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Abstract. The effectiveness of a case-based reasoning system is known
to depend critically on its similarity measure. However, it is not clear
whether there are elusive and esoteric similarity measures which might
improve the performance of a case-based reasoner if substituted for the
more commonly used measures. This paper therefore deals with the prob-
lem of choosing the best similarity measure, in the limited context of
instance-based learning of classifications of a discrete example space. We
consider both ‘fixed’ similarity measures and ‘learnt’ ones. In the former
case, we give a definition of a similarity measure which we believe to
be ‘optimal’ w.r.t. the current prior distribution of target concepts and
prove its optimality within a restricted class of similarity measures. We
then show how this ‘optimal’ similarity measure is instantiated by some
specific prior distributions, and conclude that a very simple similarity
measure is as good as any other in these cases. In a further section, we
then show how our definition leads naturally to a conjecture about the
‘best’ way of learning a similarity measure from the training sample.

1 Introduction

Experiments by Globig and Wess show empirically that the effectiveness of an
instance-based learning (IBL) algorithm depends on the similarity measure used
[7]. Their experiments show that a similarity measure may maximise the accuracy
of a learner in one experiment but be surpassed by a different similarity measure
in another experiment. Similarly, in [6], Globig and Lange show that the choice of
similarity measure critically affects the number of examples needed to represent
a particular function, but that there is no ‘universal’ similarity measure which
will efficiently represent any target function. It is well known, therefore, that a
similarity measure must be biased in anticipation of some target functions which
are expected to be more probable than others.

This paper considers the problem of choosing the ‘best possible’ similarity
measure for an instance-based learner, given some expectation about those tar-
get functions which are likely to be encountered by the learner, represented by



a prior distribution over the space of possible target functions. §2 gives the def-
initions that are necessary for the presentation. In §3 we then define what we
believe to be the optimal similarity measure w.r.t. some prior distribution of
target functions, in the case where the instance-based learner uses only a single,
fixed similarity measure. We prove its optimality within a restricted set of simi-
larity measures; its optimality in the general case remains unproven, but stands
as a conjecture. We then consider the actual functions that are specified if the
definition is instantiated with specific distributions. §4 then shows how this defi-
nition can be transferred to the case of an instance-based learner which changes
its similarity measure as part of the process of learning. This paper describes
work in progress and so §5 concludes with several comments about how the work
can be progressed further. This work is an overview of results presented in [8];
full details of all the claims and notation may be found there.

2 Definitions

The paper is concerned with the problem of classifying instances drawn from a fi-
nite, discrete example space. For ease of presentation, we assume (w.l.0.g. in this
case) that examples are represented by a number of binary (0 or 1) valued fea-
tures. The example space, or space of possible problem descriptions, is therefore
the space of N-bit binary vectors, referred to as Dy and defined Dy = {0,1}%.
The i-th bit of a description d e Dy is written (d);. In addition, we consider only
{0, 1}-valued target functions representing binary classifications of the example
space and use our usual notation for these target ‘concepts’. The space of all
concepts defined on Dy is called By; By = Dy — {0,1}. In particular, this
paper refers to the behaviour of instance-based learning algorithms on mono-
mial or conjunctive target concepts. A monomial concept can be represented in
the propositional calculus by a simple conjunction of literals; e.g. u1Tu3 may
represent the concept on D5 whose positive instances are 10000, 10001, 10010
and 10011. The set of monomial concepts defined on Dy is referred to as My.
Further, My, is defined as the set of monomials with exactly £ literals; u;
represents a concept in My 1, while uiTUyusus represents a concept in My 4.
The decision function for the concept hy represented by monomial expression U
(treated as a set of literals) is defined formally as follows:

1if Vi-(u;eU = ((d);i = 1)) A (@i eU — ((d); =0))
0 otherwise

o) = { 1)

Simple IBL algorithms learn by adding cases to a case-base CB and by
adjusting a similarity measure o. A case-base C'B is a set of exemplars, each of
which is a pair (d,n) e (Dy x {0,1}) consisting of a problem description de Dy
along with a single bit, 0 or 1. Normally, a case-base is compatible with some
target concept t € By s.t. for each exemplar (d,n) e CB, t(d) = n. The similarity
measure o is a total function in Dy X Dy — [0, 1] which returns a real value
indicating the degree of similarity between its two arguments. The pair (CB, o)



is interpreted as the representation of a concept on Dy as follows:

1if I(dpos,1)eCB-Y(dney,0)eCB - 0(d,dpos) > o(d,dpey)
0 otherwise
(2)

In other words, a point de Dy is positively classified by h(cop,s) if and only
if there is a stored positive exemplar d,,s which is strictly more similar to d
according to the chosen similarity measure o than any of the stored negative
exemplars dy.,. Many IBL algorithms use a weighted similarity measure which
counts the ‘overlap’ between two descriptions but assigns weights to each of the
variables of the representation to indicate their importance or ‘relevance’. The
simplest form of these measures may be defined by a ‘weight vector’ we [0, 1]V

heB,)(d) = {

dl,dz w; X ].— d1 d2i 3
ow( E Z |(d1)i = (d2)i]) 3)

i=1 Wi =1

If the weight vector w has weight 1 in all elements then oz treats all dimen-
sions of the representation equally and is analogous to the Hamming distance
between the two descriptions. This special case will be written op. o, or in-
deed any other o, is used by equation (2) only to rank the exemplars of the
case-base to identify the ‘near neighbours’ which classify a test instance. This
same information is expressed abstractly (non-numerically) by the retrieval re-
lations defined by the measure.! The retrieval orderings defined on Dy by a
similarity measure o are the set of orderings {>%}4cpy s.t. for each problem
description de Dy the relation d' =9 d" denotes that d is as similar to a case
with description d' as to a case with description d”:

Vd,d',d" eDy -d =5 d" < o(d,d) > o(d,d") (4)

In general, a description d e Dy will have a number of descriptions which are
equally similar to it. For example, oy (1111,1110) = oy (1111,0111) = % and
therefore both 0111 > 1110 and 1110 >3* 0111 for the description d = 1111.
We can therefore say that the descriptions 1110 and 0111 are members of an
equivalence class of the preference relation defined by d and o .

In this work a learning experiment is described by two different probability
distributions. A probability distribution on the example space will be referred
to as u, and the probability that a randomly chosen example is a member of
some set X C Dy will be written uX and the conditional probability that an
example z e Dy will have some property p(z) given membership of some set
X C Dy will be written u{zeX|p(x)}. A sequence of examples from (Dy)*
will be written Z, while a training sample Z; e (Dny x {0,1})* is a sequence of
examples from Dy ‘labelled’ according to the target function ¢ so that for each

! These orderings were first noted by Richter, Wess et al [16] [14] [19] who refer to these
orderings as ‘preference relations’. In our work this term is reserved for a different
kind of entity [9] [8].



pair of elements (x;,n;) in T; we have ¢(x;) = n;. The probability of an m-
sample chosen by independent random sampling from Dy, will be given by the
joint probability distribution u™ defined on the product space (Dx)™, where
w™{z} = p{z1} x ... x p{x,n}. The other distribution is defined on By, the
space of possible target concepts. It is referred to by 7 and called the ‘prior
distribution’ of the target concepts.

Systems which learn to classify may be compared in terms of their accuracy,
meaning simply the probability with which a randomly chosen example will be
correctly classified by the chosen classifier. Hence the accuracy of a learning
algorithm is the probability pu{ze Dy |L(Z;)(z) = t(z)} where L(T;) is the hy-
pothesis produced by learning algorithm L given a training sample 7, and ¢ is
the target concept. Since this will depend on both the training sample and the
target concept, expected accuracy is defined with respect to a particular target
concept by summing over all possible training samples, weighted by their re-
spective probabilities, and with respect to a particular prior, by calculating the
expected accuracy, over all the target concepts, w.r.t that prior distribution:

EAf , (m)= Y u™{7} p{weDn|L(E)(x) = t(x)} (5)
Te(Dn)™
BAf, ,)(m) = tzB: n{t} - BAG ) (m) (6)

3 Optimal, ‘Fixed’ Similarity Measures

CBl(o) is a simple instance-based learning algorithm that learns with a fixed
similarity measure and adjusts its hypothesis only by adding cases to the case-
base (Figure 1). It is the most straightforward instance-based learning algorithm
and is an example of an instance-based learner which learns using a fized similar-
ity measure, since all hypotheses chosen by CB1(0) will use the same similarity
measure ¢ to classify problem instances. Note that Figure 1 actually defines a
family of learners since the definition is parameterised by the similarity measure
.

set CB=10
for i = 1 to m do

set CB=CBU {(dl,m)}
RETURN CB1(0)(5) = h(cp,»)

Fig.1. CB1(o) Learning Algorithm [8, Defn 5.3.1]. 5 = ((d;, n;))/%, is a training
sample from (Dy x {0,1})™.

In [8] we took the similarity measure oy and measured the accuracy of
CB1(op) on monomial target concepts. The results of some of these experi-
ments, measuring the accuracy of CBl(cy) on target concepts in the spaces



Mg 1, Mg > and Mg 3, are shown in Figure 2. Methodology for the experiments is
described in [8]. The figure shows how concepts from Mg ; are learnt more slowly
than concepts from Mg 2, which are learnt more slowly than concepts from Mg 3.
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Fig. 2. [8, Fig 5.3] Average Learning Curve for Monomial Concepts t € Ms » (CBl(ox))

In addition, we observed that C'Bl(og) was not noticeably more efficient
than an extremely simple ‘rote-learning’ algorithm L, [10] [8]. CB1(c) is also
certainly less efficient for learning monomial target concepts than the ‘standard’
(non case-based) learning algorithm for monomials [18] [2], and [8] shows that
CBl(oy) is easily out-performed on monomial target concepts by an instance-
based learner which changes the weights assigned to a weighted similarity mea-
sure (Figure 4, below). The performance of CB1(or) is therefore relatively poor.

This section will informally argue that the experimental results for CB1(o )
on training samples for monomial target concepts are unlikely to be improved by
any choice of similarity measure for C B1(0), and therefore that instance-based
learners such as CB1(o) which use only a single, fixed definition of similarity are
limited in the efficiency they can achieve. The section will define what is meant
by an ‘optimal’ similarity measure. We will then define what we believe to be the
optimal similarity measure as a function of the prior distribution 7 and prove
its optimality within a restricted set of similarity measures. (We believe this to
be indicative of its general optimality.) Finally, we instantiate the measure for a
number of specific distributions, including those defining the monomial learning
experiment.



Optimality is defined here in terms of the average case accuracy of the
instance-based learner:

Definition 1. Optimal Similarity Measure. An optimal similarity measure
with respect to a prior distribution 7 of target concepts in By and some family
X of similarity measures, is a function o € X' s.t. for any other similarity measure
o' € X, the accuracy of the instance-based learner CB1(o) will be no less than
the accuracy of CB1(d").

ImoeN-Vm > myg - EA(C;{B:)(”) (m) > EA(C;T]?:)(JI)(m)

Richter [15] suggests that the similarity between two objects should be de-
fined as the probability that the two objects share the same classification. He
argues that this definition allows a meaningful semantics for ‘similarity’, and it
is intuitively appealing that a case-based classifier should choose as near neigh-
bours those exemplars which are most likely to share the same classification as
the target object?. We apply Richter’s observations by assuming the existence of
a prior distribution 7 defined on the space By of possible target concepts which
quantifies the a priori likelihood of the possible target concepts. The following
similarity measure can then be defined in terms of this distribution :

Definition 2. ‘Canonical’ Similarity Measure o,. The canonical similarity
measure o, defined with respect to a prior distribution 7 over the space By
of possible target concepts, is the function over pairs of descriptions dy,ds € Dy
whose value is precisely the probability according to @ of choosing a target
concept which assigns the same classification to d; and ds.

Uﬂ-(dl,dg) :W{tEBN|t(d1) :t(d2)} (7)

We conjecture that the canonical similarity measure o, will be the best
choice of similarity measure for CB1(c) in the case where the prior distribution
7 holds; o, will be an optimal similarity measure w.r.t. the distribution 7 in
the sense of Definition 1. Since it is not the numeric scores defined by o, but
rather the retrieval ordering defined by the similarity measure that is important
for classification, the definition of o, can be generalised to give the following
condition which is conjectured to be sufficient for optimality:

Definition 3. Well-ordered Similarity Measure. A similarity measure o €
(Dn x Dn) — [0,1] is well-ordered w.r.t. the prior distribution = iff, given three
descriptions d,d',d" € Dy, the similarity of d to d’ is as great as the similarity
of d to d” only if the prior probability of a target concept assigning the same
classification to d and d’ is as great as the probability of equal classification of
d and d":

vd,d',d" e Dy-
o(d,d) > o(d,d") — n{te By|t(d) = t(d')} > n{te By|t(d) = t(d")}

% Very similar comments precede Faltings’ recent formalisation [4].



Using the ‘retrieval ordering’ notation > and recalling the definition of o, this
condition can equivalently be written as:

Vd,d',d" €Dy -d' >3 d" —d =5 d'

The canonical similarity o, will of course be well-ordered w.r.t. 7, and might
be seen as the prototype of the set of similarity measures which are well-ordered
with respect to that distribution. There will be many other functions which
are also well-ordered for that distribution. Some of these, although computing
different numerical scores, will define exactly the same retrieval ordering as o;
9 =rgord »9d" < d =5 d'. Others will, however define a different
retrieval ordering, but only in the sense that they will define an ordering that is
more strict than »77; d' =5 d" — d' >~ d", but not d' >~ d" — d' =9 d" for
some descriptions d,d' e Dy.

Unfortunately, it has not been possible to prove in the general case that
‘well orderedness’ is either necessary or sufficient for optimality. It has been
possible, however, to define a special case where well-orderedness is a necessary
and sufficient condition. The proof is straightforward if we consider only a special
subset of the space of all possible similarity measures. This space is defined as
follows:

Definition 4. Separated Simialrity Measure. For any problem description
de Dy, a separated similarity measure o assigns a different similarity score to
the similarity of d to each description d' € Dy:

Vd, dl,d” eDy - O'(d, dl) = O'(d, d") Sd=d"

No retrieval ordering defined by a separated similarity measure will have an
equivalence class of size greater than one; the retrieval ordering will therefore
choose an unique maximum element from any set of descriptions. This restric-
tion may seem harsh, but note that any similarity measure o can be ‘separated’
simply by adding small increments to the similarity scores in order to break up
any equivalence classes of size greater than one appearing in a retrieval ordering
>=9. If 0 is a well-ordered similarity measure, then any equivalence classes in a
retrieval ordering > will contain descriptions which are equally likely to have
the same classification as d. In this case, the single nearest neighbour chosen by
o', a ‘separated’ version of o, will therefore be just as likely to have the same
classification as the test instance as any of the descriptions in the nearest neigh-
bour set defined by the original well-ordered measure 0. CB1(o) and CB1(c¢")
will not necessarily make the same classifications however. CB1(c') will clas-
sify a test instance positively iff the nearest neighbour dVV according to the
separated measure o’ is a positive instance of the target concept. CB1(o) on
the other hand classifies the same instance positively only if all near neighbours
calculated by o are positive instances. This set will include dV¥, but may also
include a number of other descriptions. The overall relationship between the
usefulness in classification of a similarity measure and its separated version is
therefore not clear.



However, precisely because a separated similarity measure will always define a
singleton nearest neighbour set, it is possible to show that a similarity measure
which is both separated and well-ordered will give CB1(c) a better accuracy
than any other separated similarity measure.

Theorem 5. Let w be any prior distribution on Bx. A separated similarity
measure o will be optimal with respect to m and the space of separated similarity
measures if and only if o is well-ordered with respect to m.

Proof. The proof is given in [8] (Theorem C.0.1). It outline, the proof considers
only E(L,Z,z), defined E(L,Z,z) = n{te BN|L(Z:)(z) # t(z)}. That is, the
proof is achieved by fixing the training sample T and the test instance x, and
summing the expected error as the target concept is varied. Sufficiency is almost
directly guaranteed by Definition 3. Necessity is proven by showing that any sep-
arated similarity measure o which is not well-ordered will have accuracy strictly
less than that of a ‘separated’ version ¢’ of the canonical similarity measure o,
as follows. From the definition of o, then E(CB1(c),T,x) > E(CB1(¢'),T,x)
for any = and z. In addition, since o is not well-ordered, there must be some
description z where E(CB1(c),T,x) > E(CB1(c¢"),Z, z) and hence, overall, the
accuracy of CB1(o) must be strictly less than that of CB1(¢"). o

Assuming for the moment that o, and all other well-ordered similarity mea-
sures are optimal or close to optimal for instance-based learning, the remainder
of this initial section will explore the different forms that o, takes as 7 is in-
stantiated as different prior distributions. Specifically, we will consider the prior
distribution which is uniform on By, and those which are uniform on My and
My 1. respectively, but zero elsewhere®. This will provide a tentative set of an-
swers to the question, ‘What is the best similarity measure for learning By, My
and My 7’ and, in particular, suggest that in fact o is as good as any other
similarity measure that might be chosen for those concept spaces.

Proposition 6. Given the ‘mazimum entropy’ prior distribution U which is
uniform over all possible target concepts t € By, the canonical similarity measure
w.r.t. U is defined by the following equation:

1ifdy =ds
dy,dy) = .
UU( 1 2) {%lfdl #dQ

Proof. Consider separately the two cases where dy = dy and d; # dy. When
dy = da, then w{te By|t(dy) = t(d2)} = 1 trivially, since t(dy) = t(dy) for
all te By. Where d; and dy are distinct, however, consider that there are four
distinct classifications for the pair of variables (d;,ds), one where both are 0,

% We consider monomial target concepts here out of continuity from our previous work
[10] [11]. We do not claim that learning monomial concepts is a serious or ‘realistic’
problem for case-based learners, but rather that monomials provide a sufficiently
constrained domain of study where methods of analysis can be developed before
applying them to more developed models of case-based learning.



one where d; is 0 and d» is 1, and so on. For each classification there are 21PN |2

concepts in By consistent with that classification, since there are (|Dn| — 2)
remaining descriptions, each of which may be assigned either 0 or 1 by a target
concept. Thus there are 22" ! out of 22" concepts in By which assign the same
classification to dy and dy (¢(dy) = t(d2)), giving a value of 1 for o on distinct
descriptions d; and ds in the case where all concepts in By are equally likely. 0O

Proposition 7. Given the prior distribution wy; which is uniform on monomial
target concepts t € M and zero elsewhere, the canonical similarity measure w.r.t.
w18 defined by the following equation:

2N+1 _ 2N75+1
Uﬂ—M(dl,dg):l— ( )

3N

where § is the number of bils of the representation on which dy and ds differ;
6 = (N —N.O’H(dl,dQ)).

Proof. Let § be the number of bits on which d; and ds differ. Consider that
out of 3 monomial concepts, there will be 2%V concepts which have value 1 on
the description d;. Of these, any function defined by a monomial description
which only contains literals corresponding to the N — § bits on which d; and
d> agree will also have value 1 on d>. Hence the number of monomial concepts
which have value 1 on d; and value 0 on d» will be (2 — 2V=9). Since the set
of concepts which have value 1 on d; and value 0 on dy is disjoint from the set
of concepts which have value 0 on d; and value 1 on d», this gives a total of
(3N —2(2N — 2N=9)) monomial concepts on N variables which assign the same
classification to d; and ds. Hence result. a

Proposition 8. Given the prior distribution 7wyr, which is uniform on k-literal
monomial target concepts te My, and zero elsewhere, the canonical similarity
measure w.r.t. i is defined by the following equation:

()
1 k
Onppe (d1,d2) =1 — 1— ———=

00

where § is the number of bits of the representation on which di and ds differ.

Proof. The derivation is very similar to that of Proposition 7. In total there
are 2F (g) k-literal monomial expressions e.g. [8, Propn 5.1.2], while (]Z
of these will be positive on a specific description d; € Dy. Of these, exactly

(N k_ 6) concepts will also classify ds positively. Hence result. O

Propositions 6, 7 and 8 carry a number of implications. Proposition 6 suggests
that in the maximum entropy case, then the ‘nearest neighbour’ assumption of



case-based reasoning is invalid, and that apart from an exemplar whose descrip-
tion exactly matches a problem instance, all exemplars are equally (un)inform-
ative about the correct classification of the problem instance, whether or not
their descriptions are syntactically similar to the problem instance. This illus-
trates the fundamental idea from learning theory that all generalisation strategies
are equivalent when all possible classifications of the example space are equally
likely c.f. [21] [17].

Proposition 7 on the other hand describes a similarity measure which corre-
lates negatively with §, the number of values on which two descriptions disagree.

The measure o,, has value 1 when § = 0, has value 1 — 2.(2:—;1) when 6 = N
and strictly decreases for values of § between these two limits. Since the ‘fea-
ture count’ similarity measure og also has this property of decreasing strictly
in § (and, like oy,,, the value of oy is determined only by N and §), then
d»=j7d < d EZ"M d". The orderings defined on the example space by the
two measures are identical, and h(cp s,y = h(c B,os,,) O all arguments and for
all case-bases CB. A fortiori, oy is a well-ordered (and hence, according to our
conjecture, optimal) similarity measure for mp;.

The behaviour in § of the similarity measure described by Proposition 8 is a
little more subtle. As long as § < N — k then the value of the similarity measure
Ora decreases strictly in §. If instead 6 > N — k then no function defined by
a k-literal monomial expression can classify both dy and d» positively. In this

k-1 .
case 21 which

k_ has value 0 and the value of o.,,, is given by
is independent of §. This suggests that all exemplars whose descriptions are
sufficiently dissimilar to d; will be equivalent for the purposes of classifying d; .
Provided d; and ds agree on most features however, the usefulness of an exemplar
with description dy for classifying dy will increase as § decreases. Although o,,,
decreases only non-strictly in §, this is still sufficient to ensure d' >5* d" —
d EZ"M’“ d", and o is also a well-ordered similarity measure for the distribution
TME-

This discussion therefore supports (but does not strictly prove) the assertion
that no similarity measure can do better than oz in the experiments described in
[8] and that the learning curves shown in Figure 2 represent the limit of efficiency
that can be achieved by C'B1(c), using any possible similarity measure, when
learning monomial target concepts.

4 Optimal ‘Learnt’ Similarity Measures

§3 showed there are experiments, such as learning monomial target concepts,
where an instance-based learner with a fixed measure of similarity has appar-
ently poor performance which cannot be overcome by any choice of similarity
measure. On the other hand, several theoretical studies [12] [5] show that the
power of instance-based learning is extended if the learner is allowed to change
its definition of similarity. This section therefore considers the ‘best’ representa-
tion for similarity in this class of instance-based learners which are able to learn



a definition of similarity from the training sample rather than using a single,
fixed definition of similarity. The section proceeds as follows:

1. Firstly, we illustrate the gains in efficiency achieved by allowing the sim-
ilarity measure to vary by describing a ‘similarity learning’ IBL algorithm
called V' S-C BR, which learns monomial target concepts more efficiently than
CBl1(0), even using an ‘optimal measure’ for CB1(c) such as oy.

2. Secondly, we consider ways in which V'.S-C BR itself might be inefficient, and
in response define V.S-C'BR3.

3. Finally, we apply the approach of §3, which says that ‘two descriptions are
similar if they are likely to have the same classification’ and from this derive
an apparently new IBL algorithm called V.S-C BR2.

This note describes work in progress and we have not yet been able to carry
out any evaluation of V.S-CBR2 and V' S-C' BR3. Instead, we conjecture a num-
ber of hypotheses which we expect to be confirmed in our forthcoming evaluation
of these algorithms.

Figure 3 shows the IBL algorithm V.S-C'BR. This algorithm is specifically
tailored to monomial target concepts; it will not correctly identify non-monomial
targets. Its operation is straightforward [19] [11]:

— Only the first positive example in the training sample is added to the case-
base. All other positive examples are discarded.

— All negative examples in the training sample are added to the case-base.

— Only binary weights are assigned to og; the algorithm searches the space of
2NV similarity measures corresponding to the weight vectors w e {0, 1}7V.

— All weights are 1 initially. A weight changes to zero iff two positive examples
are observed which disagree on that bit of the representation.

Figure 4 shows the learning curve of V.S-CBR for target concepts in Mg 1,
Ms,» and Mg 3. Experimental conditions can again be found in [8]. The figure
shows the learning curves starting from the same initial accuracies as observed
in Figure 2. The learning curves however achieve a close to perfect classification
accuracy much more quickly than the learning curves for C B1(og) shown in that
figure. This emphasises the benefit of changing the similarity measure during
learning. Figure 4 also shows that, in contrast to Figure 2, the learning curve
for target concepts in Mg 1 approaches perfect accuracy more rapidly than the
curve for target concepts in Mg » which in turn converges more rapidly than the
curve for target concepts in Mg 3.

VS-CBR is an example of the large family of IBL algorithms which change
their similarity measure but only in a limited way, namely through choosing
different weights for a similarity measure similar to equation (3) [20]. However,
we may question whether a weighted similarity measure is actually the best or
‘optimal’ way to express knowledge about similarity inferred from the training
sample, just as in §3 we questioned whether o was the best similarity measure
for CB1(0) in experiments such as those shown in Figure 2. This premise cer-
tainly seems questionable in the case of V.S-CBR since this algorithm clearly



forall 1 <i < N,ne{0,1} set fli,n] =1
set CB=1
for i = 1 to m do
if n; = 1 then
if -3de Dy - (d,1)eCB then set CB =CBU {(d;,1)}
for j =1 to N do
set f[j,1—(di);] =0
else
set CB=CBU {(d;,0)}
forall1<i< N
if f[4,0] =1V f[i,1] =1 then
set w; =1
else
set w; =0
RETURN VS-CBR(S) = h(cB,ogp)

Fig.3. VS-CBR Learning Algorithm for Concepts in My [19, Fig 4]. 5 =
{(ds,ms))i%; is a training sample from (Dy x {0,1})™.
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Fig. 4. [8, Fig 6.1] Average Learning Curve for Monomial Concepts ¢t € Mg 1. (V S-CBR)



discards information about the target concept when it computes the weight vec-
tor w. After processing any sample S, f[i,n] = 1 only if no positive exemplar
dpos has been processed such that (dpes); = (1 —n) and therefore all observed
positive examples have value n on bit ¢ of the representation. o has a value
1 in a certain position iff that bit of the representation has the same value in
all positive examples in the training sample, while f encodes the information of
what that value is. There is therefore a loss of information when f is translated
to the similarity measure o; this is also shown by the fact that the state of the
array f determines a single corresponding weight vector we {0, 1}V, while the
converse is not true.

A better approach might be if the information in f is used directly. In [11],
we noted that the information held in the f array directly corresponds to the
monomial hypothesis chosen by the standard algorithm for monomials [18] [2]
(which we call ‘M’). This information can be employed more effectively by the
following similarity measure o} which is defined for a single monomial function
with monomial representation U, and which states that two descriptions are
similar iff they are given the same classification by the concept represented by

U:
1if hy(dy) = hy(ds)

M _
oy (dy, dp) = {0 otherwise (8)

Figure 5 shows the algorithm V.S-C BR3 which computes this similarity mea-
sure in a very similar fashion to V.S-C'BR. This algorithm will now be very sim-
ilar to M; in fact the hypothesis will be exactly the same as that of M provided
the training sample contains at least one negative and one positive example.

forall 1 <i < N,ne{0,1} set fli,n] =1
set CB=10
set U =10
for i = 1 to m do
if n; = 1 then
if =3de Dy - (d,1) e CB then set CB = CB U {(d;,1)}
for j =1 to N do
Set f[j,1— (di);] = 0
else
set CB=CBU {(d;,0)}
forall1<i< N
if f[i,0] =1 then set U =UU {u;}
if f[i,1] =1 then set U =UU {u;}
RETURN VS—CBR3(§) = h(CB,o'U)

Fig.5. VS-CBR3 Learning Algorithm for Concepts in My. s = {(d;,n;))j~, is
a training sample from (Dy x {0,1})™.

VS-CBR3 suggests one way of improving on the performance of V.S-CBR.
However, §3 argued that the ‘meaning’ of the similarity of two objects should



be the probability that the two objects are assigned the same classification; this
can be developed to give yet another view of the problem of learning similarity
measures. Definition 2 defined a ‘canonical’ similarity measure, based upon this
intuition, which makes use of a priori probabilities of target concepts. An adap-
tive definition for similarity can be based instead on a posteriori probabilities of
target concepts, given what is actually known about the target concept from the
training sample. That is, instead of the similarity measure o, defined as the un-
conditional probability m{te By|t(d1) = t(d2)}, an adaptive similarity measure
can be defined by the conditional probability of two objects being classified the
same given that the target concept is one which produces the labellings observed
in the training sample:

Ui(dl, dg) == W{tEBN AN ft = §|t(d1

= t(dy)}
= — 9)

where T e (Dy)* is the (unlabelled) sample of the example space corresponding
to 5 (i.e. the sample Te (Dy)* s.t. Ty = 5 for some concept ¢ consistent with the
labellings on 3.)

As with §3, the prior distribution 7 can be instantiated in order to consider
what the best ‘instance-based’ learner for a particular prior might look like.
Taking again the special case of monomial target concepts and the distribution
was which is uniform on the monomials and zero on all other concepts, then
the conditional probability is easily reckoned as the proportion of monomials
consistent with the training sample which agree on the two descriptions. Hence,
if a set V.S of concepts is defined as the set of monomials which are consistent
with the training sample 5, then UEM is instantiated as the measure oy g, defined
as follows:

set CB=10
set VS = My
for i = 1 to m do
if n; = 1 then
set VS = VS \ {te My|t(d;) = 0}
else
set VS = VS \ {te My|t(d:) =1}
if V(d, b) eCB - Uvs(d, di) < 1 then
set CB=CBU {(dl,m)}
RETURN V' S-CBR2(3) = hcB,oys)

Fig. 6. VS-CBR2 Learning Algorithm for Concepts in My [8, Defn 8.3.1].
5 = ((di, nq))7X, is a training sample from (Dy x {0,1})™.



Figure 6 defines the IBL algorithm V S-C'BR2 which calculates the set V.S
naively. It is presented for illustration; a more efficient way of calculating the set
V'S must be found, since Figure 6 as it stands defines an algorithm which has
exponential execution time in the worst case. (It should be possible to calculate
the similarity measure oy g more efficiently from properties of the training sample
or from a more efficient representation such as a version space [13].)

The algorithm initialises V.S to the set of all monomial concepts My; the
initial similarity measure used by V' S-C BR2 is therefore equivalent to o (w.r.t.
the retrieval orderings defined by the two measures; see Proposition 7). On the
other hand, if there is only a single monomial concept consistent with the training
sample, V'S = {t} for some te My, then the similarity measure oy g is reduced
to the statement that two descriptions are similar iff they are given the same
classification by t. i.e. oy s = o where:

Lif #(dy) = t(do)

0 otherwise (10)

ot(dy,dz) = {

In addition, it is clear that, if the training sample contains enough examples
for the (non case-based) standard monomial learner M to identify the target
concept, then V.S-C BR3 also converges to the same final similarity measure o
(c.f. equation (8)). These two extremes have a strong intuitive appeal. However,
the trajectory of oy g between the two is less clear.

We have not yet carried out any evaluation of V.S-CBR2 and V.S-CBR3. We
would expect the following points to be demonstrated in empirical experiments
or average-case analysis comparing CBl(og), VS-CBR, VS-CBR2 and V S-
CBR3:

1. Since we argue that the similarity measures used by VS-CBR2 and V' S-
CBR3 make better use of the information that may be derived from the
training sample than V.S-CBR, we would expect both these algorithms
to learn with more rapidly increasing accuracy than either V.S-CBR or
CBI(O’H) -

2. Secondly, we would expect that V' S-CBR2 is at least as accurate as V.S-
CBR3 ‘on average’; the similarity measure used by the former is an instan-
tiation of equation (9), which we believe to be the ‘best’ way of calculating
similarity if a suitable prior is known. Comparing V.S-CBR2 and V.S-CBR3
therefore gives a very interesting test of the conjectures of optimality put
forth in this paper.

3. Finally, we would also expect at least V.S-C BR3 to follow the trend of Figure
2 rather than Figure 4; we would expect this algorithm to learn monomial
target concepts with the smallest monomial expressions more slowly than
those represented by a larger monomial expression. This follows from the
logic of a ‘constituent analysis’ [8] [11]. Once the correct similarity measure
has been identified by V. S-C BR3, then the learner needs only one positive
exemplar and one negative exemplar in the case-base to correctly identify
the target concept. It is therefore easily shown that the number of examples
needed in the worst case for V.S-C'BR3 to populate its case-base is constant



i.e. is independent of the choice of monomial target concept. As in V.S-
C BR however, the number of examples needed by V' .S-C' BR3 to infer a good
similarity measure increases linearly in the number of irrelevant variables [8]
[11]. Thus, overall, we would also expect the sample complexity of V.S-CBR3
to increase in the number of irrelevant variables, as indicated. The picture
for VS-CBR?2 is less clear, since we have not yet been able to characterise
the hypotheses of this learner.

In addition, the comparison of V.S-CBR2 and V S-C'BR3 with other ‘efficient’
algorithms for learning monomial target concepts, such as the ‘standard’ al-
gorithm [18] and Version Space [13], would provide a very useful comparison of
instance-based and non instance-based methods and demonstrate whether induc-
tive learning using the ‘case-based representation’ (C'B, o) has any fundamental
differences (w.r.t. sample complexity and efficiency) from other (non case-based)
learning algorithms.

5 Conclusions

The main results of this paper are presented in §3 and §4. §3 defined the ‘canoni-
cal’ similarity measure o, and the property of ‘well-orderedness’ which we believe
to define the ‘optimal’ similarity measure that can be chosen for the instance-
based learner C B1(o) given some prior distribution of target concepts. We then
showed, by instantiating o, that the straightforward ‘feature-counting’ similar-
ity measure o is well-ordered for the distributions U, 7as and may, and therefore
we would expect that no other choice of similarity measure would improve the
performance of CB1(c) on the concept spaces Bn, My and My, beyond that
already measured for CB1(or). It has already been shown (e.g. in Figures 2 & 4)
that the performance of CB1(oy) can easily be bettered, at least on monomial
target concepts, by V'S-C' BR. This suggests that the policy of using only a fixed
similarity measure, as in CB1(c), places a strong restriction on an instance-
based learner and that there is at least one case where an instance-based learner
which can change its similarity measure is strictly more accurate in learning than
an IBL algorithm with a fixed similarity measure.

Future work might explore whether op is also well-ordered for more gen-
eral, ‘realistic’ sets of target concepts. It would be interesting to extend the
work presented here and calculate the canonical similarity measure for the prior
distributions corresponding to the set of concepts represented, for example, by
linear threshold functions, or by k-term DNF, k-DNF, k-term CNF and k-CNF
propositional formulae.

§4 shows how the canonical similarity measure of §3 also suggests a ‘new’
instance-based learning algorithm V.S-CBR2 for learning monomial concepts
which we believe to be more efficient than the algorithm V' S-CBR [19] which
we have studied previously [8] [11]. We also defined V.S-CBR3, a further variant
of VS-CBR which we also hope to be more efficient than the original algo-
rithm. Unlike §3 where we found evidence suggesting that the ‘obvious’ similar-
ity measure oy is as good as any other for the experiments considered there,



the similarity measures used by VS-CBR2 and VS-CBR3 are quite different
from that used by V.S-CBR. Whereas VS-CBR uses a conventional ‘weighted’
similarity measure which sums similarity along a number of different dimen-
sions, VS-CBR2 and V.S-CBR3 use a ‘non-dimensional’ or ‘context sensitive’
similarity measure where the dimensions of the representation do not contribute
independently to the calculation of similarity.

Detailed investigations of the learning curves of these new algorithms must
await further work. It seems clear however that V'S-CBR2 and VS-CBR3 will
both learn more efficiently than V.S-CBR. If this is confirmed to be the case,
then this raises a number of points about the nature of instance-based learning:

1. The comparison of VS-CBR, VS-CBR2 and VS-CBR3, where we fully
expect V.S-CBR2 and V.S-CBR3 to be found to be more efficient than V S-
CBR, suggests that in the case of monomial target concepts at least, the
weighted similarity measure oz is not the most conducive representation
for information about similarity between descriptions in the special case of
monomial target concepts. This raises the question of whether general pur-
pose IBL algorithms could also improve their accuracy of learning if they used
some other form of similarity measure than the weighted similarity measure
ow. It would be interesting to instantiate equation (9) with a prior distri-
bution corresponding to the bias toward ‘naturally occurring classification
problems’ assumed in general purpose learners such as IB4 [1] or PEBLS [3],
and to compare the learner derived that way with existing instance-based
learners.

2. However, if weighted, ‘dimensional’ similarity measures are abandoned in
order to achieve better generalisation accuracy and more efficient learning,
then VS-CBR2 and V S-C BR3 demonstrate that some other useful proper-
ties of instance-based learning can be lost. IBL, like other forms of case-based
reasoning, normally has the advantage that the system can give a straight-
forward explanation of its inferences; “the solution was chosen because the
case which is most similar to the new problem contains that outcome”. The
similarity measures used by VS-CBR2 and V.S-C BR3 do not however sup-
port this kind of explanation since they both have the property, also inherent
in equation (9), that all positive exemplars are equally similar to any point
in the example space, and all negative exemplars are also equally similar to
any point. For example, in the case of V'.S-C BR2, for any case-base C'B and
the set V.S of monomial concepts consistent with CB:

Vd,d},df e Dy-
(df,1)eCBA (df,1)eCB — ovs(d,d) = ovs(d,df) (11)

vd,d; ,d; e Dn-
(dl_,O) eCBA (dQ_,O) eCB — oys(d, dl_) =oys(d, d2_) (12)
In VS-CBR2 and V S-C BR3, nearly all the information transferred from the

training sample to the hypothesis h(cp ) is expressed through the similarity
measure o rather than the case-base CB. Any of the positive exemplars are



interchangeable with one another, and indeed all but one of the positive
exemplars can be deleted without changing the concept represented; the
same applies also to the negative exemplars. It is clear that the classifier
can no longer be said to reflect a policy of lazy generalisation (since most
of the information in the exemplars of C'B is redundant and most of the
knowledge about the target concept has already been compiled into the
similarity measure) and therefore any advantage which follows from storing
an extensional representation of the target concept in the case-base may
be lost (since the instance-based classifier is no longer able to distinguish
between exemplars of the same classification).

The ideas presented in this paper therefore emphasise that there is a tension

in instance-based learners between maximising predictive accuracy and exploit-
ing any advantages which follow from lazy generalisation.
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