
RecTree Centroid:
An Accurate, Scalable Collaborative Recommender

Jerome Kelleher and Derek Bridge1

Abstract. We present a Collaborative Recommender that uses a
user-based model to predict user ratings for specified items. The
model comprises summary rating information derived from a hierar-
chical clustering of the users. We compare our algorithm with several
others. We show that its accuracy is good and its coverage is maxi-
mal. We also show that the algorithm is very efficient: predictions can
be made in time that grows independently of the number of ratings
and items and only logarithmically in the number of users.

1 Introduction

Recommender Systems advise their users about which items (prod-
ucts, services or information) to consume. In Content-Based Recom-
menders, users articulate their requirements and the system matches
them against item descriptions. In Collaborative Recommenders,
which are the subject of this paper, no descriptions of requirements
or items are needed; the system bases its recommendations on in-
formation about the preferences of related users. Standardly, if there
are n users, U = {u : 1 . . . n}, and m items, I = {i : 1 . . . m},
preferences are represented using a n ×m matrix r of ratings. User
u may explicitly supply his/her rating of item i, ru,i, or the system
may obtain an implicit rating from observing user actions. A rating
is typically represented by a Boolean or by a value from a numeric
scale. Note that it is possible and common that ru,i = ⊥, signalling
that the user has not yet rated that item. The user who is interacting
with the recommender, ua ∈ U , is called the active user. In the task
of prediction, the recommender system uses r to compute a predicted
rating pua,i for active user ua and an item i for which rua,i = ⊥.

Collaborative Recommenders differ in the amount of work they
do off-line, in advance of making predictions, and the amount of
work they do on-line, when making predictions. Off-line, the sys-
tem builds a model from r: the ratings data is mined for association
rules, Bayesian networks or other structures that can capture regu-
larities in the data. The model might be characterised as being either
user-based, where the model captures relationships between users
who have similar ratings, or item-based, where the model captures
relationships between items that have been rated similarly. Then, on-
line, predictions are made from the model.

In model-based systems, most of the work is done off-line; then,
on-line, predictions are made using the model to the exclusion of
the ratings matrix r. For example, Breese et al. [1] describe a sys-
tem that learns a Bayesian network with a node for each item, arcs
for item dependencies and decision trees at each node to encode the
conditional probabilities. For on-line predictions, the items that the

1 Department of Computer Science, University College Cork. Email:
jt.kelleher|d.bridge@cs.ucc.ie

active user has rated are used as evidence variables, and the item-to-
be-predicted, i, is the query variable.

In memory-based systems, little, if any, work is done off-line; pre-
dictions are made directly from r. An example of a purely memory-
based system is the Exhaustive Recommender we describe in Sec-
tion 3. It uses neigbourhood-based methods. Using the data in r,
the active user’s neighbourhood of recommender partners, i.e. the set
of users who have rated i whose ratings are most highly correlated
with the active user’s ratings, is obtained. Then a prediction is com-
puted from a weighted combination of the neighbours’ ratings. Both
of these computations happen on-line.

There are many ways of combining model-based and memory-
based approaches. In Section 3, for example, we describe the pos-
sibility of an Exhaustive Recommender that pre-computes a matrix
of all user-user correlations. This gives it a user-based model that
speeds up the on-line process of finding neighbours. The approach
still qualifies as memory-based because most prediction effort hap-
pens on-line and because, once the neighbours have been found, pre-
dictions are still computed directly from r.

In this paper, we propose a new approach that is purely model-
based. A user-based model is built using clustering techniques; pre-
dictions are made using summary information about the clusters.

In Section 3, we describe a memory-based recommender. We show
how it can be improved in Section 4. Section 5 explains the cluster-
ing algorithm we use in this work. Then in Section 6, we describe
our new model-based algorithm, which uses summary information
about the clusters for efficient, accurate predictions. Section 7 com-
pares our results with those from related work. Before any of that, in
Section 2 we explain how we have evaluated the different algorithms.

2 Evaluation

We compare the performances of the different algorithms that are
described in this paper using two datasets: the MovieLens dataset
(www.grouplens.org) and the PTV dataset2. Some of the char-
acteristics of these datasets are reported in Table 1. The MovieLens

Table 1. Dataset Characteristics

Dataset No. of users No. of items No. of ratings
MovieLens 943 1682 100000
PTV 2341 8164 60000

dataset has been cleaned up to include only users who have rated at

2 We are grateful to ChangingWorlds for supplying us with this dataset. The
original dataset contains 60666 ratings but we removed 666 at random to
give a round number of ratings.

least 20 movies; the PTV dataset has not. Both are sparse, but the
PTV dataset is by far the sparser.

We have converted all ratings to z-scores in advance of using them
in the experiments described in this paper. This conversion gives a
very small improvement in the accuracy of the Exhaustive Recom-
mender (Section 3) and significant improvements for the systems de-
scribed in Sections 4 and 6.

In each experiment, the dataset is split into two disjoint sets, the
training set (80%) and the test set (20%). All results are subject to
five-fold cross validation, each time using a different 80/20 split. To
model the on-going use of a recommender system, experiments use
different total numbers of ratings. We report the effects on the accu-
racy, coverage and efficiency of the algorithms.

• To measure prediction accuracy, we use Mean Absolute Error
(MAE). MAE is calculated by averaging the absolute difference
between the algorithm’s predicted rating and the user’s actual rat-
ing (from the test set).

• Prediction coverage is measured by counting the number of times
the algorithm fulfils a prediction request and reporting this as a
percentage of the overall number of prediction requests made.

• To give an implementation-independent measure of prediction ef-
ficiency, we count Total Prediction Operations (TPO). We explain
exactly which operations are counted in Sections 3 and 6.

If a system receives widespread use, the numbers of users, items
and ratings are likely to be continually growing and to become ex-
tremely large. Hence, we are particularly interested in the scalability
of Collaborative Recommenders. It may be that improvements in,
for example, accuracy are not justified if they result in substantially
longer response times.

In this vein, we will also report the worst-case time complexity and
space complexity (which will include the size of the model, if there is
one) for the on-line components of the algorithms. And, we will also
discuss how easy it is to introduce new users, new items and new rat-
ings. Some model-based approaches have particular problems with
new data. There may be no efficient, incremental way of revising the
model to take account of the new data. During the period between the
arrival of the new data and the periodic re-generation of the model,
the value of the system to its users may be diminished.

3 Exhaustive Recommender

The Exhaustive Recommender is a memory-based system whose per-
formance is used as a baseline in comparisons with the other al-
gorithms. We described it briefly in the previous section. Here we
present some of the details.

In [5], the Exhaustive algorithm was subjected to an extensive em-
pirical investigation using the MovieLens dataset. The decisions that
we make below about the details of the algorithm (the choice of Pear-
son correlation as the similarity formula, the weighting factor of 50,
the choice of 20 as the size of the neighbourhood and the choice of
prediction formula) are based on the best results reported in [5]. We
use the exact same settings in all our other experiments using differ-
ent algorithms. Because of the time it would take, we have not veri-
fied that these are the best settings for these other algorithms. These
other algorithms generally out-perform the Exhaustive algorithm. So
the effect of not finding the best settings is to understate the extent
to which they out-perform the Exhaustive algorithm. More question-
ably, we use the same settings in our experiments on the PTV dataset.

The Exhaustive algorithm works as follows:

• The similarity wua,u between the active user ua and each other
user u 6= ua who has rated i is computed using Pearson Correla-
tion [5].

wua,u =̂

∑m

i=1
(rua,i − r̄ua)(ru,i − r̄u)

σuaσu

×
s

50
(1)

r̄ denotes a mean value and σ denotes a standard deviation, and
these are computed on co-rated items only. If a user has given the
same rating to all the co-rated items, his/her standard deviation
is zero and wua,u is then defined to be zero (J.Herlocker, pers.
comm. 2002). Following [5], the Pearson Correlation coefficient
is weighted by a factor of s

50
where s is the number of co-rated

items. This decreases the similarity between users who have fewer
than 50 co-rated items (who, even if their ratings are very similar,
are likely to be poor predictors).

• After computing the similarity between ua and each other user u
who has rated i, the 20 nearest neighbours are selected, i.e. the 20
for whom wua,u is highest.

• The predicted rating pua,i is computed from the neighbours’ rat-
ings of i as follows:

pua,i =̂ r̄ua +

∑k

u=1
(ru,i − r̄u)wua,u

∑k

u=1
wua,u

(2)

where k is the number of neighbours (in our case, 20). This is
essentially a weighted average of the neighbours’ ratings for item
i (weighted by their similarities). If pua,i goes out of the range
of legal ratings, it is rounded to the nearest end-point of the range
(J.Herlocker, pers. comm. 2002).

In fact, we improve the prediction efficiency of this algorithm by
doing some off-line computation. We pre-compute a matrix of user-
user similarities (Equation 1). This means that, on-line, we need only
find the 20 nearest neighbours who have rated i and compute their
prediction for i using Equation 2.

The accuracy, coverage and efficiency results for running this al-
gorithm (and our other two algorithms) on the two datasets are shown
in Figures 1– 6. Figures 1 and 4 show that accuracy is good when the
dataset becomes less sparse. But Figures 2 and 5 show that cover-
age is not maximal. The real problem with this algorithm, however,
shown by Figures 3 and 6, is that it does not scale well. In these two
plots, we are counting the following operations: we count as one op-
eration the check to see whether the user has rated i; then we count
all the comparisons needed to find the 20 nearest neighbours; and
then we count each rating that we aggregate when making the final
prediction.

The algorithm must compare the active user with all other users,
of which there are n, checking each to see whether they have rated i.
Finding the k nearest neighbours will require nk comparisons in the
worst case. The prediction formula then requires k steps, to compute
the average rating for i over the k neighbours. We are assuming here
that Equations 1 and 2 are reformulated to allow incremental com-
putation, so means and standard deviations can be computed without
multiple passes through the co-rated items. The total cost is therefore
n(1 + k) + k. Taking k to be constant, the time complexity is O(n).
(Without the user-user matrix, it is O(nm).)

The space complexity is the cost of storing matrix r, which is
O(nm), plus the cost of storing the user-user matrix, which is
O(n2).

Irrespective of whether a user-user matrix is pre-computed or not,
this algorithm easily incorporates new users, new items and new rat-
ings. We simply update r and, if applicable, we make incremental
updates to the similarities in the user-user matrix.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

M
A

E

Ratings

exhaustive
ex_defaults

centroid

Figure 1. MovieLens Error Results

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

co
ve

ra
ge

Ratings

exhaustive
ex_defaults

centroid

Figure 2. MovieLens Coverage Results

4 Exhaustive with Defaults Recommender

There are occasions when the Exhaustive Recommender cannot
make a prediction. We can increase coverage by providing a strat-
egy for making default predictions in such cases. A simple strategy
is, when no prediction can be made, predict i’s average rating in the
dataset.

But, in fact, we have found that both coverage and accuracy
can be increased if the default strategy is invoked more often. It
is well-known that non-personalised predictions can be more accu-
rate in cases where the recommender does not have enough ratings
to provide an accurate personalised recommendation. Our Exhaus-
tive with Defaults Recommender makes default predictions when-
ever the number of neighbours who have rated i falls below a min-
imum threshold. This, of course, includes the case where no neigh-
bour has rated the item. In our experiments, the threshold we have
found to be best is actually 20. In other words, if the algorithm fails

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

T
P

O

Ratings

exhaustive
ex_defaults

centroid

Figure 3. MovieLens Efficiency Results

to find a full set of 20 neighbours who have rated i, it uses a default
prediction.

The default prediction for i, def i, is defined as follows:

def i =̂ avg i(U) (3)

where for set of users S,

avg i(S) =̂

{

∑

{u∈S:ru,i 6=⊥}
ru,i

|{u∈S:ru,i 6=⊥}|
if ∃u ∈ S : ru,i 6= ⊥

⊥ otherwise
(4)

This is simply the average rating for i over all users who have rated
i.

Exhaustive with Defaults is an algorithm with maximal coverage.
The only cases in which a prediction will still fail to be made are
those where no one in the whole dataset has rated i.

The default predictions (averages) can be pre-computed, and are
easily updated incrementally when new ratings arrive. The on-line
cost of providing any default prediction is, therefore, O(1). So, the
overall time and space worst case complexities of Exhaustive with
Defaults are no different from those of Exhaustive.

The advantage of including results for this algorithm in this paper
is that this algorithm provides fairer accuracy and efficiency com-
parisons with our RecTree Centroid Recommender (Section 6). Both
Exhaustive with Defaults and RecTree Centroid have maximal cover-
age. This means that accuracy and efficiency results can be compared
for exactly the same sets of predictions.

We turn now to the RecTree Centroid algorithm. We first explain
the way we cluster the data, and then we explain the RecTree Cen-
troid Recommender itself.

5 The Clustering Algorithm

The clustering algorithm which we have chosen is called RecTree.
It builds a binary tree of clusters; it was previously used to cluster
users in [3]. RecTree recursively invokes the k-means clustering al-
gorithm. In k-means, elements are repeatedly assigned to clusters on
the basis of their similarity to the cluster centre. We use Pearson Cor-
relation, Equation 1, to compute similarities. The centres are initially

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000

M
A

E

Ratings

exhaustive
ex_defaults

centroid

Figure 4. PTV Error Results

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000

co
ve

ra
ge

Ratings

exhaustive
ex_defaults

centroid

Figure 5. PTV Coverage Results

seeds, provided as parameters. As the algorithm iterates, the centres
become the centroids of the existing clusters, where a centroid is a
new ‘dummy’ element formed by averaging ratings within the clus-
ter. Specifically, the centroid of cluster c that contains users Uc gives
rating centc,i to item i:

centc,i =̂ avg i(Uc) (5)

which uses Equation 4 to compute the average rating, but we com-
pute this only for the users in cluster c.

We consider k-means to have converged when the size of all clus-
ters is the same on two successive iterations. We found empirically
that convergence usually takes about 15 iterations. To ensure that the
algorithm always terminates, even on pathological data, we imposed
a complementary stopping criterion in the form of an iteration limit
of 20.

The RecTree algorithm calls k-means to split successive datasets

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000

T
P

O

Ratings

exhaustive
ex_defaults

centroid

Figure 6. PTV Efficiency Results

into child clusters. It returns a binary tree of clusters, where the root
represents the whole dataset. The algorithm splits the dataset if its

Algorithm 1 RecTree(parent, elements) [3]
v← new node having elements as its contents
make v a child of parent
if elements size > max. leaf cluster size and no. of internals <
max. no. of internals then

centroid← centroid of elements
seed1 ← the member of elements with min. correlation with
centroid
seed2 ← the member of elements\{seed1} with min. correla-
tion with seed1
clusters← k-means(elements, {seed1, seed2})
for all c in clusters do

c-elements← elements in cluster c
RecTree(v, c-elements)

end for
end if
return v

size is greater than a pre-specified maximum leaf cluster size. It se-
lects seeds using the ‘two mutually well separated centres policy’
[3]. The first seed is the element within the dataset whose distance
is greatest from the dataset centroid. The second seed is the element
which is most distant from the first seed.

RecTree terminates when the sizes of all leaf nodes are less than
or equal to the maximum leaf cluster size and so no more subdivi-
sion is required. In some cases, however, when data is not suitably
distributed, growth in the tree can be ‘lopsided’. This is where a very
small and a very large cluster are created at each invocation. In this
case we prevent the construction algorithm from over-partitioning the
data by limiting the number of internal nodes (in our case to 2000).
Because of this, the algorithm makes no guarantee about the size of
any leaf cluster; but if the algorithm terminates normally, leaf clusters
will have at most the maximum leaf cluster size number of elements.

For each user, we store a reference to the leaf cluster to which
s/he is ultimately assigned. This allows O(1) access to that cluster.
For each cluster (including interior clusters), we store the cluster’s

� ������� ��	
� ������� ��	
� ������� ��	
� ������ �	

� �������
� ������� ���
� ������� ���
� ������� ��� � �!�"�# $�%
� &�!�'�%
� (�!�)* �# +,%
� +�!� �# &�%

Figure 7. Extract from a RecTree

centroid (Equation 5) to give O(1) access time to this information.
We can obtain some idea of the cost of walking and storing the

RecTree if we make some assumptions about the shape of the tree
that gets built. Let us idealise and assume that the two children of
a node share equally the users of their parent, i.e. the two children
are the same size, which is half their parent size. At any level of
the tree, this will give clusters whose sizes differ by at most one.
For n users and a maximum leaf cluster size of max , the height of
the tree h is dlog

2
n − log

2
maxe, which is O(log2n). There are

2h+2h−1+. . .+1 nodes in the tree, which, given that h is O(log
2
n),

is O(n). There are dn/maxe (or, equivalently, 2h) leaf clusters.

6 RecTree Centroid Recommender

The RecTree Centroid Recommender is a model-based recom-
mender. Predictions are obtained from the RecTree, which is used
as a user-based model.

Suppose the active user ua is a member of leaf cluster c. An ini-
tial prediction of ua’s rating for item i is the average rating of i for
the users in cluster c, as given by the centroid. However, from Equa-
tions 5 and 4, we know that if no one in the cluster has rated i, then
centc,i will be ⊥. In this event, the RecTree Centroid Recommender
visits the parent of cluster c and returns the rating for i given by the
parent’s centroid (if this is not ⊥). The algorithm climbs the RecTree
until it finds a centroid whose rating for i is not ⊥ or until it reaches
the root, in which case it returns the rating contained in the centroid
for the root (whether this be ⊥ or not).

For example, suppose that the active user belongs to the right-hand
leaf cluster in Figure 7. The ratings stored at this node are the average
ratings from the users that belong to this cluster. In particular, for
items 1, 3 and 4, the average ratings are 0.5, -1.4 and 1.2 respectively;
no-one in this cluster has rated item 2. If we want to predict the active
user’s rating for item 4, for example, we simply return the rating
stored at this node, i.e. 1.2. If we want to predict a rating for item 2,
we ascend the tree until we find a node at which there is a rating
for item 2 (or until we reach the root). Recall that a parent node
in the RecTree represents the union of the users associated with its
two child nodes. There is thus a greater likelihood that the parent’s
centroid will have a rating for i that is not⊥. In Figure 7, for example,
the parent has a rating for item 2 because some of the users associated
with the left-hand child have rated item 2; so the prediction is 0.2.
The root node represents all users and so the root node’s centroid
will only have no rating for i if no one in the entire system has rated
item i.

It might be argued that, while this algorithm is certainly a collabo-
rative one (since the preferences of other users are used to construct
the RecTree), it is a less personalised recommender: all users in the
same cluster receive the same predictions for items they have not
rated.

For the MovieLens dataset, we found experimentally that a maxi-
mum leaf cluster size of 300 gave the best results, and so (although

it may not be best for PTV) this is what we used for both MovieLens
and PTV in Figures 1– 6.

Figures 1 and 4 show that RecTree Centroid actually has lower
error than the Exhaustive Recommender for the sparsest datasets
and only has higher error as ratings grow beyond a certain point;
it is never more accurate than Exhaustive with Defaults but it is still
highly competitive. The use of z-scores makes a big difference: when
we used raw ratings (not plotted), error was much higher.

Coverage (Figures 2 and 5) is maximal, the same as Exhaustive
with Defaults. In both algorithms, the only circumstance in which a
prediction will not be made is if no user has rated item i.

But RecTree Centroid is very efficient. In Figures 3 and 6, the plot
(which counts tree node accesses) lies slightly above the x-axis. It
takes constant time to access a user’s leaf cluster. Then, in the worst
case, the algorithm climbs the whole tree, from the leaf cluster to the
root. So the worst case time is governed by the height of the tree,
dlog

2
n − log

2
maxe. Importantly, then, prediction time is indepen-

dent of the number of ratings (and items), and it is less than linear in
the number of users (O(log2n)).

Space requirements are higher than for the Exhaustive algorithms,
but still acceptable. We must store the RecTree (2h +2h−1 + . . .+1
nodes, where h is the height of the tree). Each node stores just its
centroid, containing one rating per item, and so is of size m. We
must also store each user with a reference to his/her leaf cluster.

New users, new items and new ratings can all be accommodated
efficiently on-line. A new user must be inserted into the most appro-
priate leaf cluster. We would do this by walking down the tree from
the root to a leaf, at each step selecting the child for which the corre-
lation between the new user’s ratings and the child’s centroid is the
greater. This will take time bounded by hm.

A new item simply requires that each centroid’s vector of ratings
be extended in length. A new rating (for an existing user and item)
requires updates to the centroid rating for that item in the user’s leaf
cluster and its ancestors. These updates can be done incrementally.
However, this will not have any affect on the predictions we would
make for the user who supplied the new rating: s/he is still in the
self-same cluster. To counter this, if a user supplies a large number of
new ratings, then it may be better to delete the user from his/her leaf
cluster (incrementally updating centroids in the tree appropriately),
and then treat this user as a new user. This gives the possibility, if
this user’s ratings are now much changed, that s/he will be placed
into one of the other clusters. Of course, this is still not as good as
re-generation of the tree, since it assumes that the existing clusters
are basically correct. Periodic re-generation will still be necessary.

7 Comparisons with Related Work

We look in particular here at work that uses clustering for Collabo-
rative Recommenders. In [2], we claimed that clustering can be used
for two different purposes: partitioning and grouping. In partition-
ing, a dataset is divided so that search can be confined to one of the
partitions; in grouping, a dataset is divided and then a composite ob-
ject (a ‘super-user’ or ‘super-item’) acts as proxy for the members of
the group.

In [2], we described the Clustered Users algorithm, which is a
neighbourhood-based algorithm that uses the RecTree to partition
users. Its search for neighbours is confined to users who are in the
same leaf cluster as the active user. Hence, all equations in Section 3
are used, but with u ranging only over members of c, the active user’s
leaf cluster.

In [2], we describe how Clustered Users makes non-personalised

predictions in certain cases. When we construct the RecTree, it is
possible that some leaf clusters will have very few members; if they
have fewer than a certain threshold (in our case 10), we call that
node of the tree an outlier node. During prediction, if the user’s leaf
cluster is an outlier node, then we ascend the RecTree one level and
use the centroid rating from the parent. This is similar to the recom-
mender algorithm described by Chee [3]. Our results can be seen in
[2]. Clustered Users is much less accurate, has much lower coverage
but is more efficient than Exhaustive. However, Clustered Users is
not competitive with RecTree Centroid: its accuracy, coverage and
efficiency are worse across all dataset sizes.

We have recently investigated a variant of Clustered Users. We
abandon the idea of outlier nodes, and instead we incorporate ideas
from Exhaustive with Defaults and RecTree Centroid. Specifically,
if the number of neighbours (still drawn from the active user’s leaf
cluster) who have rated i falls below a minimum threshold, we in-
voke the RecTree Centroid method of finding a rating, i.e. we climb
the RecTree until we reach either the root or a node whose centroid
includes a rating for i other than⊥. We have not published the results
for this algorithm because, unfortunately, it is not competitive. On the
positive side, its coverage is maximal. But, its accuracy is worse than
Exhaustive with Defaults and RecTree Centroid for all dataset sizes.
And, while it remains more efficient than Exhaustive algorithms, the
fact that it is still memory-based means that it is much slower than
RecTree Centroid.

Breese et al. describe a model-based approach in which users are
clustered probabilistically [1]. A prediction takes the form of a prob-
ability for a rating. It is not possible to compare their results directly
with ours because they use different datasets and different evalua-
tion measures. One observation, however, is that their clustering al-
gorithm performed relatively poorly compared with their Bayesian
network and memory-based approaches. Since our clustering method
does well against our memory-based method, this gives us reason to
hope that we have found a better way of using clustered data.

Fisher et al. use just the k-means algorithm to group users [4].
They store the centroids of the clusters, but they have no tree as we
do. To make predictions, their Clustered Pearson Predictor treats the
centroids as super-users and seeks neighbours only among the super-
users. This was the most accurate and scalable of the algorithms they
used. But, their results are given for a different dataset from ours and
are not plotted for different total numbers of ratings. So, again, no
direct comparison can be given. One observation is that their dataset
contained 60000 users for which they created 5000 clusters; to find
neighbours therefore requires at least 5000 operations. If we had built
a RecTree for this dataset (assuming a maximum leaf cluster size of
300 again), the height of the tree, which determines prediction effort,
would have been dlog

2
60000 − log

2
300e ≈ 7.

It is possible, of course, to cluster items instead of, or as well as,
users. O’Connor & Herlocker partition items using Pearson correla-
tion [7]. To make a prediction for item i, the Exhaustive algorithm is
applied only to co-rated items from i’s partition. O’Connor & Her-
locker expected accuracy and coverage to be higher, but found ex-
perimentally that this was not so, irrespective of which of several
clustering algorithms they used. Efficiency, of course, improves but
continues to take time proportional to the number of users.

In [2], we describe an algorithm we call Clustered Items in which
we group items, to produce super-items. This gives a denser dataset.
Applying the Exhaustive algorithm to this denser dataset gives ac-
curacy that is only a little worse than Exhaustive and coverage that
is slightly higher than Exhaustive. Coverage is still not maximal al-
though one could introduce default predictions to obtain maximal

coverage. As one would expect with a denser dataset, the algorithm
is far less efficient than Exhaustive.

It is possible to cluster both users and items. In [2], we plotted re-
sults for a Dual Clustered algorithm. We partitioned users first and
then grouped items into super-items. We chose this ordering to avoid
the reduction in accuracy that would occur if we were to cluster
users after their ratings for items had been ‘collapsed’ into ratings
for super-items. To make a prediction, the algorithm first finds the
item’s super-item and then applies neighbourhood-based methods to
the user’s cluster to make a prediction for the super-item. Unfortu-
nately, this was our least efficient and least accurate algorithm.

In [8], Ungar & Foster cluster users based on items, and then items
based on users; then users are clustered based on item clusters, and
items based on user clusters; and then this is repeated three times.
The item clustering can be done from data in the ratings matrix r but,
in their experiments on real CD purchase data, item clustering was
done in a content-based way, by CD artiste. Experimental prediction
results are not given.

In contrast, Kohrs & Merialdo cluster users and items indepen-
dently into two cluster hierarchies [6]. The hierarchies are produced
in a way that is highly similar to the way we build our RecTrees.
Their prediction formula is very different: they use a weighted sum
of the centroids of all nodes on the path in the user’s hierarchy from
the user’s leaf cluster to the root and all nodes on the path in the
item hierarchy from the item’s leaf cluster to the root. The weights
are based on cluster distortion, this being the sum of the distances
between ratings and the centroid rating. Results are presented for a
different dataset from ours. We regard a proper comparison between
their algorithm and ours to be an objective of our future work.

In conclusion, we have proposed two new algorithms, Exhaustive
with Defaults and RecTree Centroid. Both have maximal coverage.
Their relative usefulness, therefore, depends on the trade-off between
accuracy and efficiency: Exhaustive with Defaults is marginally more
accurate, while RecTree Centroid is hugely more efficient. In the do-
mains in which Collaborative Recommenders are used, there may
be tens of thousands, if not millions, of items and users. In domains
with these characteristics, RecTree Centroid has the greater promise:
it is likely to meet response time requirements, while still making
reasonably accurate predictions.

REFERENCES
[1] J. S. Breese, D. Heckerman, and C. Kadie, ‘Empirical analysis of predic-

tive algorithms for collaborative filtering’, in Procs. of the 14th Annual
Conference on Uncertainty in Artificial Intelligence, pp. 43–52, (1998).

[2] D. Bridge and J. Kelleher, ‘Experiments in sparsity reduction: Using
clustering in collaborative recommenders’, in Procs. of the Thirteenth
Irish Conference on Artificial Intelligence and Cognitive Science, eds.,
M.O’Neill, R.F.E.Sutcliffe, C.Ryan, M.Eaton, and N.J.L.Griffith, pp.
144–149. Springer, (2002).

[3] S. H. S. Chee, RecTree: A Linear Collaborative Filtering Algorithm,
Master’s thesis, Simon Fraser University, 2000.

[4] D. Fisher, K. Hildrum, J. Hong, M. Newman, M. Thomas, and R. Vuduc,
‘Swami: A framework for collaborative filtering algorithm development
and evaluation’, in Procs. of SIGIR, pp. 366–368, (2000).

[5] J. L. Herlocker, Understanding and Improving Automated Collaborative
Filtering Systems, Ph.D. dissertation, University of Minnesota, 2000.

[6] A. Kohrs and B. Merialdo, ‘Clustering for collaborative filtering appli-
cations’, in Procs. of CIMCA’99. IOS Press, (1999).

[7] M. O’Connor and J. Herlocker, ‘Clustering items for collaborative filter-
ing’, in Procs. of the ACM SIGIR Workshop on Recommender Systems,
(1999).

[8] L.H. Ungar and D.P. Foster, ‘Clustering methods for collaborative filter-
ing’, in AAAI Workshop on Recommendation Systems, (1998).

