(`) h(~x) +~b(`)) (2)

On the same notion we can extend Equation 1 to accommo-
date for convolutional operations. Recall that a convolution
is defined as:

f ∗ g(x) =

∫
Ω

f(y) g(x− y) dy (3)

For the discrete case of a 1D signal the formulation is:

y[n] = f [n] ∗ g[n]

=

∞∑
u=−∞

f [u] g[n− u]

=

∞∑
u=−∞

f [n− u]g[u]

(4)

This can be extended to 2D as follows:

y[m,n] = f [m,n] ∗ g[m,n]

=

∞∑
u=−∞

∞∑
v=−∞

f [u, v] g[m− u, n− v]
(5)

Replacing Equation 5 with Equation 2 we get the represen-
tation for the `(th) convolutional hidden layer:

~h
(`)
ij = α((W(`) ∗ ~x)ij +~b

(`)
j) (6)

We can easily extend the formulation of a convolutional
layer to define auto-encoders which could be described as a
succession of hidden layers mapped first into a latent space
~z instead of the original space ~x and finally with an inverse
transformation restored to the original space:

~z = α(W(`)~x+~b(`))

~̃x = α(W(`)T~z +~b(`))
(7)

Even residual networks (He et al. 2015) and their residual
building block shown in Figure 2.

Figure 2: Residual network building block.

can be reconstructed from Equation 2 as follows:

~h(`) = α((W(`) α (W(`−1) ~x + ~b(`−1)) + ~b(`))+~x) (8)

Notice that the bias term ~b is optional and in most recent
residual network architectures is omitted.

Finally, recurrent neural networks as a building block in-
troduce two new concepts. The concept of time and memory.

Time could be easily described as a feed forward network
unfolded across the time axis. Memory permits the network
to share states across the different hidden layers.

~h(t) = α(W(xh)~x(t) + W(hh)~ht−1 +~b(h))

~h(t) = α(W~x(t) + U~h(t−1))
(9)

The hidden state ~h(t) at time step t represents a function of
the input ~x(t) modified by a weight matrix W added to the
hidden state of the previous time step ~h(t−1), multiplied by
its own hidden to hidden state matrix U, otherwise known
as a transition matrix, and similar to a Markov chain. The
weight matrices are filters that determine the amount of im-
portance to accord to both the present input and the past
hidden state. LSTMs, first introduced by (Hochreiter and
Schmidhuber 1997), can be described as a collection of gates
with additional constraints. An LSTM layer is described as:

~i(t) = α(W(ix)~x(t) + W(ih)~h(t) +~b(i))

~g(t) = α(W(ix)~x(t) + W(ih)~h(t−1) +~b(i))

~f (t) = α(W(fx)~x(t) + W(fh)~h(t−1) +~b(f))

~o(t) = α(W(ox)~x(t) + W(oh)~h(t−1) +~b(o))

~c(t) =~i(i) � ~g(t) + ~c(t−1) � ~f (t)

~h(t) = α(~c(t))� ~o(t).

(10)

In this section we wanted to demonstrate how complex
DNN models can be constructed starting from MLP up
to LSTMs. Even though the different components might
require some changes when transitioning from one DNN
model to the other, usually three of them remain consistent.
Those refer to (a) the loss function, which is the categorical
cross entropy in Equation 11 for all five models, (b) the acti-
vation function ReLU, (c) the optimization process resulting
in a variant of gradient descent (Kingma and Ba 2014).

We believe that is this combination that is responsible
for the phenomenon of adversarial perturbations. Examin-
ing closely each building block we realize that DNN mod-
els resemble linear models since most of the components ei-
ther are a result of, or describe a linear transformation. This
would explain the high confidence in misclassified examples
since linear models also have the tendency to extrapolate
to unseen data points with high confidence. Unfortunately,
the loss function does not help either, in this situation, since
eventually any differential loss has the potential to emit in-
formation on which parts of the input should be altered ac-
cordingly in order to maximize a particular output target.
This information can be exploited by an adversary. Finally,
any optimization process requiring small steps towards the
direction of the local minimum such as gradient descent or
variants will result in a process where small changes gradu-
ally lead to overall bigger effects. It is these small changes
that the adversaries exploit in order to devise the perturba-
tions.

Adversarial Perturbations
In this section we provide a short description and formula-
tion of the adversarial perturbations utilized during the ex-
periments. First, we present (FGSM) which is the gradient

of the loss ∇~xL(~x, ~y) with respect to the input ~x multiplied
by a constant ε defined as:

ε∇~xL(~x, ~y) = − 1

N

N∑
n=1

∇~xLy(n) lnα(~x(n))

+ (1− y(n)) ln(1− α(~x(n)))

(11)

where α(~x) describes the output of the neural network given
input ~x. The final perturbed sample for an input ~x is ~x +
ε∇~xL(~x, ~y). Second, we present (JSMA) in the following
three steps. (i) Compute the forward derivative ∇~x∗f(~x∗).
(ii) Construct the saliency map Σ based on the derivative.
(iii) Modify an input feature m by ε. The adversary’s’ ob-
jective is to craft an adversarial sample ~x∗ = ~x + δ~x such
that the final output of the network results in a misclasi-
fication f(~x∗) = ~̂y 6= ~y where fn describes the deriva-
tive of one output neuron. Reformulating it as an optimiza-
tion problem we have the following objective minδ~x ‖δ~x‖
s.t. f(~x + δ~x) = ~̂y. The forward derivative of a DNN for a

given sample is essentially the Jacobian learned by the neu-
ral network ∇f(~x) =

[
∂fn(~x)
∂xm

]
m=1...,M,n=1,...,N

, where m

denotes the input feature and n denotes the output of neuron
n.

Next compute the saliency map based on the forward
derivative. Saliency maps convey information which pixel
intensity values should be increased in order for a specific
target t to be misclassified by the neural network t 6= y(~x)
where y(~x) denotes the true label assigned to input ~x. The
saliency map Σ(~x, t) is defined as:

Σ(~x, t)m =

{
0 if ∂ft(~x)

∂xm
< 0 or

∑
n 6=t

∂fn(~x)
∂xm(

∂ft(~x)
∂xm

) ∣∣∣∑n 6=t
∂fn(~x)
∂xm

∣∣∣ (12)

The first line rejects components with negative target deriva-
tive or positive derivative on all other classes. The second
line considers all other forward derivatives. In summary,
high saliency map values denote features that will either in-
crease the target class or decrease other classes significantly.
Increasing those feature values causes the neural network to
misclasify a sample into the target class.

Dictionary Learning
In summary, dictionary learning could be deconstructed into
the following three principles. (i) Linear decomposition,
(ii) sparse approximation, and (iii) dictionary learning. Lin-
ear decomposition asks the question whether a signal ~y can
be described as a linear combination of some basis vectors
and their coefficients. Given a signal ~y ∈ RN and a ma-
trix D ∈ RM×N of N vectors [d]Nn=1, the linear decom-
position of ~y described by D is such that ~y = D~s + ~ε =∑N
n=1

~dn~sn + ~ε where ~s ∈ RN represent the coefficients
and ~ε is the error. Sparse approximation on the other hand
refers to the ability of D to reconstruct ~y from a set of sparse
basis vectors. When D contains more vectors than samples,
i.e., N > M , then it is called a dictionary and its vectors
are referred to as atoms. Since ~y = D~s + ~ε, has multiple

solutions for ~s. It is usually accustomed to introduce dif-
ferent types of constraints, such as, for instance, sparsity
or others, in order to allow the solution to be regularized.
The decomposition of ~y under sparse constraints is formu-
lated as arg min~s ‖~y − D~s‖22 s.t. ‖~s‖1 ≤ T , where T is a
constant. There exist a plethora of algorithms to deal with
this problem, some utilize greedy approaches such as or-
thogonal matching pursuit (OMP) (Pati, Reziifar, and Krish-
naprasad 1993) or `1-norm based optimizations such as ba-
sis pursuit (Chen, Donoho, and Saunders 1998), least-angle
regression (Efron et al. 2004), iterative shrinkage threshold-
ing (Daubechies, Defrise, and Mol 2004) which guarantee
convex properties.

OMP proceeds by iteratively selecting the atoms, i.e., the
columns in a dictionary with corresponding nonzero coeffi-
cients ~s ∈ RN computed via orthogonal projection of ~y on
D that best explain the current residue ~ε = ~y −D~y. Mainly
the optimization process is a two step approach alternating
between OMP and dictionary learning. As we mentioned the
goal of dictionary learning is to learn the dictionary D that
is most suitable to sparsely approximate a set of signals as
it is shown in Equation 15. This non-convex problem is usu-
ally solved by alternating between the extraction of the main
atoms, which is referred to as sparse coding or sparse ap-
proximation step, and the actual learning process which is
referred to as the dictionary update step. This optimization
scheme reduces the error criterion iteratively. There are sev-
eral dictionary learning algorithms, such as maximum like-
lihood (ML), method of optimal directions (MOD), and K-
SVD for batch methods, and online dictionary learning and
recursive least squares (RLS) for online methods, which are
less expensive in computational time and memory than batch
methods.

Next we will formulate the problem of dictionary learn-
ing from corrupted samples and demonstrate its ability as
a defense mechanism against adversarial perturbations. For-
mally, the problem of image denoising is described as fol-
lows:

~y = ~x+ ~ε (13)

~y is our measurements, ~x is the original image and ~ε is the
noise. The objective is to recover ~x from our noisy mea-
surements ~y. We can reformulate our problem as an energy
minimization problem also known as maximum a posterior
estimation.

E[~x] = ‖~y − ~x‖22 + Pr(~x) (14)

‖~y−~x‖22 refers to the relation to the measurements and Pr(~x)
is the prior. There are a number of different classical priors
from which we can choose.

• Smoothness λ‖L~x‖22
• Total variation λ‖∇~x‖21
• Wavelet sparsity λ‖W~x‖1

Utilizing sparse representations for image reconstruction we
can rewrite Pr(~x) = λ‖~s‖0 for ~x ≈ D~s. This could be

translated visually to the following operation’s:

(
y

)
︸︷︷ ︸
~y ∈ RM

=

(
d1 d2 · · · dN

)
︸ ︷︷ ︸

D ∈ RM×N

s1

s2

...
sN

︸ ︷︷ ︸

~s ∈ RN , sparse

Learning a dictionary of atoms can be viewed as an op-
timization equation derived from two parts. The first part
refers to the reconstruction of the original signal and the sec-
ond part refers to the sparsity.

min
~sn,D∈C

N∑
n=1

1

2
‖ ~yn −D~sn‖22 + λφ(~sn) (15)

Where φ(~s) = ‖~s‖0 is the `0 pseudo-norm and φ(~s) =
‖~s‖1 is the `1 norm. How the optimization problem works
is as follows. We formulate and solve a matrix factorization
problem after we have extracted all overlapping 8×8 patches
of ~y. The factorization problem is formulated as follows:

min
~sn,D∈C

N∑
n=1

1

2
‖~yn −D~sn‖2F︸ ︷︷ ︸

reconstruction

+λφ(~sn)︸ ︷︷ ︸
sparsity

1

2
‖Y −D~sn‖2F + λ‖~sn‖1

where λφ(~sn) = ‖~s‖1
such that Y = [~y1, . . . , ~yn] and ~s = [s1, . . . , sn].

(16)

Notice that different constraints adhere on D and ~s depend-
ing on the matrix factorization approach. For instance if
PCA is selected as a solution to the factorization problem
then D should be orthonormal and ~sT orthogonal. Other-
wise if non negative matrix factorization is selected then D
and ~s should be non negative. The optimization for dictio-
nary learning is formulated as follows:

min
D∈C

f(D) = E~x[ξ(~y,D)]

≈ lim
n→∞+

1

N

N∑
n=1

ξ(~yn,D)

where min
D∈C

f(D) = min
D∈C

1

N

N∑
n=1

ξ(~yn,D)

C , D ∈ RM×N | ∀n = 1, . . . , N s.t. ‖dn‖2 ≤ 1

ξ(~y,D) , min
~s∈RN

1

2
‖~y −D~s‖22 + λ‖~s‖1.

(17)

In the following section we provide the description for
OMP and dictionary learning algorithms utilized in the ex-
periments. Regarding Algorithm 1, at the current iteration
t, OMP selects the atom α̂ that produces the strongest de-
crease in the residue. This is equivalent to selecting the atom
that is most correlated with the residue. An active set, Q i.e.,
nonzero, is formed, which contains all of the selected atoms.

In the following step the residue ε is updated via an orthog-
onal projection of ~y on D. Finally, the sparse coefficients of
~s are also updated according to the active set Q.

Algorithm 1 Orthogonal matching pursuit algorithm.
min~s∈RN ‖~y −D~s‖22 s.t. ‖~s‖1 ≤ T
Q = ∅
for t = 1 to T do

Select the atom that reduces the objective
α̂← arg mint∈Qc{min~s ‖~y −DQ∪t~s‖22}
Update the active set: Q← Q ∪ α̂,
Update the residual via orthogonal projection:
~ε← (I−DQ(DT

QDQ)
−1

DT
Q)~y

Update the coefficients: ~sQ ← (DT
QDQ)

−1
DT
Q~y

end for

As for Algorithm 2 the sparse coding step is usually the
one which is carried out by orthogonal matching pursuit de-
scribed in Algorithm 1.

Algorithm 2 Dictionary optimization algorithm.
Require: D ∈ Rm×n, λ ∈ R

A = 0,B = 0
for t = 1 to T do

Draw yt
st ← arg mins∈Rn

1
2‖yt −Dt−1s‖22 + λ‖s‖1, .

Sparse Coding
At ← At−1 + sts

T
t ,

Bt ← Bt−1 + yts
T
t

Dt ← arg minD∈C
1
N

∑N
n=1(1

2‖yn − Dsn‖22 +
λ‖sn‖1)
end for

Methodology
In this study we trained five different models for 100 epochs,
from multilayer perceptrons to hierarchical LSTMs with a
batch size of 32, on two different datasets, MNIST and CI-
FAR10 whose distributions are presented below.

Figure 3: T-SNE embedding of MNIST (left) and CIFAR10
(right).

Each model has been trained and its accuracy has been
recorded on the clean test data as well as on the adversarial
one. Moreover, we represent visually the distributions for

each dataset and how they change accordingly before and
after the adversarial attacks in Figure 4. Notice that in real
world datasets such as CIFAR10 the shift of the distribution
is almost unnoticeable which demonstrates the severity of
adversarial attacks undermining the security of neural net-
works. The first row contains the qq-plot along with its den-
sity plot for MNIST before (a) and after (b) the adversarial
perturbation while the second row contains the same infor-
mation for CIFAR10.

(a) (b)

Figure 4: Probability density function for MNIST (a) and
CIFAR10 (b) before and after the adversarial perturbation

We also demonstrate visually which are the most vulner-
able parts in regards to the top predictions that each neu-
ral network has learned in order to differentiate two similar
data points belonging in the same category in Figure 7 for
MNIST and Figure 9, Figure 5 and Figure 6 for CIFAR10.

Finally, we propose dictionary learning as a defense
mechanism against adversarial attacks. We demonstrate its
ability on two different adversarial attacks and record the re-
sults in Table 1 and Table 2, which clearly shows that, in
overall, each model achieves higher classification accuracy
on the perturbed datasets after utilizing dictionary learning
to reconstruct the original data from the perturbed samples.
One of the advantages of dictionary learning is that it can
operate regardless of the presence of perturbed or noisy sam-
ples. This implies that the dictionary D can be learned either
from the extracted patches of the perturbed samples or from
the clean patches of the non perturbed train data. This could
be useful in environments where we do not know a priory
the attack or the method used to generate the perturbed data.
Another advantage of dictionary learning and sparse coding
is the fact that it can be embedded in any supervised learning
algorithm without any severe restrictions. In the particular
case of DNN the dictionary D can be easily learned from
the weights W of an auto-encoder model for instance.

Furthermore, the computational complexity of dictionary
learning is much lower compared to (Wang et al. 2016) since
the dictionary can be learned during training time avoiding
the overhead in invoking a non invertible transformation dur-
ing test time. This means that whenever a prediction is re-
quired from the model, a non invertible and computationally

(a) (b)
Figure 4a: OMP dictionary, MNIST (a) & CIFAR10 (b).

expensive transformation has to be performed in advance.

Experiments

Evaluation

The experiments in this study utilized five DNN models that
resemble as close as possible real world application architec-
tures composed of multiple layers such as, dropout and batch
normalization to avoid over-fitting. We deliberately avoided
DNN models composed of only convolutional layers which
seem to be more error prone to adversarial attacks. The de-
scription of the hyper-parameters for each model is provided
in Table 3. Each model has been evaluated on two differ-
ent datasets perturbed using two different perturbation tech-
niques (FGSM) and (JSMA). After the evaluation of dictio-
nary learning as defense mechanism against adversarial per-
turbations we found that is able to withstand the attacks and
provide good results in terms of accuracy for each model on
the reconstructed datasets. During training for consistency
we utilized Adam (Kingma and Ba 2014) as the optimizer
for all the models. We proceeded by perturbing the test set
Y ∈ RM×N once for FGSM Y†, and once for JSMA Y?,
where we tested each model equivalently on Y,Y†,Y?, and
recorded their accuracies in Table 1 and Table 2. For each
image ~y ∈ Y we extracted a set of overlapping 8×8 patches
which were used to learn the dictionary D and its coeffi-
cients ~s for each dataset as it is shown below.

Next we extracted patches from the noisy samples Y† and
Y?, applying orthogonal matching pursuit described in Al-
gorithm 1 reconstructing the original samples ~y ∈ Y. For
each sample we evaluated its reconstruction error utilizing
mainly two different metrics. The first one is referred to
as peak to signal noise ratio (PSNR) and is formulated as
PSNR = 10 log10(max(~y)2

MSE), where max(~y) refers to the
maximum pixel value of the image ~y and MSE refers to the
mean square error. The second one is structural similarity in-
dex (SSIM) and is formulated according to SSIM(x, y) =

(2µxµy+c1)(2σxy+c2)
(µ2

x+µ2
y+c1)(σ2

x+σ2
y+c2) where x, y here represent windows

of size N × N , µ represents the average of a window de-
pending on the subscript, σ2 is the variance for each window
and σxy is the co-variance between x and y. Finally, c1 and
c2 are constants in order to stabilize the division with weak
denominators.

Results
The results are summarized in Table 1 and Table 2 as well as
in Figure 5 through Figure 9. Table 1 describes the results for
all five models by evaluating their accuracy on MNIST and
CIFAR10, on the actual test data, on the perturbed one after
the FGSM perturbation attack and finally on the denoised
samples recovered through denoising dictionary learning.
The choice of atoms was based on a heuristic selection and it
resulted in 38 atoms for MNIST and 2 atoms for CIFAR10.
Although we suspect that the overall results could be im-
proved by utilizing Bayesian hyper-parameter selection for
the choice of atoms. Table 2 equivalently describes the re-
sults for the actual test data, perturbed under the JSMA per-
turbation attack and the denoised one recovered through dic-
tionary learning.

Table 1: Classifier accuracy against FGSM with noise inten-
sity, ε = 0.3

Dataset MNIST CIFAR10

Perturbed 7 3 Denoised 7 3 Denoised

Classifier

MLP 98.39% 12.80% 82% 60% 11% 55.60%
ConvNet 99.35% 79.90% 90.46% 77.90% 15.06% 68.29%
AutoEnc 99.34% 77.60% 89.37% 70.56% 13.63% 67.76%
ResNet 93.79% 1.95% 74.27% 76.11% 0.089% 70.06%
HRNN 98.90% 23.02% 82.52% 64% 15.75% 58.41%

Table 2: Classifier accuracy against JSMA.
Dataset MNIST CIFAR10

Perturbed 7 3 Denoised 7 3 Denoised

Classifier

MLP 98.39% 53.02% 60% 60% 52.77% 57.63%
ConvNet 99.35% 79.90% 93.85% 77.90% 14.59% 67.23%
AutoEnc 99.34% 62.02% 91.47% 70.56% 56.83% 64.76%
ResNet 93.79% 38.16% 61.12% 76.11% 56.87% 60.16%
HRNN 98.90% 52.65% 63.21% 64% 56.43% 61.21%

Table 3: Hyper-parameters for DNN models
MLP ConvNet AutoEncoder ResNet HRNN

Dropout 0.5 Dropout 0.5 Conv2D: filters=16, kernel=3 Conv2D LSTM: units=256
BatchNorm 2 × Conv2D: filters=32, kernel=3 MaxPool: size=2 BatchNorm TimeDistributed
Dense 784 MaxPool: size=2 Conv2D: filters=32, kernel=3 ReLU LSTM: units=256

ReLU Dropout 0.25 MaxPool: size=2 Basic Block Reshape: 16×16
Dropout 0.2 2 × Conv2D: filters=64, kernel=3 Conv2D: filters=32, size=3 3×Residual Block LSTM: units=256
BatchNorm MaxPool: size=2 MaxPool: size=2 Dropout 0.25 Dropout 0.25
Dense 256 Conv2D: filters=128, kernel=3 Conv2D: filters=64, kernel=3 BatchNorm Dense 10

ReLU Conv2D: filters=256, kernel=3 Conv2D: filters=128, kernel=3 ReLU Softmax
Dense 10 Dropout 0.25 UpSample: size=2 GlobalAveragePooling
Softmax Dense 512 Conv2D: filters=32, kernel=3 Dense 10

Dropout 0.5 UpSample: size=2 Softmax
Dense 10 Conv2D: filters=3, kernel=3
Softmax Conv2D: filters=1, kernel=5

Dense 10
Softmax

As it is evident all five models achieve higher accuracy on
the recovered samples compared to the perturbed version.
We present the top classifications for the convolutional and
residual network model along with their misclasification on
the perturbed data under the FGSM attack on MNIST, as
well as, their class activation maps which describe the sensi-
tivity of the classifier on different parts of the input. In Fig-
ure 9 and Figure 5 we present the top misclasification for the
convolutional and residual network along with the activation
maps for CIFAR10 perturbed under the JSMA attack. In Fig-
ure 7 we show the top classifications for the auto-encoder
model along with their activation maps under the FGSM at-
tack on MNIST. Equivalently in Figure 6 we show the top
misclasification for the auto-encoder on CIFAR10 under the
JSMA attack. As you might have noticed the multilayer per-
ceptron does not have feature maps similar to a convolu-

tional network therefore it is impossible to derive the class
activation maps. Similarly the same holds true for the hierar-
chical recurrent model. We noticed that the results from the
residual network were not as resistant as we would have ex-
pected due to its skip connections. What we can infer from
Figure 5 is that models who have the ability to focus on very
small details of the overall image seem to be more suscepti-
ble to adversarial perturbations. In Figure 8 we demonstrate
an example of a reconstructed image equivalently for each
dataset and perturbation attack.

Conclusion

In this article, a defense mechanism is proposed against ad-
versarial perturbations based on dictionary learning sparse
representations for gray scale (MNIST) and color images
(CIFAR10). The method has been evaluated against five
modern deep neural network architectures which compose
the building blocks for the majority of recent neural network
architectures. The choice of dictionary learning is based
solely on its properties. The resulted dictionary is a redun-
dant, over-complete basis, and it provides a more efficient
representation than a normal basis. It is robust against noise,
it has more flexibility for matching patterns in the data, and it
allows a more compact representation. Future directions in-
clude the extension and comparison of the current work with
deep denoising models such as gated Markov random fields
and deep Boltzmann machines on the ImageNet dataset.

Figure 5: Misclasification for ResNet CIFAR10.

Figure 6: Misclasification for AutoEenc. on CIFAR10.

Figure 7: Misclasification for AutoEenc. on MNIST.

(a)

(b)

Figure 8: Denoising on MNIST, FGSM (a) & CIFAR10,
JSMA (b).

Figure 9: Misclasification for ConvNet CIFAR10.

Figure 10: Misclassification for ResNet on MNIST.

References
Carlini, N., and Wagner, D. 2016. Towards Evaluating the
Robustness of Neural Networks. arXiv.

Chen, S.; Donoho, D.; and Saunders, M. 1998. Atomic
decomposition by basis pursuit. SIAM Journal of Computer
Science 20:33—61.
Daubechies, I.; Defrise, M.; and Mol, C. D. 2004. An it-
erative algorithm for linear inverse problems with a sparsity
constraint. Communications of Pure Applied Mathematics
LVII:1413–1457.
Efron, B.; Hastie, T.; Johnstone, I.; and Tibshirani, R. 2004.
Least angle regression. Annal of Statistics 32:407–499.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explain-
ing and Harnessing Adversarial Examples. arXiv.
Gregor, K., and leCun, Y. 2010. Learning fast approxima-
tions of sparse coding. ICML 9.
Grosse, K.; Papernot, N.; Manoharan, P.; Backes, M.; and
McDaniel, P. 2016. Adversarial Perturbations Against Deep
Neural Networks for Malware Classification. arXiv.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Deep Residual
Learning for Image Recognition. arXiv.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural Computation 8(9):32.
Kavukcuoglu, K.; Ranzato, M.; and LeCun, Y. 2010. Fast
Inference in Sparse Coding Algorithms with Applications to
Object Recognition. arXiv.
Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv.
Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G.; and Zisserman, A.
2008. Supervised dictionary learning. NIPS 15.
Moosavi-Dezfooli, S.-M.; Fawzi, A.; and Frossard, P. 2015.
DeepFool: a simple and accurate method to fool deep neural
networks. arXiv.
Narodytska, N., and Kasiviswanathan, S. P. 2016. Simple
Black-Box Adversarial Perturbations for Deep Networks.
arXiv.
Papernot, N.; McDaniel, P.; Jha, S.; Fredrikson, M.; Celik,
Z. B.; and Swami, A. 2015. The Limitations of Deep Learn-
ing in Adversarial Settings. arXiv.
Papernot, N.; McDaniel, P.; Goodfellow, I.; Jha, S.; Celik,
Z. B.; and Swami, A. 2016a. Practical Black-Box Attacks
against Deep Learning Systems using Adversarial Exam-
ples. arXiv.
Papernot, N.; McDaniel, P.; Sinha, A.; and Wellman, M.
2016b. Towards the Science of Security and Privacy in Ma-
chine Learning. arXiv.
Papernot, N.; McDaniel, P.; Swami, A.; and Harang, R.
2016c. Crafting Adversarial Input Sequences for Recurrent
Neural Networks. arXiv.
Pati, Y. C.; Reziifar, R.; and Krishnaprasad, P. S. 1993. Or-
thogonal matching pursuit: recursive function approxima-
tion with applications to wavelet decomposition. Conf. on
Signals, Systems and Computers 40–44.
Robinson, L., and Graham, B. 2015. Confusing Deep Con-
volution Networks by Relabelling. arXiv.
Sethi, T. S., and Kantardzic, M. 2017. Data Driven Ex-
ploratory Attacks on Black Box Classifiers in Adversarial
Domains. arXiv.

Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2013. Intriguing proper-
ties of neural networks. arXiv.
Szlam, A.; Gregor, K.; and LeCun, Y. 2012. Fast approxima-
tions to structured sparse coding and applications to object
classification. arXiv.
Thom, M.; Rapp, M.; and Palm, G. 2015. Efficient dictio-
nary learning with sparseness-enforcing projections. Inter-
national Journal of Computer Vision 114(2-3):168–194.
Veen, F. v. 2016. The Neural Network Zoo. http://www.
asimovinstitute.org/neural-network-zoo/.
Wang, Q.; Guo, W.; II, A. G. O.; Xing, X.; Lin, L.; Giles,
C. L.; Liu, X.; Liu, P.; and Xiong, G. 2016. Using
Non-invertible Data Transformations to Build Adversary-
Resistant Deep Neural Networks. arXiv.

