
Automatic Playlist Continuation
using Subprofile-Aware Diversification
Mesut Kaya

Insight Centre for Data Analytics
University College Cork, Ireland
mesut.kaya@insight-centre.org

Derek Bridge
Insight Centre for Data Analytics
University College Cork, Ireland
derek.bridge@insight-centre.org

ABSTRACT
The ACM RecSys Challenge 2018 involves the task of automatic
playlist continuation (APC), aiming to help users to create and ex-
tend their own music playlists. In this paper, we explain teamrozik’s
approach to the Challenge. Our approach to APC is twofold: Cold-
Start-APC for short playlists and SPAD-APC for other playlists.
Cold-Start-APC is a rudimentary popularity-based recommender.
SPAD-APC treats playlists as if they were user profiles. It builds an
implicit matrix factorization model to generate initial recommen-
dations. But it re-ranks those recommendations using SubProfile-
Aware Diversification (SPAD), which is a personalized intent-aware
diversification method. The SPAD re-ranking method aims to en-
sure that the final set of recommendations covers different interests
or tastes in the playlists of the users, which we refer to as subpro-
files. We show that such subprofiles do exist within playlists and we
show that the SPAD method achieves higher precision than matrix
factorization alone.

KEYWORDS
Music Recommender; playlists; automatic playlist continuation;
diversity; subprofiles.

ACM Reference format:
Mesut Kaya and Derek Bridge. 2018. Automatic Playlist Continuation using
Subprofile-Aware Diversification. In Proceedings of the ACM Recommender
Systems Challenge 2018, Vancouver, BC, Canada, October 2, 2018 (RecSys
Challenge ’18), 6 pages.
DOI: 10.1145/3267471.3267472

1 INTRODUCTION
The emergence of online music streaming services like Spotify,
Pandora, Deezer, Apple Music and Amazon Music has increased
the value of research related to music recommendation. Although
music recommender systems often successfully recommend songs
that satisfy users, in the sense of fitting the users’ preferences, there
are still a lot of challenges to be tackled [8]. Automatic playlist
continuation (APC) is one such challenge. The aim in APC is to
help users to create and extend their own playlists.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RecSys Challenge ’18, Vancouver, BC, Canada
© 2018 ACM. 978-1-4503-6586-4/18/10. . . $15.00
DOI: 10.1145/3267471.3267472

The ACM RecSys Challenge 2018, organized by Spotify, the Uni-
versity of Massachusetts and Johannes Kepler University is all about
APC. Using datasets of playlists made available by Spotify, partici-
pants build systems to automatically predict tracks that are missing
from test playlists.

In the rest of this paper, we give an overview of the Challenge,
then describe our approach to the Challenge in detail. We explain
the resources we used and our experimental methodology, and then
give some results.

2 CHALLENGE OVERVIEW
The Challenge focuses on music recommendation, specifically au-
tomatic playlist continuation (APC) [2]. The task is to recommend
appropriate tracks to add to a playlist.

For this task, Spotify released theMillion Playlist Dataset1 (MPD),
containing 1,000,000 playlists created by Spotify users. Some sta-
tistics about the MPD can be found in Table 1. Each playlist is
represented by playlist metadata (the title, description if available,
the number of unique tracks, etc.) and the tracks in the playlist,
together with metadata about the tracks (such as the name of the
track, album and artist).

Spotify also released the Challenge Set, comprising 10,000 in-
complete playlists (i.e. some of the tracks are hidden). Specifically,
in the Challenge Set, the number of seed tracks in a playlist has
values from the set {0, 1, 5, 10, 25, 100}. Furthermore, the way in
which the seed tracks were chosen (e.g. initial tracks or random
tracks) and the availability of a playlist title mean that there are 10
different categories of playlists, with 1,000 playlists per category.
This is summarized in Table 2.

The task is to recommend 500 tracks to each of the playlists in
the Challenge Set. These recommendations are evaluated by Spotify
against the ground-truthG , i.e. the tracks that were actually hidden.
The evaluation metrics are precision@|G |, NDCG and a bespoke
measure called Clicks that is based on rank within the ground-truth,
combined by a Borda count.

However, this RecSys Challenge is split into two sub-challenges.
In the Main Challenge, participants must train their prediction mod-
els exclusively on the MPD. In the Creative Challenge, participants
are allowed to use public external data sources. Although we do not
use any external data, we build our model using the union of the
MPD and the Challenge Set. This means that our system is obliged
to compete in the Creative Challenge.2

1https://recsys-challenge.spotify.com/
2On the RecSys Challenge forum, in reply to the question “[is it] allowed to include
the information in the challenge set for the model training?”, the reply was: “The rules
say that for the main track you can only use the MPD. The challenge set is not part of
the MPD, so for the main track, the answer is ‘no’. For the creative track you can use
publicly available data and the challenge set qualifies as that — so for the creative track,

RecSys Challenge ’18, October 2, 2018, Vancouver, BC, Canada Mesut Kaya and Derek Bridge

Table 1: MPD statistics

of playlists 1,000,000
of tracks 66,346,428

of unique tracks 2,262,292
of unique albums 734,684
of unique artists 295,860
of unique titles 92,944

of unique normalized titles 17,381
of playlists with description 18,760

avg. playlist length 66.3

Table 2: Challenge Set statistics

of playlists title tracks cold-start
1000 ✓ none ✓
1000 ✓ first track ✓
1000 ✓ first 5 tracks X
1000 X first 5 tracks X
1000 ✓ first 10 tracks X
1000 X first 10 tracks X
1000 ✓ first 25 tracks X
1000 ✓ random 25 tracks X
1000 ✓ first 100 tracks X
1000 ✓ random 100 tracks X

In the next section, we explain our approach in detail.

3 OUR APPROACH
Let I be the set of all items (i.e. tracks) in the union of the MPD
Set and Challenge Set. A playlist, which we will designate by u,
is a set of items, u ⊆ I . Let title(u) be the title of playlist u, if it
has one (or ⊥ if it does not have a title). Let UMPD be the set of
playlists in the MPD andUCS be the set of playlists in the Challenge
Set; thenU = UMPD ∪UCS . The candidate items that can be added
to a given playlist u ∈ UCS are all the items in I less those that
are already in u: I \ u. We compute recommendations in one of
two ways, depending on the length of u. The first way we refer to
as the Cold-Start-APC; the second we refer to as SPAD-APC. Our
implementation is publicly available.3

We consider playlists u ∈ UCS to be cold-start playlists if they
have a title and either zero or one track; see the last column in Ta-
ble 2. We present Cold-Start-APC in Section 3.1. For the remaining
8,000 playlists inUCS , candidates are scored by a matrix factoriza-
tion algorithm and then re-ranked using a novel diversification
technique, which we call SPAD, from the first author’s Ph.D. re-
search [6]; see Section 3.2.

Before presenting details of the two approaches, we make a few
additional observations. First, we do not, in fact, use the full set of
items I . As we explain in Section 4, we exclude some items from I
to improve compute-times. Second, it follows from the formulation
given above, that we are not using any metadata, except for the title

the answer is ‘yes’.” https://groups.google.com/forum/#!topic/recsyschallenge-2018/
1F-QCl2se4E
3https://github.com/mesutkaya/SpotifyRecSysChallenge2018

of the playlist, where available (and, in fact, this is only used by Cold-
Start-APC, not by SPAD-APC). Third, since we treat playlists as sets
of items, for this prediction task we are ignoring the ordering of the
items in the playlist. There is some debate about the significance
of ordering in playlists. For example, Schedl et al. think that it is
important [8] and there are approaches that take it into account (e.g.
[1]). But according to Tintarev et al., there is actually little evidence
that the exact order of the tracks matters to users [9]. In any case,
in our solution we are not using the ordering. Fourth, we are, in
effect, treating playlists in the way that a regular recommender
would treat a user profile (and this explain why we designate them
by u). In a regular recommender, a positive-feedback-only implicit
ratings profile would just be a set of items: the ones the user likes;
in our recommender, a playlist is just a set of items.

3.1 Cold-Start-APC
We use Cold-Start-APC for the 1000 playlists in the Challenge Set
that have title only and the 1000 playlists that have a title and one
track (their first).

For each candidate i ∈ I \ u, Cold-Start-APC computes a score,
s(u, i), based on the popularity of i across the playlists inUMPD , and
recommends the 500 candidate items that have the highest scores.
To improve the scoring, we use a ‘normalization’ function provided
by Spotify which converts track titles to lowercase and removes
punctuation symbols. As shown in Table 1, 92,944 different titles
become 17,318 unique titles after normalization.

For a cold-start playlist u, the predicted score s(u, i) for a candi-
date track i ∈ I \ u is computed as follows:

s(u, i) =
∑

v ∈UMPD

1(u, i,v) (1)

In the case where u has a title but no tracks:

1(u, i,v) =

{
1 if i ∈ v and title(u) = title(v)
0 otherwise

(2)

In the case where u has a title and one track:

1(u, i,v) =


2 if i ∈ v and u ⊆ v and title(u) = title(v)
1 if i ∈ v and (title(u) = title(v) xor u ⊆ v)
0 otherwise

(3)

Note that, for some of the playlists with title only, it can be the case
that the recommender cannot recommend 500 tracks with non-zero
scores. In this case, we fill the rest of the recommendations with
the most popular tracks inUMPD .

There is no doubt that our cold-start solution is rudimentary,
and there are many ways it could be improved, perhaps especially
by using external data sources.

3.2 SPAD-APC
Our approach for the remaining 8000 playlists in the Challenge
Set, having at least 5 tracks each, is based on the first author’s
Ph.D. work [6]. We have published early versions of this work [3, 4]
but we have refined it subsequently and the description here is
based on the latest version. The goal of the work is to generate a
set of recommendations where each recommendation is relevant
but the set of recommendations is diverse. Our approach to this is
called SubProfile Aware Diversification (SPAD) and we are finding,

https://groups.google.com/forum/#!topic/recsyschallenge-2018/1F-QCl2se4E
https://groups.google.com/forum/#!topic/recsyschallenge-2018/1F-QCl2se4E
https://github.com/mesutkaya/SpotifyRecSysChallenge2018

Playlist Continuation using Subprofile-Aware Diversification RecSys Challenge ’18, October 2, 2018, Vancouver, BC, Canada

across multiple datasets, that SPAD consistently improves both
precision and diversity. This is notable because many approaches
to diversification trade-off accuracy for diversity.

It is worth asking first: are there reasons for thinking that di-
versity will be helpful for APC? Lee et al. report the results of a
user study into playlists that were generated automatically using
content-based similarity [5]. A common concern among the partic-
ipants in the user study was that consecutive tracks in the playlists
were too similar; they also complained about a lack of variety in the
playlists. Interpretations of ‘variety’ differed from user to user, e.g.
variety in terms of genres, styles, artists, etc. A tentative implication
is that users like playlists to have some diversity and, if creating
their own playlists (like the ones provided by Spotify), they might
aim to give them a level of diversity. If this tentative implication
is correct, then there are a priori reasons to try a diversification
technique in this APC Challenge.

Before explaining how we use SPAD for the task of APC, we
give an overview of SPAD in the next section.

3.2.1 SPAD. SPAD takes a greedy re-ranking approach to diver-
sification [11]. It starts with a recommendation set RS , generated
by a baselline recommender (e.g. matrix factorization). Each item
in RS has a score s(u, i), computed by the baseline recommender. In
greedy re-ranking, a ranked list of recommendations RL is built by
iteratively selecting items from RS based on an objective function
that balances their score with their diversity with respect to the
already-selected members of RL:

fobj(i,RL) = (1 − λ)s(u, i) + λ div(i,RL) (4)

SPAD is novel in the way in which it measures diversity.
In the past, the diversity of a set of recommendations was given

by the average all-pairs dissimilarity between the items in the
set. In other words, items are chosen so that they are different
from each other. More recently, under the name of Intent-Aware
Diversification, items have been chosen in such a way as to cover
the user’s interests, as revealed by her profile. Most commonly,
this is done using item features [10]. For example, if her profile
contains lots of jazz, a little punk rock, and a modest amount of
thrash-metal, then RL can be constructed from RS in a way that
preserves the distribution of interests in the profile. SPAD is a form
of intent-aware diversification but it does not rely on item features,
which are sometimes not available or may not fully represent a
user’s interests. Instead, we compute subprofiles of a user’s profile.
In a positive-feedback-only implicit ratings scenario, a profile is
just a set of items that a user likes, and a subprofile is a subset of
those items, intended to capture one of the user’s tastes or interests.

Let u be the user’s profile, let Su denote all the subprofiles of
u: each subprofile S ∈ Su is simply a subset of u, S ⊆ u. Then, the
set RS is greedily re-ranked using the objective function given as
Equation(4) with div(i,RL) = divSPAD(i,RL), where:

divSPAD(i,RL) =
∑
S ∈Su

[p(S |u)p(i |u, S)
∏
j ∈RL

(1 − p(j |u, S))] (5)

p(S |u) is estimated as:

p(S |u) =
|S |∑

S ′∈Su |S ′ |
(6)

p(i |u, S), the probability of choosing i from a set of recommen-
dations RS given subprofile S of user u, is estimated as:

p(i |u, S) =
1(i, S)s(u, i)∑

j ∈RS 1(j, S)s(u, j)
(7)

where:

1(i, S) =

{
1 if i ∈

⋃
j ∈SKNN(j)

0 otherwise
(8)

where KNN(j) is the set of j’s k-nearest-neighbours in I . In other
words, i must be a neighbour of a member of S .

What this does not yet explain is howwe compute the subprofiles.
This is the part of our work that has undergone most refinement.
Early versions are in [3, 4]. More recently, we take the following
approach. We create a candidate subprofile for each i ∈ u. The
candidate subprofile for i ∈ u contains i itself and also j ∈ u if j’s
nearest-neighbours contain i , i.e. the candidate subprofile for i is
{j |j ∈ u, i ∈ KNN(j), i , j} ∪ {i}. KNN(j) is computed by selecting
the top-k similar items to i based on a similarity score, sim(i, j),
for which here we are using cosine similarity on rating vectors.
Candidate subprofiles are pruned to a final set of subprofiles by
excluding those that are wholly contained in any of the others.
Different subprofiles can be of different lengths; the number of
subprofiles differs from user to user; but there can be no more than
|u | subprofiles. See [6] for details.

3.2.2 SPAD for APC. We take the idea of SPAD and apply it to
APC. As already mentioned, we treat each playlist u ∈ U as if it
were a user’s profile. Our baseline recommender (whose recommen-
dations get re-ranked by SPAD) is a fast alternating-least-squares
(ALS) implementation of matrix factorization for implicit and ex-
plicit datasets [7]. We chose this as our baseline because in our
previous work [4] for different datasets it was the most accurate
baseline recommender.

Ordinarily, SPAD diversifies a set of recommendations to cover
the different tastes (subprofiles) that we extract from a user’s profile.
It is not obvious that a playlist will similarly contain different tastes
and therefore not obvious that SPAD-style diversification will be of
benefit to the APC task. Evidence of the benefit is given in Section 6.

4 RESOURCES
Some of our decisions were constrained by available resources,
which are explained here.

By the rules of the Challenge, participants could submit only
one set of predictions for evaluation per day. We started working
(part-time) on the Challenge in its last three weeks, so this gave
us a very small number of opportunities to test the performance
of our approach on the Challenge Set. However, this did motivate
us to create a validation set (see next section) so that we could
test algorithm variants and find good values for hyper-parameters.
Not only was this expedient, we hope that it helped us to avoid
overfitting our solution to the Challenge Set.

We ran our algorithm on a personal laptop with a 2.5 Ghz Intel
Core i7 and 24 GiB memory. Running experiments using a laptop
for this large dataset was challenging, especially for the matrix
factorization algorithm. It took some time to prepare a daily sub-
mission to the public leaderboard. This in turn constrained the size
of validation set that we were able to work with (next section).

RecSys Challenge ’18, October 2, 2018, Vancouver, BC, Canada Mesut Kaya and Derek Bridge

It also resulted in us making a major decision. Before applying
our approach, we eliminated all tracks that appear in only one MPD
playlist. The number of unique tracks was cut from 2,262,292 to
1,189,252. Of course, this reduction in the item space improved run-
times considerably. But it has a negative effect on recommendation
accuracy: since we can never recommend the eliminated tracks, we
lose out (for resource reasons, rather than algorithmic reasons) if
those tracks ever appear in the ground truth.

5 METHODOLOGY
The baseline matrix factorization algorithm that we use has two
hyper-parameters: the number of latent factors k and a confidence
level α . SPAD also has its own hyper-parameters, which are the
number of neighbours while detecting the subprofiles (referred
to here as K1) and the number of neighbours of Equation (8) (re-
ferred to here as K2). For the re-ranking in Equation (4), there is λ,
controlling the balance between accuracy and diversity.

To find good values for these hyper-parameters, we used a valida-
tion set. We randomly selected 10,000 playlists. We kept 80% of their
tracks as part of the training data and held out 20% as validation
data. This is quite a small validation set (10,000 playlists compared
with 1,000,000); it may not be representative enough to optimize
hyper-parameter values. Its size was determined by the resources
we had available (previous section).

We used a grid search. For k , α ,K1, andK2, we tested values from
{10, 20, 30, . . . , 100}. For λ, we tested values from {0.1, 0.2, 0.3, . . . , 1.0}.
We selected the values that maximize precision, which were as fol-
lows: k = 100, α = 50, K1 = 30, K2 = 70 and λ = 0.4.

6 RESULTS
We divide this section into three: first we analyze the subprofiles
that we found in the playlists; then we give some experimental
results on the validation set; finally, we use data from the public
leaderboards to compare our team’s performance with other teams.

6.1 Subprofile Analysis
We begin by asking: do playlists actually contain sub-tastes? Or, in
other words, do playlists, when treated as if they were user profiles,
contain subprofiles? If they do not, then there is little prospect that
SPAD will work well on the APC task. We show some data here
that suggests that playlists do contain sub-tastes (subprofiles).

We applied SPAD’s subprofile detection method (explained in
Section 3.2) to the 8,000 playlists in the Challenge Set that have
at least 5 tracks. Figure 1 is a histogram showing the frequencies
of different numbers of subprofiles. In other words, it shows how
many of the 8,000 playlists contain just one subprofile, how many
contain two subprofiles, how many contain three, and so on.

If a playlist has just one subprofile, then that subprofile com-
prises the whole playlist, and this would be a playlist with no
sub-tastes. From the histogram, we see that the number of playlists
that fall into this category (i.e. ones with just one subprofile) is very
small. Perhaps surprisingly, playlists do contain sub-tastes. Four
subprofiles is most frequent, but some playlists have as many as
100.

What also matters is how long these subprofiles are, and this is
shown in Figure 2. From the histogram, we see that some are very

0

250

500

750

1000

0 25 50 75 100

Number of subprofiles

C
o
u
n
t

Number of SP

Figure 1: Number of subprofiles

0

20000

40000

60000

0 20 40 60

Length of subprofiles

C
o
u
n
t

Length of SP

Figure 2: Subprofile length

0.075

0.100

0.125

10 20 30 40 50

n

P
re

c
is

io
n
@

n

MF

SPAD

Figure 3: Precision@n on validation set by n

short: even a single song where that song is not a good enough
neighbour to other songs in the playlist for it to join their subprofile.
But most subprofiles comprise two or more tracks.

6.2 Validation set results
Here we show a few validation set results that confirm that SPAD
re-ranking provides an advantage over using just its baseline matrix
factorization algorithm.

In Figure 3, for all 10,000 playlists in the validation set, we plot
Precision@n for different values of n. It can be seen that re-ranking
the matrix factorization recommendations using SPAD always in-
creases precision over matrix factorization.

We also look at the precision for different playlist sizes and for
different numbers of subprofiles. For the 10,000 playlists in the

Playlist Continuation using Subprofile-Aware Diversification RecSys Challenge ’18, October 2, 2018, Vancouver, BC, Canada

Table 3: Creative Challenge leaderboard

rank team name RPREC RPREC rank NDCG NDCG rank Clicks Click rank Borda
1 vl6 0.2234 1 0.3939 1 1.7845 1 90
2 Creamy Fireflies 0.2197 2 0.3846 2 1.9252 4 85
3 KAENEN 0.209 3 0.3746 3 2.0482 6 81
4 cocoplaya 0.2022 7 0.3656 6 1.8377 2 78
5 BachPropagate 0.2024 6 0.3659 5 2.0029 5 77
6 Trailmix 0.2059 4 0.3703 4 2.2589 9 76
7 teamrozik 0.2055 5 0.3609 7 2.1636 8 73

0.00

0.05

0.10

0.15

0.20

0.25

5 10 25 50 100 200

Playlist length

p
re

c
is

io
n

MF

SPAD

Figure 4: Precision@10 on validation set by playlist length

0.0

0.1

0.2

5 10 25 50 100 200

Number of subprofiles

p
re

c
is

io
n

MF

SPAD

Figure 5: Precision@10 on validation set by number of sub-
profiles

validation set, Figure 4 shows the Precision@10 of the baseline and
of SPAD for playlists of up to 5 tracks, from 6 to 10 tracks, 11 to
25 tracks, 26 to 50 tracks, 51 to 100 tracks, and 101 to 200 tracks.
Similarly, Figure 5 shows the Precision@10 for the validation set but
this time showing results for playlists that have up to 5 subprofiles,
from 6 to 10 subprofiles, 11 to 25, 26 to 50, 51 to 100 and 101 to 200.

The Figures show that, as the playlist length and the number
of subprofiles increases, the amount by which SPAD outperforms
matrix factorization also increases. The more songs there are in a
playlist, the more subprofiles there are, but also the more precision
benefits from SPAD re-ranking. Arguably, the Figures also show
that for the shortest playlists, precision for both SPAD and matrix
factorization is so low that we might have benefited instead from
applying a cold-start strategy to more playlists than we did.

6.3 Challenge Set results
Among 32 teams, teamrozik came seventh in the Creative Challenge.
Table 3 shows the final leaderboard published by the Challenge
organizers, which evaluates the teams on all of the Challenge Set.

7 CONCLUSION
In this paper, we presented our approach to the ACM RecSys Chal-
lenge 2018, in which the task is automatic playlist continuation
(APC). For cold-start playlists, we used a popularity recommender.
For the remainder of the playlists, we built a model using matrix
factorization to generate sets of recommendations. But our con-
tribution is that we re-ranked those recommendations to increase
their diversity. The approach that we used for re-ranking, Sub-
Profile Aware Diversification (SPAD), is being developed in the
first author’s Ph.D. It seeks to extract subprofiles from a user’s
profile or, in this case, from a playlist, and then to ensure that the
recommendations cover those subprofiles. Using a validation set,
we showed that SPAD re-ranking results in more accurate recom-
mendations. Our analysis supports the claim that user-generated
playlists do contain subprofiles corresponding to different interests
or tastes, and trying to cover those subprofiles in the final set of
recommendations produces more accurate recommendations.

Due to resource limitations (Section 4), we excluded a large num-
ber of songs from the dataset on which we built our model. Being
unable to recommend those songs will have negatively affected
our precision results. Furthermore, in the time that we allowed
ourselves for working on the Challenge, we were not able to im-
prove the method we use for cold-start playlists. Our method is
quite rudimentary and easily improved, e.g. to use string similarity
instead of exact matching of playlist titles.

While SPADhas proven successful for the APC task, it is designed
for making recommendations in general. A music streaming service,
such as Spotify, could apply it to whole user profiles (instead of
playlists), in which case it should produce accurate and diverse sets
of recommendations, covering different tastes and interests within
the user’s profile.

ACKNOWLEDGMENTS
This paper emanates from research supported by a grant from Sci-
ence Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289
which is co-funded under the European Regional Development
Fund.

RecSys Challenge ’18, October 2, 2018, Vancouver, BC, Canada Mesut Kaya and Derek Bridge

REFERENCES
[1] Claudio Baccigalupo and Enric Plaza. 2006. Case-based sequential ordering of

songs for playlist recommendation. In Proceedings of the 8th European Conference
on Case-Based Reasoning. Springer, 286–300.

[2] Ching-Wei Chen, Paul Lamere, Markus Schedl, and Hamed Zamani. 2018. RecSys
Challenge 2018: Automatic Music Playlist Continuation. In Proceedings of the
12th ACM Conference on Recommender Systems (RecSys ’18). ACM, New York, NY,
USA.

[3] Mesut Kaya and Derek Bridge. 2017. Intent-Aware Diversification using Item-
Based SubProfiles. In Procs. of the Poster Track of the 11th ACM Conference on
Recommender Systems, Domonkos Tikk and Pearl Pu (Eds.). CEUR Workshop
Proceedings, vol-1905.

[4] Mesut Kaya and Derek Bridge. 2018. Accurate and Diverse Recommendations
Using Item-Based SubProfiles. In Proceedings of the Thirty-First International
Florida Artificial Intelligence Research Society Conference, FLAIRS 2018, Melbourne,
Florida, USA. May 21-23 2018. 462–467.

[5] Jin Ha Lee, Bobby Bare, and Gary Meek. 2011. How Similar Is Too Similar?: Ex-
ploring Users’ Perceptions of Similarity in Playlist Evaluation.. In ISMIR. Citeseer,
109–114.

[6] Mesut-Kaya. forthcoming. Subprofile Aware Diversificaton of Recommendations.
Ph.D. Dissertation. University College Cork.

[7] István Pilászy, Dávid Zibriczky, and Domonkos Tikk. 2010. Fast als-based matrix
factorization for explicit and implicit feedback datasets. In Proceedings of the
fourth ACM conference on Recommender systems. ACM, 71–78.

[8] Markus Schedl, Hamed Zamani, Ching-Wei Chen, Yashar Deldjoo, and Mehdi
Elahi. 2018. Current challenges and visions in music recommender systems
research. International Journal of Multimedia Information Retrieval 7, 2 (2018),
95–116.

[9] Nava Tintarev, Christoph Lofi, and Cynthia Liem. 2017. Sequences of Diverse
Song Recommendations: An exploratory study in a commercial system. In Pro-
ceedings of the 25th Conference on User Modeling, Adaptation and Personalization.
ACM, 391–392.

[10] Saul Vargas, Pablo Castells, and David Vallet. 2011. Intent-oriented diversity in
recommender systems. In Procs. of the 34th International ACM SIGIR Conference
on Research and Development in Information Retrieval. ACM, 1211–1212.

[11] Cai-Nicolas Ziegler, Sean M McNee, Joseph A Konstan, and Georg Lausen. 2005.
Improving recommendation lists through topic diversification. In Procs. of the
14th International Conference on World Wide Web. ACM, 22–32.

	Abstract
	1 Introduction
	2 Challenge overview
	3 Our Approach
	3.1 Cold-Start-APC
	3.2 SPAD-APC

	4 Resources
	5 Methodology
	6 Results
	6.1 Subprofile Analysis
	6.2 Validation set results
	6.3 Challenge Set results

	7 Conclusion
	References

