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Abstract This paper compares the efficiency of two instance-based learners,
one which can change its similarity measure and one which cannot, as they
learn monomial target concepts. Using this example, we discuss the methodol-
ogy of theoretical comparisons of learning algorithms, and describe our approach
as a ‘practical’ PAC analysis. This is contrasted with conventional applications
of PAC learning which focus on the properties of the concept space rather than
specific learning algorithms. PAC results and informal considerations suggest
that a learner with a larger hypothesis space will often be less efficient than a
learner with a smaller one, although this is not strictly required by the PAC
results. This paper therefore proposes that comparing the effective hypothesis
spaces of the different learning algorithms gives useful information about the
learning behaviour of those learners. Our results support this; where we have
been able to derive results describing the hypothesis space of instance-based
learners, a larger hypothesis space is predictive of a less efficient learning algo-
rithm. We conclude that the instance-based learners studied here are examples
of learning algorithms where there is a correlation between the upper bounds
on the sample complexity of a learner given by PAC results and the (average-
case) efficiency, and that the relationship between these two quantities should
be investigated further.

1 Introduction

This paper describes the analysis of instance-based learning algorithms (IBL) within
the PAC learning framework [13] [2], and discusses the role played in this analysis by
knowledge of the hypothesis space of the learner. The PAC framework is concerned
with concept learning, and in our work we consider concepts defined on the example
space of N-bit binary vectors Dy = {0,1}". The set of all concepts that might be
defined on Dy is written By, By = (Dy — {0,1}).

The efficiency of a learner is measured in the PAC framework by its sample com-
plexity:
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Definition 1 Sample Complexity [2]. The sample complexity my(t,d,€) of a
learning algorithm L with respect to a target concept te By s the least value of m
such that, for any degree of confidence and accuracy 0 < d,e < 1, the hypothesis in-
ferred by L from a training sample of size m will, with probability > 1 — 6, have an
error < € with respect to the target concept t, using any underlying distribution.

Additionally, the sample complexity my(C,0,€) of a learner L with respect to a
concept space C' (C' C By) is defined my(C,d,€) = max,ccmy(t,0,¢). Results in
the PAC framework [3] link the sample complexity of a learner to properties of its
hypothesis space:

Definition 2 Hypothesis Space. The hypothesis space of a learner L with respect
to a target concept t, written HE, is the set of concepts he By for which there is some
sample Te (Dy)* s.t. the hypothesis output on the sequence T, is precisely h,

H}f = {heBy|3T e (Dy)* - L(T;) = h} (1)

where Ty is the sample defined T, = ((x;,t(x;)))", and x; is the i-th element of the
sample T. The hypothesis space HE defined with respect to a concept space C C By
15 the set of hypotheses that might be output on training samples for at least one of
the target concepts teC':

HE = Hf (2)
teC

The result known as the ‘Blumer Bound’ [3, Thm 2.2] states an upper bound on
the sample complexity my(C,J,€) of a consistent learning algorithm which is of the
order of (+log %+ %EH@‘), where H} is the hypothesis space of the learning algorithm
L w.r.t. the concept space C. The proof of [3, Thm 2.2] can also be modified slightly
to give a bound for my,(t, 4, €) of the order of (£ log 5+ %) c.f. [7, Propn 6.5.11]. A
different upper bound on sample complexity [3, Thm 2.1] depends upon the quantity
known as the VC dimension? of HE.

It is easy to argue informally that the larger the hypothesis space, the more train-
ing examples the learning algorithm must see in order to discriminate between the
available hypotheses [9]. The PAC results described above formalise this link between
the efficiency and the hypothesis space of a learner. The link is not conclusive, how-
ever, since the formal results we have stated are only upper bounds. The aim of this
paper is therefore to explore, using examples drawn from our studies of instance-based
learning algorithms, the relationship between hypothesis space and sample complex-
ity, and in particular to explore just how much information about the learning curve
of an algorithm is given by knowledge of its hypothesis space. §2 below discusses in

more detail work which is related to our own, while §3 introduces the instance-based

2A set X' C X is shattered by the set F C (X — {0,1}) iff there is a concept ce F s.t. X" =
{z e X'|c(x) = 1} for all subsets X" C X'. The VC Dimension of the set F' C (X — {0,1}), written
dyc(F), is the size of the largest subset of X which is shattered by F. In addition to defining an
upper bound on sample complexity, the VC dimension also gives a lower bound in some circumstances
and is said to characterise learnability in that a concept space will have a polynomial VC dimension
if and only if there is a learning algorithm for that space with polynomial sample complexity [3] [4].



learners which provide our examples. §4 and §5 then present our results concerning
these algorithms which form the main data for our presentation and §6 summarises
our observations.

2 Related Work

The work described in this paper continues previous studies of IBL within the PAC
Learning Framework. In the best known study in this field, Albert and Aha [1] analyse
a simple instance-based learner which can learn any concept defined on a space of N
real-valued attributes. Since no learning algorithm can learn arbitrary classifications
of this representation, the authors have to express the sample complexity as a function
of the length of the boundary of the target concept and in this way are able to specify
finite sample sizes sufficient for PAC learning broad classes of target concept.

The study presented in [1] has since been extended in a number of ways. For ex-
ample Albert and Aha consider only a fixed similarity measure, while IBL algorithms
which are able to adjust their similarity measure have since been studied, for example
in [11] [8]. In addition, Albert and Aha consider problem instances represented by
vectors of real values and their solution, a sample complexity which is a function of the
length of the concept boundary, does not transfer from this setting to one where prob-
lem instances are represented by discrete (non-scalar) values. Instance-based learning
over problem representations based on binary valued ‘boolean’ variables is studied in
[6] [7].

In this paper we use as a motivating example the comparison of an instance-
based learner with a fixed similarity measure, with an instance-based learner which
adjusts its similarity. In addition, this work differs from both [1] and [6] since we
address specifically the question of how to analyse a learning algorithm to discover
its learning properties on a particular target concept, rather than looking for general
‘learnability’ properties which hold over a broad class of target concepts.

Our focus distinguishes this work not only from other papers specific to IBL [1] [6],
but also from the ‘traditional’ view taken in the study of PAC learning. We believe
that our use of PAC learning results is a more ‘practical’ or concrete application of
the theory than is usual in the field. In its original conception, e.g. [3], ‘traditional’
PAC learning typically asks questions such as whether an efficient learning algorithm
exists for a particular concept space. As a result, it is usually assumed that the
concept space is precisely the set of concepts representable by the learner, presumably
because the learner has been carefully chosen to match the intended concept space
(HL = C). In contrast, we are interested in a more ‘practical’ application of the
results, starting off with a particular learning algorithm and attempting to determine
its sample complexity w.r.t. a particular target concept or concept space. In the work
we describe below, the typical question is rather whether one learning algorithm is
more efficient than another in the context of a particular learning problem. We would
like to establish, for example, whether an instance-based learner which changes its
similarity measure requires fewer examples to reach a certain level of accuracy than
one which does not. Since the algorithm is no longer assumed to ‘fit’ the concept space,
but rather the concept space is simply a parameter of the analysis, it will now generally



be the case that the hypothesis space contains concepts which lie outside the original
concept space (C C HE). The algorithms such as the instance-based learners which
we study in our ‘practical’ application of PAC learning are not, generally, optimally
biased to the concept spaces we choose as examples.

This creates some difficulties for a rigourous application of PAC results. The known
lower bounds on sample complexity [4] are given in terms of C rather than HE and
are intended to indicate the intrinsic difficulty of learning the concept space C' rather
than the sample complexity of any single learning algorithm. The Blumer Bound
[3, Thm 2.2] meets these lower bounds only when log|H}| = O(dyc(C)) [4] (where
dvc(C) is the VC dimension [3] of the concept space C). log|HE| = O(dy¢(C)) will
sometimes hold when HL = C, since dy¢(C) < log, |C|, but it is unlikely to hold if
H} is significantly larger than C. Therefore, while |HE| provides an upper bound,
there are no known general results which determine the actual sample complexity of
the algorithm. Similarly, |H}| provides an upper bound for my(¢,d,¢) but there is
no lower bound suitable for comparison. One of the issues in our work has therefore
been to observe whether the upper bounds given by |H&| and |HE| provide any useful
information about the actual learning behaviour of L.

Since the actual sample complexity of learners such as IBL algorithms is not ac-
cessible without more powerful methods of analysis, we can only validate the upper
bounds provided by |Hf| and |H}| indirectly. We do this by comparing the upper
bound with the average-case accuracy of the learner, measured by empirical exper-
iment. The number of examples needed to reach a certain level of accuracy in the
average case will be quite different from the numeric value of the sample complexity;
instead we are interested in whether the qualitative relationships between the average-
case accuracies of learners in different experiments will be predicted by differences in
the quantities |HE| and |HF|. This paper explores the hypothesis that, where there
are learning algorithms L and L' and target concepts ¢ and ¢’ s.t. |HF| < |H['| or
dyve(HF) < dye(HY'), then the average-case accuracy of L on the target concept ¢ is
(in some sense) likely to be greater than that of L' on ¢’ (c.f. similar statements in
HE). This will be valid only if two assumptions hold. Firstly, it is assumed that the
accuracy of a learning algorithm increases as the the sample complexity decreases, i.e.
that average case accuracy correlates (negatively) with worst-case sample complexity.
Secondly, it is assumed that the sample complexity of the learner increases with the
upper bounds. This paper provides some examples where these conditions evidently
do hold and which demonstrate correlation between increased hypothesis space and
decreased accuracy.

3 Case Studies: CB1 and VS-CBR

Our questions concerning the ‘practical’ use of the PAC learning framework will be
illustrated by results concerning the hypothesis spaces of simple instance-based learn-
ers when learning monomial or conjunctive target concepts. A monomial concept can
be represented in the propositional calculus by a simple conjunction of literals; e.g.
w1z may represent the concept on D5 whose positive instances are 10000, 10001,
10010 and 10011. The set of monomial concepts defined on Dy is referred to as My.



set CB = ()
fort:=1tomdo

set CB=CBU {(d“nl)}
RETURN C'B1(3) = heB.ow)

Fig. 1: CB1 Learning Algorithm [7, Defn 5.3.1]. 5 = ((d;,n;))]*, is a training
sample from (Dy x {0,1})™

Further, My 4 is defined as the set of monomials with exactly k literals; u; represents
a concept in My i, while u uausu, represents a concept in My 4. The i-th bit of the
representation is said to be relevant to a monomial concept t e My if the literal u; or
u; appears in the expression representing ¢, and #rrelevant if not.

Simple instance-based learning algorithms learn by adding cases to a case-base
CB and by choosing a similarity measure 0. A case-base C'B is a set of exemplars,
each of which is a pair (d,n)e(Dy x {0,1}). Normally, a case-base is compatible
with some target concept te By s.t. for each exemplar (d,n)eCB, t(d) = n. This
is written CB C t; CB C t = (Y(d,n)eCB - t(d) = n). The similarity measure
o is a total function in Dy x Dy — [0,1] which returns a real value indicating the
degree of similarity between its two arguments. The pair (C'B, o) is interpreted as the
representation of a {0, 1}-valued function defined on Dy as follows (c.f. the ‘standard
semantics’ of [5]):

L if dpos, 1) €eCB -VY(dypeq,0) e CB - 0(d, dpos) > 0(d, dyey)

0 otherwise

hicpe(d) =
{ (3)

The learners studied here use a weighted similarity measure; in this paper, this
measure is simply a sum of the bits of the representation on which two descriptions
agree, weighted according to a ‘weight vector’ we [0, 1]

ow(di,dy) = sz (1= [(d1)i — (d2)il) (4)

zlwlzl

If the weight vector w has weight 1 in all elements then oy treats all dimensions
of the representation equally and is analogous to the Hamming distance between the
two descriptions. In this case, the function will be written oy, and is the similarity
measure used by the most straightforward instance-based learner, CB1 (Figure 1).
C'B1 learns by accumulating all the available cases into the case-base C'B and choosing
the hypothesis represented by (CB, o).

CB1 is limited by its use of just a single measure of similarity; this is known to
reduce the effectiveness of an instance-based learner [5], and particularly to reduce
the small sample accuracy where some bits of the representations are irrelevant to
the target concept [15]. The instance-based learner V.S-CBR [14, Fig 4] overcomes
this limitation by learning whether or not each bit of the representation is relevant
to a monomial target concept and adjusts the weights of the similarity measure oy
accordingly. The operation of V.S-CBR is described in detail in [14]. In outline, V'S-
CBR differs from C'B1 by selectively adding exemplars to the case-base (all positive
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Fig. 2: [7, Fig 5.3] Average Learning Curve for Target Concepts teMs; (CB1)
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Fig. 3: [7, Fig 6.1] Average Learning Curve for Target Concepts teMs; (VS-
CBR)

exemplars other than the first are discarded) and by adjusting the weights of the
similarity measure oz. All weights of w are 1 initially, but a weight changes to zero iff
two positive examples are observed which disagree on that bit of the representation.

Figures 2 and 3 show the results of simple experiments measuring the accuracy of
CB1 and VS-CBR w.r.t. target concepts t e Mgy, for values for k of 1, 2 & 3. The
figures show the average accuracy of the algorithms for a target concept from each of
the concept spaces plotted against the size of the training sample.

Figure 2 shows the results of this experiment for C'B1. The graph shows how
the accuracy of the learner starts at approximately (1 — 27%) for a target concept
t e My (corresponding to the probability of randomly sampling a negative instance
of the target concept), shows a slight initial decrease and then increases steadily as
additional exemplars are added to the case-base. The figure shows that C'B1 learns
concepts from Mg ; more slowly than concepts from Mg o, which are learnt more slowly



N |H{ P |By| = 22"
k=1 k=2 k=3

1 4 — — 4
10 10 — 16
3 96 60 60 256

Table 1: [7, Table 5.3] Values of |[H{P! | for 1 <k <N <3

than concepts in Mg 3.

Figure 3 shows the average learning curve for V.S-C'BR on target concepts on the
same concept spaces Mg . The figure shows the learning curves start from the same
initial accuracies as observed in Figure 2, but achieve a close to perfect classification
accuracy much more quickly than in Figure 2. Additionally, in Figure 3, the learning
curve for target concepts in Mg ; approaches perfect accuracy more rapidly than the
curve for target concepts in Mg > which in turn converges more rapidly than the curve
for target concepts in Mg 3: the opposite to the pattern shown in Figure 2.

4 Hypothesis Space of CB1 and VS-CBR

This section presents our results concerning the hypothesis spaces of C'B1 and V' S-
CBR. It is clear from the definition of C'B1 that exemplars are added indiscriminately
to the case-base, and therefore all possible case-bases are reachable by the algorithm.
The hypothesis space of C'B1 w.r.t. a target concept ¢ is simply the set of concepts
that are represented by oy and a case-base compatible with ¢ (c.f. [7, Propn 5.3.1]):

thB 'HCBI:{hCBU|CBCt}
VC C By - H5P' = U, o{eBo)|CB C t}

Table 1 shows the cardinalities of the hypothesis spaces Hp;5! for values 1 < k <
N < 3. The table shows that the small values of N and k& that we have been able
to consider are really too small to demonstrate the structure and relationships of the
hypothesis spaces. However, in the case where differences in the hypothesis space
start to emerge, i.e. where Table 1 shows there are 96 members of Hy;” but only
60 members of Hy”! and Hy”!, then the numbers shown are consistent with the
argument that larger hypothesis spaces correlate with slower convergence in learning.
That is, the limited picture presented by the table shows that k < &' — |[Hy/”! | >
|HCB I, i [HER! | decreases (non-strictly) in &, while Figure 2 shows that the

accuracy of CB1 increases in k. There are 32" case-bases for functions defined on
N propositional variables and calculating HCBlIc requires 6, 561 tests for N = 3, but
4.3 x 107 tests for N = 4. Extending the table beyond what is shown above would
therefore not be practical without much more selective evaluation of the case-bases.
Further statements about H“P' have been elusive, but more success has been
forthcoming in the case of V.S-C'BR?. The following result includes at least two main

3Details of the analysis summarised here can be found in [7] [8]. Proofs of the new results of this



claims about HYVS"¢BE_ Firstly, it implies that the positive exemplars discarded by
VS-CBR are irrelevant to the hypothesis represented and secondly, it shows that
the different weighted similarity measures that might be chosen by V. S-C'BR can be
ignored in the sense that all hypotheses of V'.S-C'BR are representable by the uniformly
weighted similarity measure oy:

Proposition 3 [7, Propn 6.4.2] The effective hypothesis space of VS-CBR w.r.t.
any target concept te My is the set of concepts hicp,q,) where CB is any case-base
compatible with t and which in addition has no more than one positive exemplar:

Vte My - HY S PR = {hicp oy |OB C t A #{dpos € D |(dpos, 1) e CB} < 1}

For each monomial concept ¢ e My, there are a number of more specific monomial
target concepts which will have all the negative instances of ¢ as negative instances
and will still be positive on some single description. The result below therefore follows
immediately as a corollary of Proposition 3:

Corollary 4 [7, Cor 6.4.3] The hypothesis space Hy>"CP% of VS-CBR w.r.t. the
concept space My . is included by the hypothesis space H]\‘Qi'SBR, for all N > k' > k.

! VS—C’BR VS-CBR
V1< k<K < N-HYSOPRC HYSC

The effective hypothesis space H);>"“P% will therefore contain fewest hypotheses
for the smallest values of k (k = 1) and the most for the largest values of £, as
k approaches N. On the other hand, Figure 3 shows that VS-C'BR learns target
concepts represented by the smallest monomial expressions more rapidly than those
represented by larger monomial expressions. V' S-C'BR therefore demonstrates clearly
the correlation of hypothesis space and average-case accuracy discussed above. In
addition, the contrast between Corollary 4 and Table 1, where |H]\C4ﬁ1k| apparently
decreases in k, reflects the contrast between Figures 2 and 3, where target concepts
in Mg, are apparently easier for V.S-CBR to learn, but harder for C'B1.

Two caveats apply to our claims about Corollary 4. Firstly, it was necessary to
take a value of NV = 6 in order to demonstrate that the inclusion shown in Corollary
4 can be proper in some cases. That is, [7, Example 6.4.10] shows a concept which is
not in Hy2 “P* and is a member of HVSQCBR but no such examples exist for smaller

values of N for N < 5, HVS CBR 5 VS~ kCBR also, for all values 1 < k < k' < N.
The other question that arlses is Whether a similar result could also be proven for
the effective hypothesis space of V. S-C'BR with respect to a single target concept,
HY5"¢BE for some te My (c.f. Proposition 6, below). We might expect, as with
HYSOBR that HYSCBR wrt. te My would be smallest for the least values of k
and that the size of the hypothesis space would increase with k. This is not directly
implied by Proposition 3 however. For small values of k, monomials in My will
have more positive instances, which would tend to increase the number of different
case-bases satisfying Proposition 3. However, fewer negative instances will reduce
the number of representable concepts, and in addition there might be considerable

paper are given in [7].



set CB = ()
fori=1tomdo

set CB=CBU {(d“nl)}
RETURN C'B2(3) = h<CB,UEt>

Fig. 4: CB2 Learning Algorithm for Concepts in My. 5= ((d;,n;))/~, is a training
sample from (Dy x {0,1})™ and weight vector w, is defined in equation (5).

overlap between the concepts representable by case-bases containing different positive
exemplars; the balance of these factors is not at all clear.

However, since all concepts in H}YS"¢BR are represented by case-bases compatible
with ¢ (c.f. Proposition 3), the following corollary can be trivially proven and, in
contrast to Corollary 4, definitely holds at the level of the hypothesis space w.r.t. a
single target concept:

Corollary 5 For any value of N, and any monomial target concept te My, the ef-
fective hypothesis space H)S"CBR of VS-CBR w.r.t. the target concept t is included
by the hypothesis space HEP' of C B1 w.r.t. the same target concept.

V1< N -Vte My - H/5 % C gb!

This result would also therefore apply to HE; H]\V&',kcBR C H]\Cﬁ,lk for all values of N
and k. Corollary 4 therefore gives a description of HY% “B® which is consistent with
Figure 3, while Corollary 5 shows that the relationship between H) S ¢BE and HEP!
and between Hy/ 2 CP" and Hi" | is consistent with Figures 2 & 3, which show that
V' S-C'BR is more efficient for the target concepts tested than C'B1. Further results
showing similar correlations between hypothesis space and efficiency are shown in the
next section, which considers two further algorithms, related to V.S-C'BR, which we

have found useful for understanding that algorithm.

5 ‘Constituents’ of VS-CBR

It is suggested in [7] [8] that a similarity learning IBL algorithm which manipulates
the weighted similarity measure oz might be considered as two constituent processes,
one of which manipulates the case-base element of the representation (C'B,o) and
one of which manipulates the similarity measure. We argue that the part of VS-CBR
which constructs the case-base can be studied via the IBL algorithm CB2 (Figure 4).
CB?2 is essentially similar to C'B1 except, in place of the similarity measure oy, it
uses the measure og,, which weights the bits of the representation according to their
relevance to the target concept ¢:

1 if bit 7 is relevant to ¢
(wr)i = { 0 if not (5)

Since oy, is the similarity measure that will eventually be chosen by VS-CBR if
enough positive examples are available [14] [8], then the sample complexity of C'B2
gives an indication of the number of examples needed by VS-CBR to adequately



populate its case-base. Similarly, in [8] we note that V'S-CBR will choose the ‘ideal’
weight vector w; on precisely those training samples from which the ‘standard learning
algorithm for monomials’ [12] [2], which we call M, can correctly identify a monomial
target concept. The sample complexity of M will therefore give an indication of the
number of examples needed by V. S-C'BR to converge to a ‘good’ similarity measure.

The hypothesis spaces of C'B2 and M give further data concerning the link between
hypothesis space and average-case efficiency. Average-case experiments for C' B2 result
in graphs similar to Figure 3 [7, Fig 6.2]; target concepts in Mg ; are learnt more rapidly
than target concepts in Mo, which are learnt more rapidly than target concepts
in Mg 3. However, C'B2 converges more rapidly than V'S-CBR and requires fewer
examples to reach a particular level of accuracy. These two facts, that the accuracy of
CB2 on training samples for monomial target concepts ¢ e My decreases with &, and
that C'B2 is apparently more efficient than V' S-C'BR, are reflected in the relationships
of the hypothesis spaces. (¢t J t' is read ‘¢ is specialised by ¢ (Vde Dy -t'(d) = 1 —

t(d)=1). ):

Proposition 6 [7, Propn 6.5.4] The effective hypothesis space HEP? of C B2 with
respect to a target concept te Myy is included by the hypothesis space HSB? with
respect to any target concept t' € My where k' > k and t' is a concept that specialises
t:

VI<k<k <N-VieMyy -Vt'eMyy -t It — HEP? C HFP?

Proposition 7 [7, Propn 6.5.6] The effective hypothesis space HEP? of C B2 w.r.t.
any monomial target concept te My is included by the hypothesis space HY S CBE of
VS-CBR w.r.t. the same target concept.

VN -teMy - H'P? C HYS"OBER

The statements of Propositions 6 and 7 can easily to be extended to refer to entire
concept spaces in the style of Corollary 4. The following statements are immediate
corollaries of the above results:

l CB2 CB2
VISkSk SN'HMN,kgHMN,k’
CB2 VS-CBR
V1 <k <N-HGP C HYSS

Similarly, the results we have available for M again show correlation between
hypothesis space and average-case accuracy. The algorithm we call M is well known
and analysed. Langley and Iba claim that “we have shown analytically that the
number of training instances required for [the standard monomial learning algorithm)]
to achieve a given level of accuracy [in the average case] increases only with the
logarithm of the number of irrelevant attributes”[10], that is, depends only on the
quantity N — k. For a target concept t e My j, the sample complexity of M can also
be shown to be a function of (N — k):

Proposition 8 [7, Propn 6.5.13] The hypothesis space of M, the standard learning
algorithm for monomial concepts, w.r.t. a k-literal monomial target concept te My,



contains all concepts in My which specialise the target concept t along with the concept
fo which has value 0 on all descriptions:

={heMylh Tt} U{fo}
where h T t is read ‘h specialises t” and fy is the concept s.t. Vde Dy - fo(d) = 0.

Proposition 8 shows that |[HM| = 3¥ %41 for a target concept t € My, so that the
upper bound on my,(t, d,€) [7, Propn 6.5.11] increases linearly in N —k. Similarly, from
equation (2), HﬁN,k is the set of concepts {he My|Fte Myy-h Tt} U{fo} containing
all the monomial concepts which are at least as specific as the concepts in My . The
quantity [Hy/, | will also increase in (N — k) and in fact k < &' — Hjf D H%N o
The hypothes1s space of M, reckoned with respect to both a single target concept
and also a space of monomial target concepts My, therefore also shows a larger
hypothesis space which correlates with lower average case accuracy.

6 Conclusions

§2 explained how we have used the PAC learning framework in a slightly unusual
way for the analysis of instance-based learning algorithms. In our approach, we at-
tempt to answer ‘practical’ questions such as whether one learning algorithm is more
efficient than another w.r.t. a particular learning problem. §2 also noted that the
well-known results of the PAC framework only directly provide upper bounds on the
sample complexity of learning algorithms in the situations we consider, and that these
bounds are dependent on the hypothesis space HS or HL of the learning algorithm.
In the absence of formal results characterising when these upper bounds meet the ac-
tual sample complexity, we have used our results concerning the hypothesis spaces of
instance-based learners to explore the extent to which differences in these hypothesis
spaces are predictive of differences in the relative efficiencies of those algorithms.

The results we have presented, for the four algorithms C'B1, VS-CBR, C'B2 and
M, are consistent with the assertion that a larger hypothesis space implies a less effi-
cient learning algorithm. The only omissions in our presentation are where we have not
been able to resolve the difficult problems involved in reasoning about and counting
instances of the case-based representation. In the case of Hy; CBl , we have found that
a straightforward ‘inclusion’ relationship such as Corollary 4 or Proposition 6 does
not hold [7, Example 5.4.3] [7, Example 5.4.4], but have not been able to demonstrate
any other kind of relationship or derive a quantitative result directly. In the case of
VS-CBR, Corollary 4 shows that k < k' — HY"CP* C Hy kCBR but, again, the
difficulties of the case-based representation have prevented us conﬁrmmg or refuting
the equivalent result in terms of HF (t 3¢ — HY*"¢BR C HYSCBR) Otherwise, the
results we have presented provide a handful of examples where knowledge of the hy-
pothesis spaces of a set of learners with respect to different concept spaces provides at
least qualitative information about the learning curves of those algorithms. It seems
that the instance-based learners we have studied therefore represent the kind of algo-
rithm that can be usefully studied by analysis of the hypothesis space; further work
must consider the limits of this approach and attempt to characterise the learning
problems for which the approach is applicable.
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