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Abstract. In this paper, we present GhostWriter-2.0, a Case-Based
Reasoning system that supports a user who is writing a product re-
view. GhostWriter-2.0’s case base is populated with relevant and helpful
reviews from Amazon. It extracts phrases from these reviews and offers
these as suggestions to the user. In a trial, users made considerable use
of the suggested phrases.

1 Introduction

A lot of user-generated content on the Web takes the form of records of personal
experiences [5,7,6]. Epitomizing these records of personal experience are the
reviews and ratings that users contribute on everything from movies to books
to music to hotels to consumer goods to professional services and to on-line
content, whether user-generated or otherwise. Interestingly, Web sites that solicit
user reviews often solicit meta-experiences too: users can review or rate other
reviews or reviewers. For example, Amazon users vote on reviews, so the site
can report review helpfulness; Epinions users additionally vote on reviewers, so
the site can report reviewer trustworthiness.! Meta-experience like this provides
a partial remedy for the problem of how to ignore noisy reviews.

Once shared on the Web, one user’s experiences can be reused by another
user to support her in some task that she is performing. Case-Based Reasoning
(CBR), often defined as reasoning from experiences [4], offers one way to support
such a user. Examples of using CBR in this way include the Poolcasting system,
which uses CBR to select music to play in social situations [6]; the work of [1],
which uses CBR to recommend data visualizations; and CommunityCook, which
extracts recipe adaptation knowledge from Web-based recipe corpora [2].

Our position is that there are in fact at least two ways in which records of
experience on the Web can be reused:

— to support the user in her real-world task, e.g. booking a hotel, selecting
music to play, installing software, and visualizing data; and
— to support the user when she authors new content, e.g. writing a new review.
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In our own work, we have been developing the GhostWriter family of systems,
which uses CBR in the second of these two ways. In GhostWriter-1.0, we showed
how CBR could help the user to write more comprehensive descriptions in Web-
based exchange systems [8]. GhostWriter-2.0, described for the first time here,
is our system which uses CBR to help the user to write reviews.

We developed GhostWriter-2.0 in response to the WebCBR, Challenge associ-
ated with this workshop.? The Workshop Organizers challenged CBR researchers
to apply CBR ideas to the Experience Web, the only constraint being that the
researchers should “showcase their research in the form of a demonstration sys-
tem using Amazon’s API”. The GhostWriter-2.0 case base is populated with
existing relevant and high quality Amazon product reviews; and the system uses
the case content to assist the user to author a new review.

GhostWriter-2.0 has the potential to create a virtuous circle: if its assistance
results in the user writing and submitting a better review than she otherwise
would, then a new higher quality record of experience becomes available both
to users making purchasing decisions but also to GhostWriter-2.0 next time it
assists someone to write a review of a similar item.

Section 2 presents GhostWriter-2.0 from the user point of view; section 3
describes how GhostWriter-2.0 converts Amazon reviews into cases; section 4
explains how GhostWriter-2.0 populates its case base, and how it uses the cases
to make suggestions; section 5 reports the results of a real user trial.

2 An End-User View of GhostWriter-2.0

A user who wishes to review an Amazon product with support from GhostWriter-
2.0 accesses GhostWriter-2.0 through her browser. We give a screenshot in Fig-
ure 1. The user starts at the top of the screen by using the drop-down select list
to choose the category of product that she will review; in the example, the user
has chosen Music. In the adjacent text-field, she enters keywords to describe the
product. This might be the author of a book, the artist for a music CD, or the
manufacturer of a digital camera, for example; in the screenshot, the user has
entered “Leonard Cohen”.3

The user next presses the Start GhostWriter! button. The GhostWriter-2.0
server takes the user’s category and keywords and uses them to query the Ama-
zon information servers. The search returns products and their reviews. These
are not shown to the user. Instead, we use the best of these reviews to populate
the case base (see Section 4.1).

The user may now type her review into the right-hand text-area. After ap-
proximately every 60 characters that the user types, GhostWriter-2.0 will make
a set of suggestions, which the browser displays in the selection form to the left
of the text-area. GhostWriter-2.0 selects these suggestions from the case base
(see Section 4.2).

2 www.comp.dit.ie/aigroup/?page\_id=549

3 The text-field in the top-left of the screenshot allows us to identify users when we
are running user trials (Section 5) and is otherwise not used.
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Fig. 1. A screenshot from GhostWriter-2.0

A user, glancing at the suggestions, may take one of three actions:

— She might decide to include a suggestion exactly ‘as is’ in her review. To do
this, she double-clicks on the suggestion.

— She might decide that none of the suggestions can be included verbatim, but
one or more of them may inspire her to write on a related topic.

— She may find none of the suggestions helpful. In this case, she continues to
type her review.

When she has finished her review, she presses the I’'m finished! button to
submit her review to the GhostWriter-2.0 server, where statistics about the
review are logged. Unfortunately, the Amazon API appears not to allow the
GhostWriter-2.0 server to directly upload the review to Amazon.

3 Cases in GhostWriter-2.0

Fundamentally, cases in GhostWriter-2.0 are Amazon product reviews. We con-
vert an Amazon product review r into a three-part GhostWriter-2.0 case ¢ =
(W, S, hy as follows. The first part, W, which can be thought of as the problem
description part of the case, is the set of words that occur in the text of review r.
Information about which product is being reviewed is not needed in the problem
description part of the case because this contextual focus is already provided
by the case base as a whole (see Section 4.1). The second part, S, which can
be thought of as the problem solution part of the case, is a set of suggestions,
i.e. a set of phrases that GhostWriter-2.0 might show to the author of a new
review. We explain how we extract these from r in the paragraphs below. The
third part of a case, h, is a non-negative integer. Recall that Amazon users can
vote to signal that they found a review to be helpful. h is r’s helpfulness rating.
It can be thought of as the outcome part of the case [4]. It gives an indication of
¢’s quality and, indirectly, an indication of the quality of the suggestions in S.



We have yet to explain how we extract S from r. In GhostWriter-1.0, sug-
gestions were feature-value pairs [8]. There, we were working in the domain of
Web-based exchange systems, such as classified ads systems, and so each case de-
scribed an item that someone wanted to dispose of. We used regular expressions
to extract the value of features such as Price (e.g. “€25 or nearest offer”), Con-
dition (e.g. “in excellent condition”), and so on. This was adequately effective
because classified ads tend to be written in a domain-specific sub-language [3]
that is quite restrictive and uses a lot of recurring ‘stock’ phrases and phrasing.

Product reviews are written in a much less restrictive way than classified
ads. Reviews of novels, for example, rarely mention the price but often give a
synopsis of the plot, make comparisons with other novels by the same author or
similar authors, describe the passions aroused when reading the book, and offer
opinions about the quality of the writing. The author of a new review might
welcome suggestions that span all of these. Information Extraction techniques,
whether based on regular expressions or something more powerful, could extract
simple features such as the price, if present, or the technical attributes of digital
electronics goods (e.g. their battery life). Sentiment Analysis techniques could
extract the polarity of the opinions expressed, with the risk that it would mine
suggestions that would bias new reviews towards the majority opinions of past
reviews in the case base. But, even if we were to use both of these techniques
together, we would extract only a subset of the potentially useful suggestions.

Hence, we decided to take an approach that was less specific than either
Information Extraction or Sentiment Analysis. We took the view that most of
the descriptive content of a review lies in its noun phrases. They can cover:
technical attributes of consumer goods; characters, places and events in books
and films; authors and artists; and some of the opinion.

Noun phrases are easy to extract from text, using just quite shallow natural
language processing techniques. We use OpenNLP’s maximum-entropy-based
‘chunking’.* We retain only those phrases that it labels as noun phrases. In
fact, we decided to retain only noun phrases that were longer than two words
(because shorter noun phrases tend to lack enough descriptive content to make
useful suggestions) but shorter than six words (because longer noun phrases tend
to make overly specific suggestions). Note that there is an additional scoring
process that will determine which of a case’s suggestions are actually shown to
the user (see Section 4.2).

In summary then, in GhostWriter-2.0 an Amazon review r becomes a case
¢ and comprises: the set of words in r; the set of r’s noun phrases that contain
three to five words; and 7’s helpfulness rating.

4 How Ghostwriter-2.0 Works

The GhostWriter-2.0 server sits between the user’s browser and the Amazon
servers. There are two phases to its processing: populating the case base, and
making suggestions.

4 opennlp.sourceforge.net



4.1 Populating the case base

As explained in Section 2, a user who wishes to write a review with support from
GhostWriter-2.0 begins by entering data about the product she wishes to review:
she enters its category and some keywords into her browser and submits them
to the GhostWriter-2.0 server. The GhostWriter-2.0 server forwards this data to
the Amazon servers. The operation it requests is an Amazon ItemSearch for
the given category and keywords, which returns up to 4000 products in pages
of up to ten products each. We additionally request that, for each product, the
ItemSearch returns reviews, ordered by decreasing helpfulness. It returns up to
five reviews per product, and it these we use to populate the case base.

We aim to populate the case base with 250 cases. As a way of trying to avoid
duplicated products and reviews, we check customer ids and only take the first
review for each customer. If the ItemSearch fails to provide us with 250 cases,
we take each product in turn and use an Amazon ItemLookup to obtain a further
10 reviews, again checking customer ids before inserting them into the case base.

Note that this means that the case base is populated afresh each time a
user starts a new review. This ensures that its contents are relevant to the
current product being reviewed, and that the case base takes into account the
very latest data (products, reviews and helpfulness ratings) on the Amazon site.
The downside is that there is an appreciable delay (up to 2 minutes) in inserting
reviews into the case base. This is caused by the time it takes to launch OpenNLP
and to use it to extract noun phrases from the 250 reviews. A production version
of Ghostwriter-2.0 would need to be better integrated with Amazon to bring this
time down.

4.2 Making suggestions

After GhostWriter-2.0 has populated its case base, the user starts typing her
review into her browser. As explained in Section 2, after approximately every 60
characters that the user types, the browser uses AJAX to request a set of sug-
gestions from the GhostWriter-2.0 server. The browser supplies the server with
the current contents of the user’s review. The GhostWriter-2.0 server retrieves
k1 = 50 cases from the case base. From the suggestions contained in these cases,
it selects ko = 10 suggestions, which it returns to the user. We explain both the
retrieval and the selection in more detail below.

Retrieval. Let the current contents of the user’s review be called the new
product review and designated npr.> This is the set of words that the user has
typed. GhostWriter-2.0 retrieves from the case base the ki cases that are most
similar to the npr. We measure similarity using the Jaccard similarity coefficient:

_|nprn W

Sim(np?",c = <VV7 57 h>) = W

5 We avoid the word “query”, which is more common in CBR, since we have found it
leads to confusion.



Suggestion selection. At this point, GhostWriter-2.0 has retrieved k; cases C
from the case base, and in each case ¢ = (W, S, h) there is a set of suggestions S;
each suggestion is a noun phrase. GhostWriter-2.0 must select the ko suggestions
that it will send back to the browser for display. When considering a unique

candidate suggestion, s € U S, several criteria seem relevant, discussed
(W,S,hyeC
over the next few paragraphs.
Consider the number of retrieved cases in which a suggestion s appears:

freq(s) = |[{(W,S,h) € C : s € S}

To some extent, the more frequent s is, the more its content is something that
different reviewers want to talk about, and this makes it a better suggestion.
However, frequency favours short suggestions as these are the ones that are
more likely to recur. The downside of this is that short, recurring noun phrases
are more likely to be vague or generic.

Suppose instead we consider the length in words of the suggestions, length(s).
To some extent, the longer s is, the more descriptive it is, and this makes it a
better suggestion. But length alone may favour overly specific suggestions.

We found that the product of frequency and length offered a good balance
between the two criteria:

score(s) = freq(s) x length(s)

The short, three-word phrase “a fantastic album” needs to appear in two separate
cases (2 x 3 = 6) if it is to have a score that betters that of the five-word
phrase “an excellent, lively rock classic”, assuming this appears in only one case
(1 x5=25).

Many suggestions share the same score. To break ties, we sum and compare
the helpfulness of the reviews that contain the two suggestions. Formally, if
score(s) = score(s’), then s will be ranked higher than s if

Z hy > Z hg

he€{h:(W,S,h)eCAsES} hy €{h':(W’'.S' h')eCNs'€S"}

(If s and s’ have the same total helpfulness, then tie-breaking is arbitrary.)

In addition to this scoring, we also want to apply other criteria.

We do not want to make a suggestion s if it is already a noun phrase in the
user’s npr. This is quite simple-minded. In the future, it may be worth consid-
ering ways of measuring the similarity of semantic content: we would discard s
if the npr’s content was similar enough to cover the content of s.

We also do not want to make a suggestion s if it is one that we have made
several times already. This criterion is not one that we built into an early version
of GhostWriter-2.0. But in a small-scale pilot study that we conducted prior to
the user trial reported in Section 5, we found that users preferred versions of
the system that more often made fresh suggestions over versions that allowed
suggestions to linger. We subsequently decided to limit the number of times a



suggestion could be made. Specifically, if s has already been suggested 6§ = 4
times, then it cannot be suggested again, allowing another suggestion to take its
place. This increases the number of different suggestions that get made, but the
suggestion turnover is not so great as to be distracting to the user.

5 Experimental Evaluation

Here, we report the results of a user trial. For comparison purposes, we devel-
oped a version of GhostWriter-2.0 that made less intelligent use of the cases.
It populates its case base in the same way as GhostWriter-2.0 (Section 4.1). So
we know it has a set of relevant and helpful cases. But instead of retrieving the
k1 = 50 cases that are most similar to the npr, it retrieves k; = 50 cases at
random from the case base. Like GhostWriter-2.0, it will not make suggestions
that are already contained in the npr, nor will it make a suggestion more than
0 = 4 times. But otherwise, the ks = 10 suggestions that it makes are drawn
at random from the retrieved cases: it does not use the score function, nor the
helpfulness ratings. In this section we will refer to these two systems as GW-2.0
(for GhostWriter-2.0) and GW-R (for the more random version).

The two systems were evaluated by twenty users. Each user reviewed two
products with which they were familiar, either two music CDs or two books. As
they wrote their reviews, they received suggestions from one of the GhostWriter
systems. Ten users had help from GW-2.0 for their first review, and help from
GW-R for their second review. The other ten users had help from GW-R first,
and then GW-2.0. They were unaware of the difference between the systems.

During the experiment, GW-2.0 and GW-R recorded: the review the user
typed; the time taken to write the review; and the suggestions that were ex-
plicitly incorporated, i.e. when the user double-clicked on a suggestion. We also
administered a questionnaire to each participant.

At one level, reviews written with support from GW-2.0 and with support
from GW-R were similar. Their average length was a little over 150 words in
both cases; users created their reviews at an average of 13-14 words per minute
in both cases; and the average number of descriptive noun phrases in the reviews
(which we took to be noun phrases of more than two words) was also 13-14 in
both cases. But what is interesting is the breakdown of those noun phrases.

Figure 2 shows, for each user (designated A to T), how many suggestions they
directly used (by double-clicking on them). In total, 116 GW-2.0 suggestions were
directly incorporated, an average of 5.8 per user, compared with only 83 GW-R
suggestions, an average of 4.15. Fourteen of the twenty users used more GW-2.0
suggestions than GW-R ones; one used the same number of suggestions from
both; and one used none from either system. We take this as an indication that
GW-2.0’s greater reuse of Web-based experience data (case similarity, frequency
across reviews, and helpfulness) promotes more useful suggestions.

Figure 2 gives no indication of how many other descriptive noun phrases
there are in user reviews. Figure 3 shows this in the case of GW-2.0. It enables
us to see that, while users vary, directly incorporated suggestions account on
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Fig. 3. Noun phrases in reviews written with GW-2.0

average for about 43% of descriptive noun phrases (116 out of the 268 noun
phrases of more than two words). We do not have space to show the graph for
GW-R but on average only about 30% of descriptive noun phrases were ones
GW-R suggested (83 out of 275 noun phrases of more than two words).

Figures 4, 5 and 6 summarize results from the questionnaire. Nineteen of
the twenty people agreed or strongly agreed that GW-2.0 helped them to write
a comprehensive review; for GW-R, sixteen people agreed or strongly agreed
(Figure 4). Eighteen people agreed or strongly agreed that GW-2.0’s suggestions
were helpful, more than half of them strongly agreeing; for GW-R, sixteen people
agreed or strongly agreed, only a minority strongly agreeing (Figure 5). We also
asked participants to estimate for each review that they wrote how many times
they were inspired by a suggestion but did not actually double-click on it and
so did not incorporate it directly. This was obviously very subjective and not
likely to be reliable. But it at least gives an impression of the extent to which the
numbers reported in Figures 2 and 3 understate the helpfulness of the systems.
According to the responses to this (Figure 6) GW-2.0 and GW-R were fairly
evenly-matched in their ability to inspire, and inspired their users one or more
times in all but three reviews.
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We also asked participants for their view of the quality of the reviews they
found in on-line stores: nineteen out of twenty thought they were Good or Fair;
no-one thought they were Excellent; no-one thought they were Bad; but one
person thought they were Terrible. Finally, asked whether they would write
more comprehensive reviews if a GhostWriter-style system were available on a
store’s Web site, everyone agreed or strongly agreed.

6 Conclusions and Future Work

We have presented GhostWriter-2.0, which reuses the experience captured in
Amazon product reviews and their meta-review data to make suggestions to
a user who is writing a new product review. Our user trial has very promising
results, showing a high level of use of the suggestions, both directly and indirectly.
In the trial, GhostWriter-2.0 was more helpful to users than a less sophisticated
version with an element of randomness to its selections. The differences, however,
were small. This may be because, irrespective of which system was being used,
users in the trial relied on the suggestions to a degree greater than they would
in reality, where they would be writing reviews for endogenous reasons, rather
than at our behest.

There are many lines of future research. We would like to measure and, if
necessary, explicitly enhance the diversity of the suggestions that GhostWriter-
2.0 makes, for example. We would also like to see GhostWriter-2.0 more closely
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Fig. 6. “The number of times I was inspired by suggestions but I didn’t click on them”

integrated with the on-line store that it supports, as this can both reduce the
time it takes to populate the case base and make the system less cumbersome to
use (e.g. by automatically taking the category and keywords from the page the
user is visiting). Finally, we are keen to extend the GhostWriter family into new
domains where authors can benefit from the kind of support that GhostWriter
systems can offer.
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