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Abstract

Discussions of case-based reasoning often reflect an implicit assumption that a case memory
system will become better informed, i.e. will increase in knowledge, as more cases are added
to the case-base. This paper considers formalisations of this ‘knowledge content’ which are a
necessary preliminary to more rigourous analysis of the performance of case-based reasoning
systems. In particular we are interested in modelling the learning aspects of case-based reas-
oning in order to study how the performance of a case-based reasoning system changes as it
accumlates problem-solving experience. The current paper presents a ‘case-base semantics’
which generalises recent formalisations of case-based classification. Within this framework,
the paper explores various issues in assuring that these sematics are well-defined, and illus-
trates how the knowledge content of the case memory system can be seen to reside in both
the chosen similarity measure and in the cases of the case-base.

1 Introduction

Responsible engineering of knowledge-based systems should involve setting error bounds on the
performance of the system and, in the case of systems that are to ‘learn from experience’, guar-
anteeing that the accumulated experience will actually enhance the performance of the system.
We believe that a necessary preliminary to these activities is to be able to state formally the
knowledge content of a knowledge-based system. Given that a system has ‘knowledge’ to guide
its operation and that it may ‘gain knowledge’ through problem-solving experience, of what does
this knowledge consist and how may it be compared between systems? A formalisation suitable
for some aspects of the operation of a case memory system is discussed here.

Some theoreticians [7] [8] have attempted to describe knowledge content from a logical point of
view, i.e. in terms of the logical propositions that might be derived from a case memory system.
These presentations necessarily use non-monotonic logics in order to capture the way in which the
set of propositions entailed by a case-base changes as new cases are added. This approach has not
however had much success, we believe, in explicating knowledge content and has no demonstrated
application to the engineering issues which we believe must be addressed. In contrast the view
adopted here is a functional one in that the knowledge content of a case memory is modelled as
a mapping between input and output domains.

A functional viewpoint has been used in the work of Dearden and Harrison [3] in the engineering
of the user interface of case memory systems and, of more relevance to our own work, it has also
been assumed in much of ‘computational learning theory’. This theoretical study of learning
systems models the current state of a learner as a function which is adjusted to accommodate the
data presented to the system. We are currently making progress in the study of various case-based
learning algorithms within this framework [4].



2 Generalised Case-Base Semantics

We consider the general case where the case memory system is intended to respresent a mapping
between an input domain X; and an output domain X>. Additionally, X; and X5 are both finite
sets. Using the terminology of Dearden & Harrison [3] we refer to the elements of X; & X, as
‘descriptions’ and ‘reports’ respectively. In [3], the knowledge content of the case memory system
is embodied in the ‘retrieve’ function, which maps from a domain of problem statements into
the space of partial orders over the cases in the case-base. This gives a very general view of the
operation of a case memory system and one that is clearly necessary for discussing the interface
properties of such systems. We opt here for a simpler model; we assume that for each description
x1 € X1 there is a unique, ‘correct’ report x5 € X5 which we would like the case-memory system to
return, so that the ideal behaviour of the system is described by a functional mapping from the
set (X; — X3). This assumption is common in the non-Bayesian forms of learning theory, and in
that context the mapping is often called a ‘target function’. Here, the notion that a single output
value is appropriate to describe the operation of the system is something of a restriction, but has
the advantage that it allows a straightforward definition of the error in a system’s output, and
allows the role of the similarity measure in the system to be demonstrated more clearly.

Following the work of Jantke [5] a case memory system is modelled as a pair (C'B, o) consisting
of a case-base C'B and a similarity measure o. The case-base is a set of description-report pairs.
i.e. C'B is an object of type:

CB: P(X; x X5)

In the current paper, we assume that cases in the case-base are free from observational error,
so that given some target function fe (X; — Xo):

VJ,'l 6X1,JJ26X2'(l’l,l'z)GCB—)f(JJl) = Ty (1)

This is equivalent to the statement CB C f, and so CB can also be seen as a partial function
between X; and X>. The task of a case memory system is to interpolate the partial function
represented by the case-base so that the system as a whole represents a total function which will
return some report value for any description presented to the system. The two-place model {C'B, o)
emphasises that the interpolation made by the system is dependent on the choice of similarity
measure. For the purposes of the model we consider a similarity measure to be a function over
pairs of descriptions returning a normalised real value indicating the degree of similarity between
the two objects:
(o2 (Xl X Xl) — [0,1]

Given a problem description x € X; we can therefore define the set of nearest neighbours of z
with respect to C'B and o:

VzeX; - NN(z,CB,0) = {(z1,22)|(x1,22) e CBAV(x}),2,) e CB - o(x,11) > o(z,27)}  (2)

The essence of case-based reasoning is very simple. We wish the case memory system to return
the report from the case whose description is most similar according to the similarity measure o
to the description of the current problem. In order to consider (CB, o) as a functional mapping
between X; and X2 we need only resolve the question of ‘ties’. That is, where the set of nearest
neighbours defined in equation (2) contains more than one exemplar from the case-base, we must
specify a way of choosing the case used to justify the system’s output. Jantke [5] offers three
suggestions for resolving such ties:

1. In the case of ties, the output of the system is undefined. That is, the case memory system
is interpreted as a partial function.



2. Ties are resolved by a preference ordering over descriptions.
3. Ties are resolved by a preference ordering over reports.

Option 1 is an undesirable state of affairs in that we may often have perfectly good grounds
for choosing one ‘equally similar’ case over another. In the latter two options the system is
equipped with some additional domain knowledge which allows the nearest neighbour with the
most preferred description or report to dictate the output. (This might be interpreted, for example
as knowledge of the a priori plausibility of different descriptions or reports.) In what follows, we
consider a general model of preference relations over the set of reports X5. Option 2 is passed
over for the moment principally because this knowledge is potentially subsumed in the similarity
measure. Thus we define the function fcp ) represented by a case-memory system (CB,o) as
(c.f. [5, p.219]):

fieB,oy (1) = 2o where max—{x5|(2],25) e NN (21,CB,0)} = {22} (3)
fieB,0y(21) = 22 where NN (21,CB,0) = {} A 22 emaxg X (4)

3 is a partial order defining preferences over X» so that for a pair of reports z,z" € X5, z 3 2
reads ‘z is preferred to 2'’, and maxo are the maxima with respect to that ordering defined as
follows:

max3X = {zeX|Vo'eX -2’ Jz -2 =2'} (5)

The ‘case-base semantics’ given in equations (3) & (4) are a generalisation of interpretations
given elsewhere for the special case of case-based systems for classification. This is illustrated
below.

Example 1 Case-base semantics for classification

If we take the special case where the output domain X5 = {0, 1}, then we are concerned with the
task of classification. Given a problem description from X;, we require that our system outputs a
‘yes’ or ‘no’ result classifying the problem description as an instance of some concept. Elsewhere
in our work [4] we have used the following equation as semantics for a case-based classifier, related
to the ‘standard semantics’ of Jantke and Lange [6, p.142] ( see also [9, p.84] ).

fienm(@) = { 1 if E(CB‘pos, 1)eCB -Y(Zpneg,0) e CB - (2, Zpos) > 0(x, Tney) (6)
' 0 otherwise

Informally, a point z from X is positively classified by h(cp ) if and only if there is a stored
positive exemplar z,,s which is strictly more similar to z according to the chosen similarity
measure o than any of the stored negative exemplars z,.,. In other words this interpretation
resolves ‘ties’ between equally similar near neighbours by preferring ‘0’ reports to ‘1’ reports; this
might be called a conservative classification strategy. Formally, equation (6) is an instantiation of
equations (3) & (4) given the preference order J= {(0,0), (0,1),(1,1)}. O

Clearly equations (3) & (4) require a little more discussion in the general case where J is
any partial order. For an empty case-base equation (4) is under-constrained and allows a range
of possibilities. In the case of Example 1, ‘0’ is (trivially) preferred to every other report. This
value will therefore be returned by equation (6) on any description for an empty case-base. Any
such solution is admitted by equation (4) as long as for any description, the value returned is
a maximum for the entire set of reports X,. For a non-empty case-base however, there may
sometimes be more than one maximum defined on the set of reports of nearest neighbours with
respect to some point in the input domain X;. In this case there is no functional interpretation



for (CB, o) and we consider that f(cp . is undefined. Instead, we constrain o and 3 so that
foB,s) always returns a single value. Specifically, for any domain value x € X1, the set of nearest
neighbours with respect to 0 must have an upper universal bound which is maximal with respect
to the preference ordering J and in addition is comparable to all other elements in the nearest
set. These constraints are developed in the following results:

Definition 2 Upper Universal Bound x ¢ X is an upper universal bound for a poset (X, 1)
iff © is a member of the mazima of (X,3) and also x is comparable to every element x' e X
(zemaxg X AVz' e X -2 Ja').

Lemma 3 Given a poset (X,3), O defines a single mazimum Tmar on X (ImaxsX| = 1), iff
Tmaz 15 an upper universal bound for X.

Proof: a) Only if. Assume there is one value %, in the maxima. It must be shown that
Tmaz 3 @' for any '€ X, hence x4, is an upper universal bound to X (Definition 2). From
equation (5):
Ve'e X -2 J Zomaz = Tmaz = 2 (7)
Additionally, there is only one value x,,,, satisfying this equation. Hence:
Vo' e X -0 # Tmae — 2" e X 2" £ 2 A" 32 (8)

For any z’' e X, by equation (8) either Z,,,, = ' and hence ., 3 2’ by reflexivity, or there is
some z" which is distinct from 2" and which is preferred to 2’ in the preference ordering. Equally,
equation (8) applies to ", and either " = %, or there is some 2"’ preferred to z”. Since O
is a partial order and defines an acyclic graph on X, then eventually the path through the graph
of the preference ordering must reach ,,,, for finite sets X. Hence by transitivity .4, 3 2" for
any 2’ € X and 2,4, is an upper universal bound for X.

b) If. Assume J defines an upper universal bound for X, i.e. for any %m., e max5X then
Tmaz J @' for any z' € X. Since J is a partial order and anti-symmetric, there can only be one
such Zpee. O

Definition 4 Admissible Preference Relation A preference relation 3 is admissible with
respect to a similarity measure o and a function space F, iff for every domain value xe X, and
for every non-empty case-base valid for some feF (i.e. CB C f), O defines an upper universal

bound for the set {xa|(x1,22) e NN (z,CB,0)}.

Corollary 5 The generalised case-base semantics expressed in equation (3) will be defined, i.e.
the preference relation will choose only a single value from the set of nearest neighbours, iff J is
an admissible preference relation with respect to o and F.

Since both the preference relation and the similarity measure share responsibility for discrimin-
ating between more and less applicable cases, we can picture a ‘trade-off’ between the information
content of the similarity measure and the preference relation. That is, a less informed preference
relation is compensated for by a more discriminating similarity measure and vice versa. In the
light of this, the following proposition considers the case where J contains no extra information,
and shows the minimum constraint on the similarity measure entailed by Definition 4 in this
situation.

Proposition 6 J;, the identity relation on X, is an admissible preference relation with respect
to a measure o and a space of functions F iff for any function feF and for any domain values
xz,z' 2" € X1 then f maps to a different value on &' and " only if the similarities o(z,x') and
o(x, ") return different values. i.e J; is an admissible preference relation with respect to o and
F iff

VfeF Vo, o' 2" e Xy - f(2") # f(a") — o(z,2") # o(x,2") (9)



Proof: Note that z€e X — xemaxo, X, hence max, X is a singleton ( entailing that J; defines
an upper universal bound on X by Lemma 3 ) iff | X| = 1. a) If. Therefore it must be shown that
if equation (9) holds for some o and F' then for any domain function feF, for any non-empty
case-base CB C f and for any problem instance z € X7, the nearest neighbours in CB to z under
the measure o share a common report z5. For any such = & x», from equation (2):

A1 € Xy - ((z1,22) eCB AVZ) € X1, 15 € Xo - (2], 25) e CB — o(x,21) > o(z,x))) (10)
It must be shown that x5 is unique. i.e.

Vay € Xo-ah # 1y — Vi e X1-((x], 2h) ¢CBVIxY € X1, 25 € Xo- (2}, 2) e CBAo(x, 7)) < o(x,z]))

(11)
Take some z} € X5 distinct from z5. For a given domain value z} € X1, either (z},z}) e CB or not.
If there is no such exemplar, then equation (11) is satisfied directly. Otherwise (2], z%) e CB and it
must be shown there is some other exemplar (z, z) in the case-base such that o(z,z}) < o(z, 27),
which would prevent (2], 2%) being a nearest neighbour. Now from equation (10) it follows firstly:

Jxi e Xy - (z1,22)eCB (12)

and additionally for some such value of 21 and for any other exemplar (2, 2}) e CB then o(z, 1) >
o(x,z!). Therefore specifically:
o(z,21) > o(x, ) (13)

But from equation (9), then f(z1) # f(z}) = o(z,z1) # o(x,x]). Since in this case xo # x4 then
clearly f(z1) # f(z}) by equation (1). Hence in addition to equation (13) we have o(z,z1) #
o(z,z}) and:

o(z,x)) < o(x,z1) (14)

Hence by equations (12) & (14) (z1,22) is an exemplar satisfying equation (11), and (11) is
satisfied under all circumstances. b) Only If. Assume that equation (9) does not hold and
therefore there is some f'e F' and some z, 2’ & 2" s.t.:

f@') # f@") No(x,2") = o(x,2") (15)

Therefore consider the case-base CB = {(a', f(a')), (¢", f(z"))}. Since f(a’) # f(z") we have two
distinct reports satisfying equation (10) with respect to . Hence |{z2|(z1,22) e NN (z,CB,0)}| >
1, and equation (9) necessarily follows from the case where J; is admissible with respect to o and
F. O

3 Consistency of case-based learning algorithms

The similarity measure ¢ has been defined above only as a binary function from the space
(X1 x X1 = [0,1]); the property of consistency motivates some minimum constraints on a useful
similarity measure. A consistent learner is one which, having seen some training sample, is able
to correctly reproduce the examples it has seen in that sample. Although it is not optimal in
domains where noise is expected, consistency is clearly a desirable property where it is assumed,
as here, that the exemplars available to the system are error free. Since we all assume that the
functions being represented are defined on a finite domain, consistency is sufficient to guarantee
that as more training examples are seen the system will eventually converge to a good approxim-
ation of the target function [2, Chs 3 & 4]. This holds even in the worst case where the system
is able to make little or no suitable generalisation of the seen examples. Since consistency is a
property of learning algorithms, we must state explicitly the case-based learning algorithm we
wish to consider. A family of the simplest such algorithms is defined below:



Definition 7 CB1(0) Learning Algorithm for Case-Based Classifiers
set CB =1

for i = 1 to m do
set OB = CBU{(x;, f(x:))}
set CB1(0)(5) = hicp,o)

These simple algorithms learn by adding each and every member of the training sample 5
(a series of m examples of the target function (z;, f(z;))) to the case-base and ‘hypothesise’ an
approximation to the target function defined in terms of the case-base and a single fixed similarity
measure o. One of the simplest ways of ensuring CB1(o) is a consistent learning algorithm is to
constrain ¢ so that the system will always retrieve an examplar from the training sample whenever
that exemplar is presented as a query. The following definition is related to this intuition and is
necessary and sufficient to ensure the consistency of CB1(c), a claim also proved below. The proof
of Theorem 9 assumes that the case-base semantics of the previous section have been instantiated
with an admissible preference relation.

Definition 8 Predictivity of a Similarity Measure with respect to a function space F
and preference ordering J. A similarity measure is predictive of a function space F C (X —
Xs), iff for a function feF':

1. For any pair of problem instances x,x' € X1, the similarity of x to x' will exceed the similarity
of x to itself only where f(x) = f(a'):

VfeF -Vz,r' e X1 -o(x,2") > o(x,z) = f(z) = f(2') (16)

2. For any pair of problem instances x,x’' € X1, the similarity of x to x' will equal that of x
to itself only if f(x') is either equal to f(xz) or it does not precede f(x) in the preference
relation.

VfeF Vo, o' e Xy -o(x,2") =o(x,2) = f(z) = f(a")V f(2") D f(x)) (17)

Theorem 9 Consistency of CB1(c). For a space of functions F C (X1 — X3), CB1(0) is a
consistent learning algorithm for F if and only if the chosen similarity measure o is predictive of
F.

Proof: a) Sufficiency. Assume that a similarity measure o is predictive of F', satisfying equa-
tions (16) & (17). For some example (z, f(z)) in the training sample, denote the members of
NN(z,CB, o) by (zN¥, f(xNN)). The definition of CB1(c) indicates that (z, f(z)) will be a
member of CB and hence o(x,zN"Y) > o(z,r). Consider first the case where the inequality is
strict. Hence f(x) = f(zNY) for any of the nearest neighbours by equation (16). Therefore,
whichever exemplar is the upper universal bound by the preference relation 3, h(¢p o) () = f(z).
Hence in this case CB1(0) is a consistent learning algorithm. Assume instead that o(z,zNV) =
o(z,x). By equation (17), either f(x) = f(zN") or f(zN") 2 f(z). For any nearest neighbours
st f(aNN) 2 f(x), clearly f(zNY) cannot be the upper universal bound required by Definition
4. Therefore there must be at least one preferred nearest neighbour s.t. f(x¥") J f(z). For any
such exemplar necessarily f(zN") = f(z), including the case where (zVV | f(zNN)) = (z, f(2)).
Hence for any element of the training sample, we have h(cp - () = f(z) and hence the algorithm
is consistent. b) Necessity. Assume that equation (16) does not hold. Therefore there is some

function fe F for which there are a pair of domain values  and 2’ s.t:

o(x,a") > o(x,x) A f(x) # f(2))



Consider the training sample {(x, f(x)), («', f(2'))). Clearly C'B1(c) produces a hypothesis
(CB,0) st. hep,sy(r) = f(z'), which is an inconsistent hypothesis. Assume alternatively
equation (17) does not hold. Hence there are some f,z,z’ s.t.

o(z,2") = oz, 2) A f(x) # f() A f(2") 2 f(2)

Again, consider the hypothesis (CB, o) produced by CB1(o) on the training sample ((z, f(z)),
(', f(2"))). Since x is equally similar to itself and to z’, and f(z') is preferred to f(z) in the
preference ordering, then again h(cp ,y(2) = f(2'); again this is an inconsistent hypothesis. O

Example 10 Simple Concept Learning.

As above, we illustrate this result with reference to the special case of classification systems. In
[4] we prove a version of Theorem 9 in terms of the following definition of ‘special’ predictivity
for classification functions:

VfeF -Vo,x' e X1 -o(z,2') > o(z,z) = f(z) =1 1 (18)
VfeF -Vr,2' e X1 -o(z,2") > o(z,z) = f(x) =0— f(2') =0 (19)

The following result re-expresses the special case [4, Thm 5] as a corollary of the general
framework presented here:

Corollary 11 Consistency of Case-based classifiers CBl(o) is a consistent learning al-
gorithm for space of classification functions F C (X1 — {0,1}) iff the similarity measure o is
predictive of F according to the ‘special’ definition of equations (18) € (19).

Proof: Taking X, = {0,1} and J= {(0,0), (0,1),(1,1)}, then equations (16) & (17) become

VfeF -z, eDy-o(x,x') > o(z,z) = f(x) = f(2) (20)
VfeF -x,2"eDy-o(z,a") =o(x,z) = [f(x) = f(2') vV (f(&') = 1A f(z) = 0)] (21)

By Theorem 9, C B1(o) will be a consistent learning algorithm for F' iff equations (20) & (21) are
satisfied. Hence it must be shown that a similarity measure o satisfies (20) & (21) iff equations
(18) & (19) are satisfied. a) Only if. Assume f, z & 2’ s.t. o(x,2') > o(z,z) and f(x) = 1.
Either the inequality is strict or the similarities are equal. In the case of a strict inequality, then
f(z') = 1 by equation (20). Where the similarities are equal, and also f(z) = 1, then clearly
equation (21) allows only f(z') = 1. Hence (18). Assume f, = & 2’ s.t. o(x,2’) > o(x,x) and
f(z) = 0. From equation (20), immediately f(z') = 0. Hence (19). b) If. Assume z & z’ s.t.
o(x,z') > o(x,x). For a given feF, either f(x) = 0 or f(z) = 1. If f(x) = 0 then from (19)
we have f(z') = 0 also. If f(z) = 1 then also f(z’) = 1 by equation (18). Hence (20). Finally
assume z & 2’ s.t. o(z,2') = o(z,z) and some feF s.t. f(z) =1 and f(z') = 0. But from (18),
f(z"y =1 giving a contradiction. Hence (21). O

4 Conclusions

This paper has attempted to answer the question of how the knowledge content of a case memory
system might be formalised. We have presented a view in which the case memory system is
interpreted according to the semantics given as a function which approximates to some ideal
mapping between input and output. The results presented explore a generalisation of the generally
accepted decision function for a case-based classifier to a more general class of case-based systems
which generate output from an arbitrary set of output values. The paper gives necessary and



sufficient conditions for the well-definedness of our semantics and also for the consistency of case-
based learning algorithms within this framework.

The functional view of knowledge content has a number of benefits, notably that it allows
the error in the case memory’s knowledge to be quantified straightforwardly in a way that is
compatible with the assumptions of computational learning theory, allowing us to appeal to more
general results in machine learning. We are finding that this allows some progress in understanding
analytically the learning behaviour of various case-based reasoning systems [4]. The formalisation
presented here might also be of use in emphasising the insight of Wess & Globig [9] that the
knowledge content of a case memory system rests in the similarity measure as well as the stored
cases.

Future work will attempt to make use of this framework in a model of case-based reasoning
systems suitable for simple instances of the design task. We hope to make progress in understand-
ing the nature and sources of error in the operation of a case memory system, and to develop
these insights in a way that allows claims about the performance of case-based reasoning systems
to be rigourously stated and proven.
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