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Abstract

In many approaches to recommendation diversification, a rec-
ommender scores items for relevance and then re-ranks them
to balance relevance with diversity. In intent-aware diversi-
fication, diversity is formulated in terms of coverage of as-
pects, where aspects are either explicit such as movie genres
or implicit such as the latent factors found during matrix fac-
torization. Typically, the same set of aspects is used across
all users. In this paper, we propose a form of intent-aware
diversification, which we call SPAD (SubProfile-Aware Di-
versification), and a variant called RSPAD (Relevance-based
SPAD). The aspects we use in SPAD and RSPAD are subpro-
files of the user’s profile. They are not defined in terms of ex-
plicit or implicit features. We compare our methods to other
forms of intent-aware diversification. We find that SPAD and
RSPAD always improve accuracy (as measured by precision)
and diversity (as measured by α-nDCG) even though the di-
versity metric in our experiments uses explicit features but
SPAD and RSPAD make no use of them.

Introduction
It has long been recognized that it is not enough for recom-
mendations to be accurate or relevant (McNee, Riedl, and
Konstan 2006). Diversity is one response to uncertainty.
A recommender cannot be certain of a user’s short-term or
longer-term interests, both because some user profiles are
small and some, while they may not be so small, will con-
tain preferences over different kinds of items. In the face of
uncertainty, a diverse set of recommendations is more likely
to contain one or more items that will satisfy the user.

Early work, within both Recommender Systems and In-
formation Retrieval (IR), measures the diversity of a set of
items as an aggregate of the all-pairs dissimilarity of the
items within the set. Dissimilarity is measured by distance
functions over item meta-data (such as movie genres), item
ratings or latent factors. Sets of recommendations, or query
results in IR, are re-ranked by considering the marginal con-
tribution that would be made by adding an item to the result
set (Carbonell and Goldstein 1998). The assumption in this
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early work is that a set of items that are dissimilar to each
other is more likely to contain one or more items that satisfy
the user’s current needs or interests.

More recently within IR, there has been a body of re-
search into what has been called intent-aware diversifica-
tion. Intent-aware diversification seeks to include items in
a query’s result set, not on the basis of them being different
from other items in the result set, but on the basis of explic-
itly seeking to cover different interpretations of the query. In
this way, one or more of the items should cover the interpre-
tation intended by the user. Intent-aware diversification has
been adopted in Recommender Systems: instead of cover-
ing the different interpretations of an ambiguous query, the
idea analogously is to cover the different tastes or interests
revealed by the user’s profile. The most common way to
characterize a user’s tastes is as a probability distribution
over so-called aspects of the items. The same set of aspects
is used across all users.

In this paper, we propose a new intent-aware diversifica-
tion framework based on user subprofiles, rather than item
features. This is advantageous because item features, such
as genres, do not necessarily fully represent a user’s tastes or
interests and are not available in every recommendation do-
main. A subprofile is a subset of the items in a user’s profile,
each such subprofile representing one of the user’s distinct
tastes. Unlike the aspects used in earlier work, which are
global across the set of users, subprofiles differ from user to
user, making for a more personalized form of diversification.

Related Work
The dominant approach to diversification is greedy re-
ranking.

Greedy re-ranking
The greedy re-ranking approach assumes the existence of a
conventional recommender algorithm (which we will refer
to as the baseline recommender), which, for user u, pro-
duces a set of recommended items, RS, and, for each item
i in RS, a relevance score, s(u, i) — the predicted rele-
vance of recommended item i to user u. The greedy algo-
rithm re-ranks RS by iteratively inserting into ordered re-
sult list RL the item i from RS that maximizes a function,
fobj (i, RL); see Algorithm 1. fobj is usually defined as a
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Algorithm 1 Greedy re-ranking algorithm
Input: RS, set of recommendations for user u, each
with relevance score
Output: RL, ranked list containing all items in RS

1: RL ← [ ]
2: while |RS| > 0 do
3: i∗ ← argmaxi∈RS\RL fobj (i, RL)
4: delete i∗ from RS
5: append i∗ to the end of RL

6: return RL

linear combination of the item’s relevance score and the con-
tribution item i makes to the diversity of RL, div(i, RL), the
trade-off between the two being controlled by a parameter λ
(0 ≤ λ ≤ 1):

fobj (i, RL) = (1− λ)s(u, i) + λ div(i, RL) (1)
Most commonly, div(i, RL) is computed as the average

(or sum) of the all-pairs intra-list distances (ILD). The dis-
tance between items, can be calculated from meta-data such
as movie genres or book categories (Smyth and McClave
2001; Ziegler et al. 2005) or from item ratings data (Kelly
and Bridge 2006).

The final recommendation comprises the top-N members
of the re-ranked list, RL, where N < |RL|. Re-ranking
using the ILD can result in a top-N that comprises items
that are dissimilar to each other. The assumption behind this
form of diversification is that dissimilar items will address
the different interests of the user, but there is nothing in the
operation of the system to explicitly ensure this. Recent ap-
proaches, going under the name intent-aware diversification,
seek to select items that explicitly address different user in-
terests.

Intent-aware diversification
Intent-aware methods for recommendation diversification
(Vargas, Castells, and Vallet 2011; 2012; Wasilewski and
Hurley 2016) assume a set of aspects A which describe the
items and for which user interests can be estimated. The as-
pects might be explicit: for example, categories such as pol-
itics in a news recommender, or genres such as comedy in
a movie recommender. Alternatively, aspects might be im-
plicit, e.g. the latent factors found by a matrix factorization
recommender system (Koren and Bell 2011).

User u’s interests can be formulated as a probability dis-
tribution p(a|u) for aspects a ∈ A. The probability of
choosing an item i from the set of recommendations RS
given an aspect a of user u is denoted by p(i|u, a). In Var-
gas’s adaptation to recommender systems (Vargas Sandoval
2015) of Santos et al.’s Query Aspect Diversification frame-
work (xQuAD) (Santos, Macdonald, and Ounis 2010), di-
versification can be achieved by re-ranking a conventional
recommender’s recommendation set as per Algorithm 1 and
Equation (1) but with div(i, RL) = novxQuAD(i, RL) de-
fined as:
novxQuAD(i, RL) =

∑
a∈A

[p(a|u)p(i|u, a)
∏

j∈RL

(1−p(j|u, a))]

(2)

Consider the case where the aspects are explicit features
F , i.e. A = F , hence we will write p(f |u) and p(i|u, f)
instead of p(a|u) and p(i|u, a). Let Fi be the subset of F
that describes item i (e.g. the genres of movie i) and let Iu
denote the items in user u’s profile (i.e. the items she has
interacted with). Then p(f |u) can be estimated as:

p(f |u) = |{i ∈ Iu : f ∈ Fi}|∑
f ′∈F |{i ∈ Iu : f ′ ∈ Fi}| (3)

p(i|u, f), the probability of choosing i from a set of rec-
ommendations RS given explicit aspect f of user u, can be
estimated as:

p(i|u, f) = ind(i, f)s(u, i)∑
j∈RS ind(j, f)s(u, j)

(4)

where ind(i, f) = 1 if f ∈ Fi and 0 otherwise.
A possible weakness of xQuAD is that its formulation im-

plies selection of a single item from the recommended set
RS. In RxQuAD, Vargas et al. formulate a model based on
maximizing relevance, rather than the probability of choos-
ing a single item:

novRxQuAD(i, RL) =
∑
a∈A

[p(a|u)p(rel |i, u, a)
∏

j∈RL

(1− p(rel |j, u, a)p(stop|rel))] (5)

p(rel |i, u, a) is the probability that user u finds recom-
mended item i relevant when interested in aspect a. In
the case of explicit features, this probability is obtained by
mapping from relevance scores s(u, i) using an exponential
function (Vargas, Castells, and Vallet 2012). p(stop|rel) is
the probability that a user stops exploring a recommendation
list conditional on finding a relevant item. Vargas observes
that, to maximize α-nDCG, the best value for p(stop|rel)
is approximately equal to the value of α (Vargas Sandoval
2015).

The advantage in intent-aware approaches such as
xQuAD and RxQuAD of using explicit aspects, such as
movie genres, is their interpretability. A disadvantage is that
they may be less accurate. The advantage, by contrast, of us-
ing implicit aspects, such as latent factors, is that they have
been chosen for their predictive performance; their disad-
vantage is that they may be less interpretable (Wasilewski
and Hurley 2016). Wasilewski & Hurley propose an intent-
aware diversification method that is based on explicit as-
pects (and is hence interpretable) but in which the probabili-
ties are learned (and hence are optimized for predictive per-
formance) (Wasilewski and Hurley 2016). The learning is
done by a constrained pLSA model (Hofmann 2004). They
call their approach c-pLSA. More recently, the same authors
presented an intent-aware framework that uses a minimum
variance criterion based on portfolio theory from finance
(Wasilewski and Hurley 2017).

What characterizes the work on intent-aware diversifica-
tion in recommender systems that we have described so far
is the use of a global set of aspects. The probabilities differ
between users since they are computed from each user’s pro-
file, but the aspects are the same for all users. In our work,
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we infer the aspects from the user’s profile, making even the
aspects personalized: the aspects for one user need not be
the same for another.

SubProfile Aware Diversity
In this section, we explain our new approach to diversifi-
cation in recommender systems, which we call SubProfile
Aware Diversification (SPAD). It is a greedy re-ranking ap-
proach; it is intent-aware; but it is also personalized, based
on subprofiles within the user’s profile.

Let I be the set of all items. Subprofile detection works
on positively-rated items in the user’s profile. In the case of
positive-only feedback, user u’s profile, Iu ⊆ I , is the set of
items she has interacted with (liked, clicked on, purchased,
etc.). In the case of explicit ratings rui (e.g. 1-5 stars), then
Iu must be defined in terms of items the user liked, which
will usually involve thresholding the ratings, e.g. in our ex-
periments, we use Iu = {i|rui ≥ 4}. A user’s subprofiles
are subsets of Iu.

Subprofile extraction
Our approach to extracting user subprofiles comprises two
steps. Firstly, we compute a set of top-n recommendations
for this user each with what we call an explanation. We
stress that these recommendations are not shown to the user.
They are only being used to help us to extract subprofiles:
their explanations are candidate subprofiles. Then, secondly,
we prune the explanations to exclude any that are wholly
contained in any of the others. The remaining explanations
are the user’s subprofiles. We will now explain the steps in
more detail.

In the first step, we use an item-based nearest-neighbours
recommender for implicit ratings (i.e. positive only ratings),
which we designate IB+, and which is based on (Deshpande
and Karypis 2004). For each candidate item i �∈ Iu, IB+
finds items in the user’s profile that have the candidate as one
of their k-nearest-neighbours: S∗

i = {j ∈ Iu|i ∈ KNN(j)}.
IB+ scores each candidate by taking the sum of the sim-
ilarities of the candidate to the items in S∗

i : s(u, i) =∑
j∈S∗

i
sim(i, j), using cosine similarity. The set S∗

i is the
explanation for why i should be recommended.

Let Eu be the explanations for the n candidates whose
scores, s(u, i), are highest. We define the set of subprofiles
for user u, Su, to be those members of Eu that do not con-
tain any other members of Eu, i.e. Su = {S∗

i ∈ Eu|¬∃S ∈
Eu, S

∗
i ⊂ S}. We obtain Su from Eu by sorting the ex-

planations in descending order of size and greedily retaining
those that are not subsets of any already chosen. Note that,
since |Eu| = n, there can be no more than n subprofiles.

Subprofiles as aspects
In the work on intent-aware diversification that we described
earlier, the same set of aspects A was used for all users. In
SPAD, aspects are user-specific: user u has set of aspects
Au. And, in the earlier work, aspects were often based on
explicit features F , i.e. A = F . In SPAD, aspects are user
subprofiles, i.e. Au = Su. Each subprofile S ∈ Su contains

a set of items from Iu. Different subprofiles can be of dif-
ferent lengths; the number of subprofiles can differ across
users.

We produce a set of recommendations RS using some
recommender. This can be any recommender that produces
scores, s(u, i), for the items that it recommends. (In particu-
lar, just because we detect subprofiles using IB+, we are not
obliged to use IB+ to produce RS.) The set RS is greed-
ily re-ranked (Algorithm 1) using the objective function
given as Equation (1) with div(i, RL) = novxQuAD(i, RL)
(Equation (2)). What differs is the computation of the prob-
abilities used in Equation (2). Given that aspects are now
subprofiles, we will write p(S|u) and p(i|u, S) instead of
p(a|u) and p(i|u, a) for S ∈ Su.

Analogously to Equation (3), p(S|u) can be estimated as:

p(S|u) = |S|∑
S′∈Su

|S′| (6)

p(i|u, S), the probability of choosing i from a set of recom-
mendations RS given subprofile S of user u, can be esti-
mated as:

p(i|u, S) = ind(i, S)s(u, i)∑
j∈RS ind(j, S)s(u, j)

(7)

But here there is a problem. We want ind(i, S) to be 1 when
item i is ‘related to’ subprofile S, and 0 otherwise. We can-
not just use membership (i ∈ S), because i is a candidate
recommendation and therefore will not in general already
be a member of the user’s profile or its subprofiles. Accord-
ingly, in SPAD we define ind(i, S) as follows:

ind(i, S) =

{
1 if i ∈ ⋃

j∈S KNN(j)

0 otherwise
(8)

where KNN(j) is the set of j’s k-nearest-neighbours in I .
In other words, i must be a neighbour of a member of S.

Analogously to the relationship between xQuAD and
RxQuAD (Vargas, Castells, and Vallet 2012), we can define
RSPAD, by replacing aspects a by subprofiles S in Equation
(5).

Experiments
Datasets

The datasets we use are the MovieLens 1M dataset and
the LastFM dataset1. But we use the modified versions
of these datasets that were used in (Kaminskas and Bridge
2016). For example, the listening event frequencies in the
LastFM dataset are converted into ratings on the scale 1-
5 and the dataset is augmented with additional meta-data
(user-generated tags). Table 1 summarizes their character-
istics.

1http://grouplens.org/datasets/movielens,http://www.dtic.upf.
edu/ocelma/MusicRecommendationDataset/lastfm-1K.html
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MovieLens 6040 users 3706 items ∼1M ratings
18 genres in total; avg. 1.65 per movie

LastFM 992 users 7280 items ∼500k ratings
71833 tags in total; avg. 8 per artist

Table 1: Datasets

Recommender systems
We compare SPAD and RSPAD with the other diversifica-
tion techniques available in the RankSys library2: MMR
(Carbonell and Goldstein 1998), xQuAD (Vargas, Castells,
and Vallet 2011), RxQuAD (Vargas, Castells, and Vallet
2012) and c-pLSA (Wasilewski and Hurley 2016).

All of these approaches to diversification use greedy re-
ranking, therefore they need a baseline recommender, whose
recommendation sets are re-ranked. We use the following
baseline recommenders (again using their RankSys imple-
mentations): probabilistic latent semantic analysis (pLSA)
(Hofmann 2004), a fast alternative least-squares matrix fac-
torization recommender (MF) (Pilászy, Zibriczky, and Tikk
2010), and a factorization machine that uses Bayesian pair-
wise loss for ranking (FMBPR) (Bayer 2015).

Three baselines paired with seven re-ranking approaches
(the six above but also none at all) gives 21 systems to com-
pare on each dataset. However, we were unable to obtain
results for c-pLSA on the LastFM dataset because the im-
plementation is based on the maximum possible features
(71833 user-generated tags), whereas the other re-ranking
approaches only depend on the number of distinct features
that describe items in the user’s profile.

All of the baseline algorithms have hyperparameters.
In our cross-validation methodology (later section), as
in (Vargas, Castells, and Vallet 2012), we select hy-
perparameter values that maximize precision for top-
10 recommendations. For pLSA, MF and FMBPR,
we choose the number of latent factors (d) from
V = {10, 30, 50, 70, 90, 110, 130, 150, 170, 190, 210}.
FMBPR’s learning rate (lr) and regularization parameters
(regW and regM ) are chosen from {0.01, 0.001}, and MF’s
confidence level (α) is chosen from {1, 2, . . . , 10}. This re-
sulted in the following values:

• pLSA: d = 50 for MovieLens; d = 30 for LastFM.

• MF: d = 30, α = 1.0 for MovieLens; d = 30, α = 1.0
for LastFM.

• FMBPR: d = 190, lr = 0.01, regM = 0.01, regW =
0.001 for MovieLens; d = 10, lr = 0.01, regW = 0.01,
regM = 0.001 for LastFM.

We use the baselines to produce recommendation sets RS
and greedily re-rank each RS to give a ranked list RL from
which we recommend the top-N . MMR uses ILD with dis-
tance defined as the complement of Jaccard similarity on the
item meta-data (genres, keywords, tags). xQuAD, RxQuAD
and c-pLSA all use the meta-data as explicit aspects.

As explained earlier, SPAD and RSPAD use an item-
based recommender, IB+, when extracting subprofiles. IB+

2 https://github.com/RankSys

has its own hyperparameters: the number of neighbours (k,
referred to below as kIB ) and the number of recommenda-
tions to make (n), both of whose values we select from V .
Equation (8) also has hyperparameter k (referred to below
as kDC ) and its value is also selected from set V .

The values selected for the MovieLens dataset are:
• pLSA: n = 50 for SPAD, and n = 70 for RSPAD; kIB =
10, kDC = 30 for both.

• MF: n = 50 for SPAD, n = 90 for RSPAD; kIB = 10
and kDC = 50 for both.

• FMBPR: n = 30, kIB = 10 and kDC = 10 for both
SPAD and RSPAD.

The values selected for the LastFM dataset are:
• pLSA: kIB = 30 for SPAD, kIB = 50 for RSPAD and

n = 110, kDC = 10 for both.
• MF: kIB = 10, kDC = 30 for SPAD, kIB = 50 and

kDC = 10 for RSPAD; n = 110 for both.
• FMBPR: kIB = 30, kDC = 10 and n = 110 for both

SPAD and RSPAD.
We emphasize that all of the hyperparameter values are
found using cross-validation (later section).

Evaluation measures
For accuracy we measure precision and for diversity
we measure α-nDCG (Clarke et al. 2008), which is a
redundancy-aware version of nDCG. (Again, we use
RankSys implementations.) Diversity is measured with re-
spect to the explicit features F (the meta-data).

We evaluate top-N for N = 10 recommendations and,
we treat test set items with a rating of 4 or 5 as being rele-
vant. In α-nDCG, we use α = 0.5. (Hence, following the
argument from (Vargas Sandoval 2015) given earlier, we use
p(stop|rel) = 0.5 in RxQuAD and RSPAD too.)

Methodology
In experiments, we randomly partition the ratings into train-
ing, validation and test sets such that 60% of each user’s
ratings are in the training set, 20% of them are in the vali-
dation set and 20% are in the test set. Results are averaged
over five runs with different splits.

We select hyperparameter values for each baseline recom-
mender that optimize precision on the validation sets (Var-
gas, Castells, and Vallet 2012). Then, we train the base-
lines using the selected hyperparameter values on the train-
ing+validation sets and, for each user, generate a recom-
mendation set RS, where |RS| = 100. Then, we re-rank
each RS to produce ranked lists RL using each of the re-
ranking algorithms. In doing this, we try different values for
λ, which controls the balance between relevance and diver-
sity (Equation 1), from [0.1, 0.2, . . . , 1.0]. Then, from each
RL, we select the top-N recommendations, N = 10.

Results
The results for the experiments on the MovieLens dataset
are in Table 2. In each block of the table, results for the
baseline are presented first, and then results for each of the
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Table 2: MovieLens results. The best result for each metric
is highlighted in bold for each block. The value of λ that op-
timizes α-nDCG for each baseline and re-ranking strategy
is given. All of the results are statistically significant with
respect to their baseline (Wilcoxon signed rank with p <
0.05) except those shown in italics.

% change
Metrics over baseline

λ Precision α-nDCG Precision α-nDCG

pLSA 0.2639 0.2842
MMR 0.3 0.2635 0.2913 -0.17% +2.47%

xQuAD 0.7 0.2456 0.3428 -6.93% +20.61%
RxQuAD 1.0 0.2452 0.3341 -7.1% +17.53%
c-pLSA 0.5 0.2763 0.3075 +4.69% +8.19%
SPAD 1.0 0.2783 0.3233 +5.44% +13.74%

RSPAD 1.0 0.2797 0.3213 +5.98% +13.05%
MF 0.2916 0.3197

MMR 0.2 0.2906 0.3243 -0.34% +1.43%
xQuAD 0.5 0.2739 0.3668 -6.08% +14.72%

RxQuAD 0.7 0.2629 0.3586 -9.85% +12.15%
c-pLSA 0.3 0.2978 0.3292 +2.11% +2.96%
SPAD 0.6 0.2947 0.337 +1.04% +5.39%

RSPAD 0.7 0.2945 0.3368 +1.00% +5.32%
FMBPR 0.2655 0.3025
MMR 0.2 0.2649 0.3068 -0.22% +1.42%

xQuAD 0.4 0.2534 0.3376 -4.56% +11.61%
RxQuAD 0.5 0.2429 0.3272 -8.48% +8.16%
c-pLSA 0.3 0.2754 0.3157 +3.75% +4.38%
SPAD 0.4 0.2765 0.321 +4.16% +6.13%

RSPAD 0.5 0.2736 0.3178 +3.07% +5.06%

re-ranking methods are given. For each method, we report
the results using the value of λ that gives highest α-nDCG
on the validation set (Wasilewski and Hurley 2016).

Consider precision first. For each baseline (i.e. each block
in the table), with only one exception, SPAD or RSPAD has
highest precision. The exception is where MF is the base-
line, when c-pLSA is slightly more accurate. These results
show that both SPAD and RSPAD give high precision for
the MovieLens dataset.

Next, consider the diversity metric, α-nDCG. SPAD and
RSPAD are at a disadvantage since they make no use of
the explicit features. Indeed, α-nDCG is a metric that is
very similar to what is used for re-ranking in xQuAD and
RxQuAD. Even so, SPAD and RSPAD have higher diver-
sity than all baselines and have higher diversity than MMR
and c-pLSA re-ranking. For diversity, xQuAD is the best
re-ranking method for all three baselines, and both xQUAD
and RxQUAD achieve higher diversity than both SPAD and
RSPAD. However, when we look at percentage changes, we
see that xQUAD and RxQUAD achieve their diversity per-
formance at the expense of the largest decreases in precision.
Surprisingly, c-pLSA, SPAD and RSPAD increase accuracy
along with diversity.

The results for the LastFM dataset are in Table 3. Re-
call that c-pLSA is missing from these results because we
were unable to run it to completion on a dataset with so
many explicit features (tags). Here, SPAD has the high-
est precision in each block, and RSPAD the second highest.

Table 3: LastFM results. The best result for each metric is
highlighted in bold for each block. The value of λ that opti-
mizes α-nDCG for each baseline and re-ranking strategy is
given. All of the results are statistically significant with re-
spect to their baseline (Wilcoxon signed rank with p < 0.05)
except those shown in italics.

% change
Metrics over baseline

λ Precision α-nDCG Precision α-nDCG

pLSA 0.3804 0.3426
MMR 0.3 0.3773 0.3499 -0.84% +2.13%

xQuAD 0.5 0.41 0.3847 +7.78% +12.28%
RxQuAD 0.8 0.3993 0.3631 +4.96% +5.96%

SPAD 0.9 0.4199 0.3823 +10.37% +11.59%
RSPAD 0.6 0.4162 0.3773 +9.39% +10.13%

MF 0.4654 0.4244
MMR 0.3 0.4545 0.4312 -2.35% +1.62%

xQuAD 0.3 0.4701 0.4354 +1.01% +2.61%
RxQuAD 0.3 0.4654 0.4253 0.0% +0.22%

SPAD 0.3 0.4733 0.429 +1.69% +1.11%
RSPAD 0.2 0.4716 0.4277 +1.33% +0.8%
FMBPR 0.3737 0.3409
MMR 0.1 0.3727 0.3432 -0.27% +0.67%

xQuAD 0.4 0.3972 0.3758 +6.28% +10.23%
RxQuAD 0.5 0.3856 0.3529 +3.17% +3.52%

SPAD 0.5 0.4126 0.3793 +10.41% +11.26%
RSPAD 0.5 0.4088 0.3724 +9.38% +9.25%

Again, despite making no use of explicit features, SPAD and
RSPAD increase diversity. In fact, SPAD gives the high-
est α-nDCG where FMBPR is the baseline algorithm and
is competitive with xQuAD (which performs best) where
pLSA is the baseline. Interestingly, all re-ranking methods
except MMR increase precision (or leave it unchanged in
one case for RxQUAD) as well as increasing diversity. None
increase precision as much as SPAD and RSPAD, which ar-
guably achieve the best balance between increased precision
and increased diversity.

Conclusions and Future Work
We have presented a personalized form of intent-aware di-
versification, in which the aspects to be covered by the re-
ranked recommendations are subprofiles of the user’s pro-
file, each representing a distinct user taste. We extract sub-
profiles using an approach that extends an item-based rec-
ommender (IB+), and estimate interest in these personalized
aspects in the manner of the xQuAD and RxQuAD systems
(Vargas, Castells, and Vallet 2011; Vargas Sandoval 2015).
We compare our approaches, SPAD and RSPAD, to other
re-ranking approaches on two datasets. We find that they
produce recommendations that are both among the most ac-
curate in the experiments and are diverse. The latter is note-
worthy since the diversity metric that we use in the evalu-
ation is defined in terms of explicit features. It may favour
competitor algorithms, which re-rank in ways that are sensi-
tive to those features. SPAD and RSPAD, by contrast, make
no use of meta-data.

In the future, we will compare all the systems with
datasets with different amounts of meta-data. We will also
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explore the interpretability of SPAD’s recommendations: we
will look to see how we can explain SPAD’s recommenda-
tions in terms of subprofiles. Since subprofiles are just sets
of items, we can take inspiration from the work on item-
based explanations (as used, for example, in amazon.com),
which has been proven to produce effective explanations
(Bilgic and Mooney 2005).
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