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Abstract. This paper proposes that the generalisation capabilities of
a case-based reasoning system can be evaluated by comparison with a
‘rote-learning’ algorithm which uses a very simple generalisation strategy.
Two such algorithms are defined, and expressions for their classification
accuracy are derived as a function of the size of training sample. A series
of experiments using artificial and ‘natural’ data sets is described in
which the learning curve for a case-based learner is compared with those
for the apparently trivial rote-learning learning algorithms. The results
show that in a number of ‘plausible’ situations, the learning curves for
a simple case-based learner and the ‘majority’ rote-learner can barely
be distinguished, although a domain is demonstrated where favourable
performance from the case-based learner is observed. This suggests that
the maxim of case-based reasoning that ‘similar problems have similar
solutions’ may be useful as the basis of a generalisation strategy only in
selected domains.

1 Introduction

Case-based reasoning systems operate on the assumption that ‘similar cases have
similar solutions’. This is an heuristic argument which will be correct in some
instances and misleading in others; evaluating the success of this heuristic is
an important issue in understanding case-based reasoning properly. It is un-
surprising that a case-based classifier may correctly classify problem instances
which exactly match some case in the case-base. The difficult task is to cor-
rectly classify the previously unseen problem instances; this will be referred to
as generalisation. The generalisation strategy used in case-based classification
is to classify an unseen problem instance according to the classification values
recorded for the problem’s near neighbours in the case-base. There are, however,
many other generalisation strategies that may be used in order to predict clas-
sifications for the unseen instances. This paper will consider whether ‘nearest
neighbour’ generalisation will necessarily be more or less successful than any of
the other available strategies.

The approach to the evaluation of case-based classifiers proposed in this pa-
per compares the performance of a case-based system to that of two very simple
rote-learning algorithms. These algorithms remember any examples presented to
them in the training sample. On unseen instances however, the first algorithm
simply chooses a classification at random, while the second algorithm assigns a



single fixed classification value. Thus, these learning algorithms show the level of
accuracy in classification that can be achieved by a combination of rote-learning
of the training sample with the simplest of generalisation strategies. Since case-
based classification will also in practice give perfect recall of the training sample,
subject only to very weak constraints on the similarity measure [3], this compar-
ison allows the contribution of the nearest neighbour generalisation strategy to
be isolated. As a minimum criterion for success, it is proposed that a case-based
generalisation strategy should outperform the two ‘naive’ strategies used by the
two rote-learners.

Section 2 below introduces the definitions and notation that will be neces-
sary to present the results of the paper, while in Section 3 the two rote-learning
algorithms are defined, and equations for their learning curves are derived. Sec-
tion 4 demonstrates the use of these learning curves as yardsticks for case-based
classifiers, and Section 5 discusses the conclusions that can be drawn from this
comparison.

2 Definitions

The paper is concerned with the problem of classification. It is assumed that
there is a ‘target function’ which maps from a space X; of problem descriptions
to a space X of classification values, so that each possible problem description
in X7 is associated with one and only one classification value in X,. X; will
also be referred to as the example space and X, as the solution space. The task
of learning a classifier involves choosing, on the basis of the correct classifica-
tions given only for some limited number of the possible problem descriptions,
a function from (X; — X5) which is as close as possible to the target function.
A probability distribution on the example space will be referred to as u, the
probability that a randomly chosen example is a member of some set X C X,
will be written uX and the conditional probability that an example z e X; will
have some property p(z) given membership of some set X C X; will be written
p{zeX|p(x)}. A sequence of examples from (X;)* will be written Z, while a
training sample T; € (X; x X3)* is a sequence of examples from X; ‘labelled’
according to the target function ¢ so that for each pair of elements (z},z?) in
Z; we have t(z}) = z2. The probability of an m-sample chosen by independent
random sampling from X, will be given by the joint probability distribution p™
defined on the product space (X1)™, where p™{Z} = p{z1} x ... x p{zm}.
Systems which learn to classify may be compared in terms of their accur-
acy, meaning simply the probability with which a randomly chosen example will
be correctly classified by the chosen classifier. Hence the accuracy of a learn-
ing algorithm is the probability u{z e X1|L(Z;)(z) = t(z)} where L(Z;) is the
hypothesis produced by learning algorithm L given a training sample ; and t
is the target function. Since this will depend on both the training sample and
the target function, expected accuracy is defined with respect to a particular
target function by summing over all possible training samples, weighted by their
respective probabilities, and with respect to a particular set of target functions,



called the target class, by summing over all admissible target functions.
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This work assumes a simple model of case-based reasoning. A case-base is
a set of description-classification pairs CB e P(X; x X3) s.t. for each exemplar
in the case-base (x1,22) e CB, then t(x1) = x» for the current target function
t. A similarity measure o is a function over pairs of descriptions returning a
normalised real value indicating the degree of similarity between the two de-
scriptions. For any problem description x € X4, the set of near neighbours of the
problem description is defined as the set of exemplars from the case-base whose
descriptions are maximally similar to z according to o:

VzeX, NN(z,CB,o) =
{(z1,22)|(z1,22) e CB AV(2',23) e CB - o(w,21) > o(z,27)} (3)

The decision function for a case-based classifier is defined by specifying how
a single classification value can be extracted from the set of nearest neighbours
NN (z,CB, o). In this work, we assume that a ‘preference ordering’ is defined
over the solution space to resolve any ties that might occur, although other
options are available [3]. i.e. In this paper the function defined by a case-base
C'B and similarity measure o is the function f where

f(z) = maxg{z2|(z1,22) e NN(z,CB,0)} (4)

for some preference ordering J. Having defined case-based classification, it is now
necessary to define the rote-learning algorithms which will provide the yardstick
for the evaluation of these classifiers.

3 Learning Curves for Rote-Learning Algorithms

The representation used by the rote learning algorithms defined here are very
closely related to the decision tables used by learners such as the ‘Decision
Table Majority’ algorithm studied by Kohavi [6]. The classification rule for De-
cision Table Majority is, “given an unlabelled instance, a decision table classifier
searches for exact matches in the decision table [...]. If no instances are found,
the majority class of the [decision table] is returned; otherwise, the majority
class of all matching instances is returned” [ibid]. The two algorithms below are
variants of this approach. However, the representation used here is referred to as
an ‘instance table’ rather than a decision table since it is an important feature of
operational decision tables that the table is accessed using only a subset of the
features of a representation [ibid]. An instance table on the other hand requires



an exact match with the representation of a problem instance; it can be pictured
as an array or table with one cell for each member of the example space, each
of which contains exactly one solution value. The function represented by an
instance table 7 is simply the function f, s.t. Ve e X; - f-(x) = 7[z]. The first
yardstick algorithm ‘generalises’ simply by assigning solution values to unseen
problem instances at random.

Definition 1. L; Random instance-table learner.

forall ze X, set r[z] =7
fori=1to m do
set Tzl ==

set Li(T;) = fr

2

i

where te (X; — X») is a target function for Ly, T; = ((z},z?))™, is a training
sample for ¢ in (X; x X2)™, and 7 is a random variable which varies over X,
with a uniform probability distribution.

The second rote learner assigns to any unseen instances the solution value
with the highest a prior: probability, i.e. a value zy € Xo which maximises
p{x e X1|t(x) = xo}. The algorithm presented below assumes sufficient back-
ground knowledge to choose an appropriate default value zy. While this might
seem too strong a supposition, it is similar to assuming that a preference order-
ing is available when defining the decision function for case-based classification.
Additionally, L is a useful yardstick since it represents the limit of classification
accuracy that may be achieved by a naive generalisation strategy which assigns
a single value to all unseen instances.

Definition 2. L, Majority instance-table learner.

forall ze X, set 7[z] = x¢
fori=1to m do

set 7[z}] = x?
set Ly(Ty) = fr

where te (X, — X») is a target function for Lo, Ty = {((z},2?))™, is a train-
ing sample for ¢ in (X; x X2)™ and zo is a member of X, which maximises
uwl{reXi|t(z) = zo}.

The expected accuracy of L; and L, may be straightforwardly calculated
as follows, as a function of the ezpected coverage of the example space by the
training sample.

Definition 3. Expected Coverage of a Set. The expected coverage of a set
X by a sample of size m according to a sampling distribution p defined on
X, denoted x,(m), is defined as the probability, having chosen a sample of m
elements drawn independently from X according to probability distribution g,



that a further element drawn independently from X according to p will have
appeared at least once in the sample.

Xu(m)= Y w™{T}.pbs

Te (X)?n,

where Fz = {J;<,;<,,{®:} is the set of distinct problem descriptions appearing
in 7. o

The equations for the learning curves require the following lemma, restating
the overall expected accuracy of a consistent learning algorithm in terms of the
expected coverage x,(m). Proofs below are sketched or omitted; details will be
available in [2].

Lemmad4. The expected accuracy of a consistent learning algorithm L may be
re-expressed in terms of x,(m) as follows:

EAf7,) = Xu(m)+
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Proposition 5. Expected Accuracy of L,. The expected accuracy of the ran-
dom instance table learner Ly for any target class T, having been trained on a
training sample of size m, is given by the following expression:

gAll  — nxu(m) +1
(T',p) n + 1

where n + 1 = |Xz| and x,(m) is the expected coverage of the example space.

Proof: The expression for the expected accuracy of a consistent learner given
in Lemma 4 can be instantiated by finding a term for the probability that a
previously unseen member of the example space will be correctly classified by
the hypothesis of L. Taking any target teT and any training sample for t,
Te(Xy x X2)™, let h = Ly (T;) be the hypothesis of Ly on that training sample.
Now pf{z e (X1 \ Ez) | h(z) = t(2)} =3 . . x, m{z e (X1 \ Ex) [ h(z) = i(x) = 2"}
Given an unseen problem instance z € (X \ Ex), the value of h(z) is determined
independently of all other considerations. Additionally, it follows immediately
from the definition of the generalisation strategy that pu{ze (X \ Ez) | h(z) =
z'} = I)%_zl for any specific solution value z' € X5. Hence:

pfz e (Xo\ Bx) | h(z) = t(z)}
= Y wfre(Xi\ Br) | h(e) =o'} - plwe (Xi\ Br) | t(2) = o'}

z' e Xo
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Applying lemma 4, then the overall expected accuracy EA(T )(m) is
reckoned as follows:

1
L _ m
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Since L is defined with knowledge of the target function, the expected ac-
curacy must be analysed with respect to that particular target, rather than
summing over some target class 7.

Proposition 6. Expected Accuracy of Ly. The expected accuracy of the ma-
jority instance table learner Lo, having been trained on a training sample of size
m for a particular target function t, is given by the following expression:

EA(Lt?H) = (1 = po)xpu(m) + po

where fig = Maxy ¢ x, {p{r e X1|t(z) = 2'}} and x.(m) is the expected coverage
of the example space.

Proof: Taking, as above, that pu{z € (X1\Ez) | h(z) = t(z)} = > . x, m{ze (X1\
Ez) | h(z) = t(z) = x'}, consider that h(z) = z( for any unseen problem instance
ze(X; \ Ez). Thus for solution values z' ¢ X distinct from zg, we have h(z) =
t(z) = z' with probability zero, while for ' = zy we have h(z) = t(z) = 2’ iff
t(z) = xo. The sum above reduces to u{z e (X \ Ez)|t(x) = xo}. Since the value
taken by t(z) is independent of whether z has appeared in the sample (unlike
the value h(z)), then u{xe (X1 \ Ez) | h(z) = t(x)} = p{ze (X1 \ BEF) | t(z) =
xzo} = p{re Xy|t(x) = xo} = po- The result is completed in a similar fashion to
Proposition 5. O

Notice that in the case of equal a priori probabilities for all solution values,
then po = 27 and EA(Lt1 y(m) = EA(Lt ,»(m). Additionally, in the special case
of a uniform sampling distribution on the example space, then a simple closed
form can be found for x,, (m):

Proposition7. The expected coverage of a set X by T, a sample of m elements
sampled independently from X according to a uniform distribution on X, denoted
x(m), can be calculated as follows:

-3 S (1)
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Proof: [Sketch] In the general case it may be shown that:

Xulk +1) =xu(k)+ Y wMzh Y (ufe))’ (5)

Te(X)k ze(X\E)

In the special case of a uniform sampling distribution on X, the following
recurrence relation for x(k) is derived:

Xk +1) = x(k) + %(1 —x(¥) (6)

Hence the result by the use of the weak inductive hypothesis. O

4 Comparison of Case-Based Learning and Rote Learning
Algorithms

This section reports the results of some preliminary experiments intended to
measure the performance of a simple case-based learning algorithm against the
yardstick of the learning curves derived for L; and Ly in the previous section.
The case-based learning algorithm will be CB1 as defined in [5] [4] [3], namely
a straightforward case-based classifier which collects all available cases into its
case-base, which calculates similarity by counting the proportion of features
of the representation on which two descriptions agree, and which resolves ties
between equally near neighbours using a fixed preference ordering defined over
the space of solution values [3].

The experimental method used to observe the learning curves for CB1 is
simply to choose a function randomly from the target class and to generate a
training sample of fixed maximum size by choosing elements of the example
space independently at random and labelling them with the value of the target
function. Each member of the training sample in turn is presented to the classifier
as a test instance and the correctness of the classification noted; the instance is
then added to the case-base as specified by C'B1. This is repeated for a large
number of different target functions and the proportion of correctly classified
training instances is calculated for each value of m (the number of instances
taken so far from the training sample).

Comparison over all possible targets

Figure 1 shows learning curves for CB1, L; and L», measured over the space
of all possible classifications of the space of 6-dimensional binary vectors (i.e.
the target class is the set of boolean functions ({0,1}% — {0,1}). The decision
function used by C'B1 prefers negative classifications to positive ones (0 3 1) for
those situations where both positive and negative exemplars appear in the set
of near neighbours. Figure 2 illustrates the same experiment in a domain where
features may take values from the set V' = {walg, vali,vals,valz}, rather than
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just the binary values {0,1}. Specifically, the target class for the experiment
graphed in Figure 2 is the space of all possible functions from the space of
descriptions (V xV x V x V') into the space V. Additionally, ties between equally
near neighbours are resolved for the case-based classifier by a preference ordering
defining valy 3 val; 3 valz 3 vals. In both cases the observations are averaged
over 500 experiments.

Figures 1 and 2 show the expected coverage of the example space x(m)
calculated according to the result of proposition 7, i.e. the proportion of the
example space which can be expected to have been observed directly in the
training sample. This is plotted alongside the observed learning curve for CB1,
measured in the fashion described above, and the learning curves for L; and L,
given by Propositions 5 and 6. As noted previously, in the case of all solution
values being equally likely, then the learning curves for L; and Ly coincide. For
Figure 1, then X5 = {0, 1} and the curve plotted is %X(m) + %, while for Figure
2 X, =V and the curve is 2x(m) + &, whichever default value is assigned by
Ls.

In Figures 1 and 2 the curves for case-based learning and the rote-learning
algorithms coincide exactly; this is no surprise since in the maximum entropy
case where all possible target mappings are equally likely, then no generalisation
strategy can do better than random guessing and all are essentially equivalent
[9] [8]- The success of the equations derived in the previous section in describing
this case however lends confidence to the accuracy of the analysis.

Rote-learning of Monomial Target Functions

Monomial functions are those boolean functions which can be defined by a simple
conjunction of (possibly negated) literals. There are 3"V such functions defined on
an example space of N-dimensional binary-valued feature vectors, and 2% - <JZ>
such functions defined by conjunctions of exactly k literals.

Previous work has considered in detail the behaviour of the case-based learn-
ing of monomial target functions [5] [4]. The performance of case-based learning
was shown to be poor compared to learning algorithms which directly manip-
ulated a representation of a monomial function, especially when the classifier
uses a fixed similarity measure. Here, in addition, the behaviour of a simple
case-based learning algorithm is compared with a rote-learning algorithm on
this restricted target class. Since the concept defined by a monomial function is
generally small, the appropriate ‘default’ value for the majority rote learner L,
will be 0; most members of the example space will not be positive instances of a
monomial function. The expected accuracy of Ls when the value ‘0’ is assigned
to all unseen problem instances is calculated below with respect to the set of
monomial functions My .

Proposition 8. The expected accuracy of a rote-learning algorithm assigning
the value 0 to all unseen problem instances, taken with respect to the space of
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monomial functions My and with respect to a uniform sampling distribution on
the example space, has the following value:
N N
EAL2 = -2
(Mx,U) = 3—NX(m) + (1 - 3—N)

where N is the size of the feature vectors in the example space, U denotes the
uniform probability distribution on X; and x(m) is the expected coverage of the
example space with respect to a U.

Proof: In Proposition 6 the expected accuracy of Lo with respect to a specific
target function t was given as (1 — uo)x(m) + uo, where g is the probability
of the majority classification. Hence for the space of monomial functions the
expected accuracy with respect to a uniform sampling distribution is:
1
EA(LAZ/[MU) =3V Z (L = pe)x(m) + pe
te My

where pu, is the prior probability of the default classification with respect to

. N . .
the target function ¢. As noted above, there are 2% - ( i ) monomial functions

defined by a conjunction of & out of N literals, and each such function will have
2N=F positive instances. Hence, given a uniform sampling distribution on the
example space, u; = (1 —27F), and

N
m, = e 22 (1) e e -7
k=0
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Figure 3 plots the value %X(m) + (1 - g—Z) for the size of representation
N = 6, for sample sizes m from 0 to 64. The graph also shows the values of
%X(m) + %, the learning curve for the random instance table learner L;, and
the observed classification accuracy of the simple case-based learning algorithm
using preference ordering 0 J 1. The experimental method was exactly as de-
scribed before, and the observation of case-based learning of monomial functions
was repeated over 500 experiments. The graph shows in contrast to Figures 1 and
2 a marked difference between the learning curves for L; and Ly; due to the un-
even probabilities of positive and negative instances, the majority instance table
learner substantially outperforms the random instance table learner. However,
the observed accuracies for the case-based learner appear to be essentially sim-
ilar to those for Lo. Thus while the nearest neighbour generalisation strategy is
clearly better than classifying unseen instances at random, so also is the strategy
of classifying all new instances as negative. It is possible also that for larger train-
ing samples, the generalisation in the case-based classifier roughly approximates
that of Ly. The higher proportion of negative instances of the target function
mean that the case-base will be dominated by negative exemplars. In addition,
the nearest neighbour decision function described above prefers negative classi-
fications and it is possible that in practice, a case-based approach to learning
these particular target functions will result in nearly all unseen instances being
classified negatively. It is certainly the case that any false negative classifications
avoided by the case-based strategy are almost completely balanced out by addi-
tional false positives, as shown by the comparison with the all-0 generalisation
strategy of L, in Figure 3.

Rote Learning of Natural Target Functions

The previous comparisons may be challenged because they test learning perform-
ance on ‘artificial’ target mappings. Figures 4 and 5 show the results of applying
the yardstick proposed here to case-based classification used in ‘real-world’ do-
mains. The two data sets used were chosen from the UCI Machine Learning
Repository [7] on the basis of having nominal feature values, no missing values
in the data sets and a solution set of size greater than two. Characteristics of the
two data sets are given in Table 1. The data for the ‘Contact Lens’ application
describes potential contact lens customers in terms of four attributes. These four
attributes may take three, two, two & two values respectively, giving 24 possible
customer descriptions. These descriptions are classified into three classes accord-
ing to the suitability of different types of contact lens. The documentation for
the data set indicates that a correct description of the target function requires 9
production rules. The distribution of the classification values is highly skewed,
giving a relative frequency for the majority classification of % =0.625.

The data for the ‘Hayes-Roth’ test database gives personal data for indi-
viduals in four attributes having three, four, four & four values respectively. The
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first attribute is irrelevant to the correct classification, with the target function
defined in terms of the remaining attributes as follows. If a strict majority of
these three attributes has value ‘1’ then the class value is ‘1’. If a strict majority
has value ‘2’ then the class value is ‘2’. If the value ‘4’ appears for any of the
discriminating attributes then the class value ‘3’ is assigned. If no discrimin-
ating attribute has value ‘3’ and there are equal numbers of ‘1s’ and ‘2s’, the
description is assigned to classes ‘1’ and ‘2’ with equal probability.

Characteristic ‘Contact Lens’ Data| ‘Hayes-Roth’ Data
Attributes 4 4

Size of Example Space 3x2x2x2=243x4x4x4=192
Size of Data Set 24 84

No. of Classes 3 3

Freq. of Class Values (4,5,15) (25, 28, 31)
Freq. of Majority Class pg % =0.625 3—1 =0.369
Learning Curve for L, Zx(m) + % Zx(m) + %
Learning Curve for Lo 0.375x(m) + 0.625 | 0.631x(m) + 0.369

Table 1. Characteristics of Data Sets used in Figures 5 and 4

The data set in the UCI repository for the ‘Hayes Roth’ target function
described above is incomplete in that it contains instances for only some of the
possible descriptions, contains duplications, and contains conflicting instances,
in that there are instances of some of the ‘tied’ descriptions appearing with class
‘1’ and ‘2’. The data set was processed before testing by removing all duplicate
exemplars and where exemplars existed for both classifications of a particular
description, one of the two was removed by the toss of a fair coin in order to
ensure a functional target mapping. This process left 84 out of 192 possible
descriptions represented in the data set.

In Figure 4, the learning curves for C B1, L; and L» are again plotted. CB1 is
equipped with a preference ordering 3 1 2 J 1, while Lo chooses ‘3’ as the default
classification for unseen problem descriptions. The learning curves derived from
Propositions 5 and 6 for Ly and Lo are included in Table 1. Figure 4 tells a
similar story to Figure 3. The relatively skew target classification emphasises the
difference between L; and Lo, and while the case-based classifier substantially
improves on the success of the random generalisation strategy of L, so does the
‘default value’ generalisation strategy of L,. Additionally, the learning curves
for CB1 and L, fail to diverge to any significant degree. As with Figure 3, it
is possible that the small example space means that in practice there will be
many ties between equally similar exemplars with different classifications which
must be resolved by the preference ordering. This has been chosen to prefer the
majority classification, and so in practice, the nearest neighbour generalisation
strategy might be very similar to that of L.



Finally, Figure 5 shows a result which is more encouraging for the application
of case-based reasoning. Learning curves for CB1, Ly and L, are again plotted,
with C'B1 and L instantiated precisely as for Figure 4. Here, a relatively uniform
distribution of class values means that the learning curves for Ly and L- appear
more similar. For this data set CB1 outperforms L; and L, despite the presence
of an irrelevant attribute in the problem descriptions. Since it is known that
the presence of irrelevant attributes adversely affects case-based classification,
the success of C'B1 is even more encouraging. Furthermore, there are methods
for introducing appropriate weightings into the similarity measure to counteract
this effect [1], and were these to be used here, even higher accuracies might be
expected from the case-based classifier. This data-set would then seem a clear
indication that in appropriately chosen domains, case-based classification can
have significant generalisation power. Possible reasons for this will be considered
in the final section.

5 Conclusions

Success in classification for a system such as a case-based classifier which is
trained on a subset of the space of possible problem descriptions may be as-
signed to success in recollection for those descriptions which have been seen
before, and to success in generalisation for previously unseen problem descrip-
tions. The two ‘rote-learning’ algorithms defined in this paper, and the equations
derived for their average-case learning curves, allow these two factors to be sep-
arated in the evaluation of a case-based classifier. Figures 1 and 2 give direct
experimental confirmation of the results in [9] [8] that no generalisation strategy
can outperform any other if all possible classifications of the example space are
equally likely. Figures 3 and 4 show a formal and a natural domain in which
the learning curves for C'B1 and the Majority Instance-Table Learner Ly appear
to almost coincide, while Figure 5 demonstrates a domain in which case-based
generalisation is superior to either of the two naive generalisation strategies used
here for comparison.

Earlier work [3] has shown that the ‘preference ordering’ plays an import-
ant part in defining the decision function for case-based classification. The res-
ults of Figures 3 and 4 here show that in addition that, especially for small,
discrete example spaces, the application of the preference ordering may domin-
ate the contribution to generalisation from the exemplars in the case-base and
the similarity measure. This is presumably because ties between equally near
neighbours, which must be resolved by the preference ordering, will occur more
frequently in example spaces of low dimensionality. Thus the way in which ties
between equally similar exemplars is resolved may be as important to classific-
ation accuracy as the way in which the similarity is calculated. However, even
though the ‘Hayes-Roth’ database shows the same low dimensionality as the
‘Lens’ database, case-based classification in this domain outperforms either of
the two ‘yardstick’ algorithms proposed here and could presumably be improved
further if the similarity measure may be altered by learning. Two factors are



proposed which might explain this success. On the one hand, the more uniform
distribution of solution values means that the majority classification value ap-
pears less frequently in the near neighbour sets: other classification values may
then be assigned by the nearest neighbour generalisation strategy. On the other
hand, it might simply be said that the decision boundaries chosen by a case-
based classifier fit naturally to the ‘best-of-N’ target function defined for the
Hayes-Roth database. Future work must identify further examples of poor and
strong generalisation in a case-based classifier in order to better characterise the
domains in which the case-based classifier will perform well.
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