
Using CBR to Select Solution Strategies in
Constraint Programming!

Cormac Gebruers1, Brahim Hnich1, Derek Bridge2, and Eugene Freuder1

1 Cork Constraint Computation Centre, University College Cork, Cork, Ireland
{c.gebruers,b.hnich,e.freuder}@4c.ucc.ie

2 Department of Computer Science, University College Cork, Cork, Ireland
d.bridge@cs.ucc.ie

Abstract. Constraint programming is a powerful paradigm that offers
many different strategies for solving problems. Choosing a good strat-
egy is difficult; choosing a poor strategy wastes resources and may result
in a problem going unsolved. We show how Case-Based Reasoning can
be used to select good strategies. We design experiments which demon-
strate that, on two problems with quite different characteristics, CBR
can outperform four other strategy selection techniques.

1 Introduction

Organisations, from factories to universities, must daily solve hard combinatorial
problems. Constraint programs, which reason with declaratively-stated hard and
soft constraints, are one of the most expressive, flexible and efficient weapons
in the arsenal of techniques for automatically solving these hard combinatorial
problems. They have been successfully employed in many real-life application
areas such as production planning, staff scheduling, resource allocation, circuit
design, option trading, and DNA sequencing [21].

Despite the broad applicability of constraint programs, constraint program-
ming is a skill currently confined to a small number of highly-experienced experts.
For each problem instance, a constraint programmer must choose an appropriate
solution strategy (see Sect. 2). A poor choice of solution strategy wastes compu-
tational resources and often prevents many or all problem instances from being
solved in reasonable time. The difficulty of choosing a good solution strategy is
compounded by the growing number of strategies. Our understanding of when it
is appropriate to use a strategy has not kept pace. Improvements in the quality
of decision-making would have considerable economic impact.

In this paper, we use decision technologies to support the choice of solution
strategy. That is, for a given problem, such as the Social Golfer Problem (defined
later), we try to predict good solution strategies for instances of that problem
which differ in size, constraint density, and so on. In Sect. 2, we introduce con-
straint programming and define what we mean by a solution strategy. Sect. 3
! This material is based upon work supported by Science Foundation Ireland under

Grant No. 00/PI.1/C075.

X D C

x1 {1, 2, 3}
x2 {2, 3, 4} x1 ≤ x2

Fig. 1. A simple CSP

shows how CBR and decision trees can be used to select solution strategies;
we also define three benchmark approaches. Sect. 4 explains our experimental
methodology. Experiments are reported in Sect. 5.

2 Constraint Programming

A solution strategy S comprises a model M , an algorithm A, a variable ordering
heuristic Vvar and a value ordering heuristic Vval : S =def 〈M, A, Vvar , Vval 〉 [1].
We will look at each component in turn.

2.1 Models

The task of modelling is to take a problem and express it as a Constraint Satis-
faction Problem (CSP). We define a CSP to be a triple 〈X, D, C〉. X is a finite
set of variables. D is a function that associates each x ∈ X with its domain,
this being the finite, non-empty set of values that x can assume. C is a finite
set of constraints which restrict the values that the variables can simultaneously
assume. A simple example is given in Fig. 1. A solution to a CSP is an as-
signment of values to variables such that every variable has exactly one value
from its domain assigned to it and all the constraints are satisfied. For example,
{x1 = 1, x2 = 3} is one solution to the CSP in Fig. 1.

There are often multiple ways of taking an informally-expressed problem and
expressing it as a CSP. We refer to each formulation as a model. To exemplify,
we consider an example problem known as the Social Golfers Problem:

“The coordinator of a local golf club has come to you with the following
problem. In her club, there are 32 social golfers, each of whom play golf
once a week, and always in groups of 4. She would like you to come
up with a schedule of play for these golfers, to last as many weeks as
possible, such that no golfer plays in the same group as any other golfer
on more than one occasion.” Problem 10 in [6]

The problem is generalised with its instances being described by four parameters
〈w, m, n, t〉: the task is to schedule t = m × n golfers into m groups each of n
golfers over w weeks so that no golfer plays any other golfer more than once. The
Social Golfer Problem has elements in common with many real-world scheduling
problems. A factory needing a daily schedule might need to solve different in-
stances of such a problem (i.e. with different parameter values) every 24 hours.
Savings in solution time could be of considerable value.

We will briefly describe three possible models for the Social Golfers Problem.
In the set-based model [15], there are m × w variables. Each variable MW j

i
represents the ith group of players in the jth week. Hence, the values these
variables take on are sets, each containing n player identifiers.

In the integer total-golfer model [18], there are t×w variables. Each variable
TW j

i represents the ith golfer in the jth week. Hence, the values these variables
take on are integers between 1 and m, identifying which of the m groups golfer
i belongs to in week j. In fact, this model is not used in practice, because
no efficient way has been found of expressing the constraint that groups from
different weeks share at most one golfer.

However, even the integer total-golfer model does have a use, because there
is a practical model which combines the set-based model with the (incomplete)
integer total-golfer model [2]. Combining models is a commonplace and produc-
tive technique in constraint programming. The combined model contains both
the m×w set-valued variables and the t×w integer-valued variables. Additional
constraints, known as channelling constraints, ensure that, when a golfer is as-
signed to a group in the integer total-golfer model, the set-based model makes
that golfer a member of the appropriate set-valued variable, and vice-versa.

2.2 Algorithms

Solving a CSP involves search. Each variable is assigned a value in turn and the
legality of that assignment is tested. If any constraints involving that variable
have been violated, the value is retracted and another tried in its place. Suppose,
for the CSP in Fig. 1, that x1 = 3; if we now try to assign x2 = 2, we violate the
constraint x1 ≤ x2. Hence, we would backtrack: we would retract x2 = 2 and
try, e.g., x2 = 3 instead.

When, during search, a legal assignment has been made, certain values in the
domains of other variables may no longer be able to participate in the solution
under construction. These unsupported values can be removed from further con-
sideration, a process known as propagation. In Fig. 1, suppose we assign x1 = 3;
then 2 can be removed from the domain of x2: it cannot participate in any so-
lution where x1 = 3 as it would violate the constraint x1 ≤ x2. The constraint
programming community has devised numerous algorithms that give different
trade-offs between the relative degrees of search and propagation

2.3 Variable and Value Ordering Heuristics

The efficiency of search and propagation may be influenced significantly by the
order in which variables are instantiated and the order in which values are chosen.
The constraint programming literature lists numerous heuristics for guiding these
choices; see, e.g., [20].

2.4 Strategy Selection

We have presented above the four components of a solution strategy, S =def
〈M, A, Vvar , Vval 〉. Defining solution strategies in this modular way is convenient

but may be misleading. It is not meant to imply that each component of a strat-
egy can be chosen independently of the other components. Some components
may be incompatible with others; and good performance from a strategy will
require that the chosen components perform as a cohesive unit. Hence, we do
not treat strategy selection as four independent decisions, nor four cascaded de-
cisions. Instead, we treat each solution strategy, of which there are many, as if
it were an atomic entity. Strategy selection is then a single decision: choosing, if
possible, the best strategy from this large set of atomic strategies.

2.5 Related Work

CBR has previously been used to support software development tasks. There
is work, for example, on design reuse and code reuse, of which [7] and [8] are
representative. More in the spirit of the work we report in this paper, however,
is the use of CBR to choose data structures for storing matrices in scientific
problem-solving environments [22].

While many synergies between constraint technology and CBR have been
reported (with a review in [19]), the only work we know of in which CBR is used
to make constraint programming decisions is our own. In [12], we use CBR to
choose models for logic puzzles; in [5], we use CBR to choose between integer
linear programming and constraint programs for bid evaluation problems.

There is related work that does not use CBR. For example, Borret and Tsang
develop a framework for systematic model selection [3], building on Nadel’s the-
oretical work [14]. Minton dynamically constructs constraint programs by per-
forming an incomplete search of the space of possible programs [13]. The contrast
between his work and ours is that we seek to re-use existing strategies, rather
than construct new programs.

Rather different again is the system reported in [4], which executes multiple
strategies, gathers information at runtime about their relative performance and
decides which strategies to continue with. The focus in that system is domains
where optimisation is the primary objective, rather than constraint satisfaction.

Finally, we note that, outside of constraint programming, machine learning
has been used in algorithm selection tasks, e.g. sort algorithm selection [9].

3 Strategy Selection Techniques

We describe here how we have applied CBR and decision trees to strategy selec-
tion. We also describe three benchmark approaches.

3.1 Case-Based Reasoning

Each case represents one problem instance. The ‘description’ part of a case is a
feature vector that characterises the instance (see below for a discussion of the
features). The ‘solution’ part of a case identifies the solution strategies that have
performed well on this instance. This needs a little more explanation.

Our decision to treat a solution strategy, although it is made up of four com-
ponents, as an atomic entity means that the ‘solution’ part of a case needs only
contain solution strategy labels. Thus, our task has become one of case-based
classification. In fact, as we will explain in detail in Sect. 4.2, it may be appro-
priate to regard more than one solution strategy as appropriate for a particular
instance. Hence, the ‘solution’ part of a case is a set of solution strategy labels.
In summary, each case 〈x, S〉 comprises feature vector x = 〈v1, . . . , vi〉 and a set
S of strategy identifiers.

With strategy selection reduced to a classification task, simple CBR tech-
niques suffice. We retrieve the k-nearest neighbours (we use k = 3) and we use
majority voting to to choose a strategy.

It remains to discuss the features we use. For three reasons, we have chosen
to use surface features in our work to-date:

– The over-riding reason is that, as a matter of good methodology, we need
to discover just how predictive surface features are before turning to other
approaches.

– A lesser reason is that, anecdotally, surface features (if anything) would
appear to be what human programmers use when selecting an initial strategy.

– Finally, surface features are cheap-to-extract and cheap-to-compare in the
similarity measure. By contrast, the main alternative is to compare the con-
straint graphs of problem instances. For reasons of computational complex-
ity, this is to be avoided, if possible.

The features we use might also be described as static features : they can be
obtained prior to execution; an example is the constraint density of the problem
instance. We are not using dynamic features, that are only obtainable during
execution, e.g. the number of backtracks at a certain point.

Finally, it has turned out that all our features are numeric, and so we compute
similarity as the inverse of Euclidean distance with range normalisation [23].

However, prior to using case bases for strategy selection, we use the Wrapper
method to select a predictive subset of the features [11] and these are the ones
used in the CBR.

3.2 Decision Trees

The decision trees we use are induced by C4.5 [17] from the same problem
instances that make up the case bases in our CBR approach. The tests that
label the interior nodes of the trees are drawn from the same features as used in
the CBR systems. Leaves are labelled by solution strategies. We use C4.5 with
all its default settings, also allowing it to prune the trees to avoid over-fitting.

3.3 Benchmark Approaches

We have used three benchmark approaches for strategy selection:

Random: A strategy is selected randomly, with equal probability, from among
the candidates.

Weighted Random: A strategy is selected randomly, but the probability that
a candidate is selected is proportional to how often that strategy is a winning
strategy in the dataset.

Use Best: In this approach, the same strategy is selected every time: the one
that is a winner most often in the dataset.

4 Experimental Methodology

4.1 Candidate Strategies

As Sect. 2 shows, for any given problem instance, there is a vast number of
possible strategies, combining different models, algorithms and heuristics. In
practice, human programmers entertain very few strategies. Similarly, in our
experiments it is not feasible to choose among all possible strategies. Instead,
we use around ten candidate strategies. Lest we be accused of thereby making
the prediction task too easy, we use candidates that informal experimentation
shows to be competitive on the different problem instances and which give, as
much as possible, a uniform distribution of winners because this maximises the
difficulty of strategy selection.

4.2 Winning Strategies

We have to define what it means for a candidate strategy to be a winner on a
problem instance. Surprisingly, it is not easy to obtain a consensus within the
constraint programming community on this.

To exemplify this, suppose the execution times of two strategies s1 and s2 on
a problem instance are 1000ms and 990ms respectively. While s2 is the winner,
some might argue that s2 exhibits no material advantage: the difference is 10ms,
which is only 1% of the faster execution time. Similarly, if s3 takes 505000ms
and s4 takes 500000ms, s4 is the winner; but in percentage terms the difference
between them is also 1%, the same as that between s2 and s1. In some domains,
where time is critical, any advantage may be worth having; in other domains,
performance within, e.g., an order-of-magnitude of the fastest strategy may be
regarded as acceptable. In the latter case, if a strategy selection technique were
to pick any of the high-performing strategies, it could be regarded as having
made a correct choice.

Our resolution to this lack of consensus is to use different definitions of win-
ner : we parameterise the definition of winning strategy and plot results for differ-
ent parameter values. We define a winning strategy using a window of execution
time. The best execution time recorded for an instance constitutes the window’s
lower bound. The upper bound is determined by a multiplication factor. We
denote different winning strategy definitions by their multiplication factor, e.g.
×1.0, ×10.0, etc. If a strategy’s execution times falls within the window, it is
considered one of the joint winners.

4.3 Dataset Generation

For each problem, we generate a dataset of problem instances. We need to label
each instance with its set of winning strategies. So we solve each instance with
each of the candidate strategies in turn and record the execution times. Since
some strategies perform unreasonably poorly on certain instances, execution is
done subject to a timeout of 6000ms. We do not admit into a dataset instances
where all strategies time out and instances where all strategies are joint winners.
These instances are of no use in prediction experiments.

4.4 Evaluation

The dataset is randomly partitioned into a training set and a test set, where
the training set is 60% of the instances. For each instance in the test set, we
use CBR, decision trees and the benchmark approaches to predict a solution
strategy for that instance. We determine, in each case, whether the prediction
is one of the winning strategies. Results are subject to 10-fold cross-validation.

We report the following results:

Prediction Rate: This is the number of times a strategy selection technique
predicts a winning strategy — the higher the better.

Total Execution Time: This is the total execution time of the predicted strate-
gies over all test instances — the lower the better.
Where the strategy selection technique predicts a strategy that was one of
the timeout strategies, we add only the timeout value (6000ms) into the total.
This understates the true total execution time, which we would have obtained
had we not subjected strategy execution to a timeout. Strategy selection
techniques that incorrectly pick strategies that timeout are, therefore, not
being penalised as much as they could on these graphs.

Note that prediction rate on its own would be a misleading metric — there
would be little utility to a technique that picked the best strategy for 90% of the
instances if these were ones where solving time was short but which failed to pick
the best strategy for the remaining 10% of instances if these were ones where the
solving time exceeded the total for the other 90%. This motivates the use of total
execution time as an additional metric which gives a good indication of whether
the technique is making the right choices when it matters, i.e. when incorrect
choices of strategy lead to very long solving times. For comparison, we also plot
the minimum possible total execution time, i.e. the sum of the execution times
of the best strategy for each instance.

5 Experiments

For each problem, we describe the features we use, the candidate strategies, the
distribution of those strategies in the dataset and we plot the prediction rate
and the total execution time.

Predictive?
Feature Type Min. Max. CBR Full DT Pruned DT

w integer 1 13 ! depth 1 "

m integer 2 7 ! " "

n integer 2 10 " " "

t integer 4 70 " depth 0 "

m/w real 2
13 7 ! depth 1 "

n/w real 2
13 10 ! depth 1 "

t/w real 4
13 70 " depth 1 or 2 "

n/m real 2
7 5 ! " "

Table 1. Social Golfer Problem Features (w : number of weeks; m : number of groups;
n : number of golfers per group; t : total number of golfers)

5.1 The Social Golfer Problem

Features The features we use are summarised in Table 1. Note how we define
some features as ratios of others. One might argue that the feature, e.g., m/w
is unnecessary when we already have the features m and w. However, unless we
use a non-linear similarity measure [16], similarity on features m and w will not
necessarily be the same as similarity on feature m/w. By explicitly including
features such as m/w, we avoid the need for a non-linear similarity measure.

The final three columns of Table 1 attempt to show which of the features are
selected by the Wrapper method for use in CBR and at what depth in the full
decision trees induced by C4.5 the different features appear. It has to be kept
in mind that this is only rough summary information: different outcomes are
possible on the different folds of the cross-validation. The full decision tree has
a depth of only 2; the reason that the final column, for the pruned tree, contains
no information is that the full tree is pruned to a tree containing just one node,
labelled by use s2, i.e. use strategy 2. In fact, this is not a good decision tree for
this dataset: in approximately 40% of the instances s2 is outperformed.

Candidate Strategies Twelve strategies, summarised in Table 2, are used
in our Social Golfer experiments; each is the winner on certain instances. In
two strategies, we use the set-based model. In the rest, we use the combined
model. Using this combined model, Bessiere et al. investigate different ways of
expressing the partitioning and disjointness constraints [2]. They design ways of
expressing them ‘globally’, which we denote fcpg and fcdg respectively, and ways
of decomposing them into more primitive forms, which we denote by fcpd and
fcpg respectively. So, in fact, there is not a single model here; there are four,
depending on which combination of constraints is used: 〈fcpg, fcdg〉, 〈fcpg, fcdd〉,
〈fcpd, fcdg〉 or 〈fcpd, fcdd〉. Experiments reported in [2] reveal that fcpg and fcpd

perform identically for the Social Golfers Problem, so we can arbitrarily adopt
fcpg . But this still leaves us with two models, 〈fcpg, fcdg〉 and 〈fcpg, fcdd〉.

Strategy
ID Model Algorithm Var. Heuristic Val. Heuristic
s1 set model dfs, IlcExtended group set lex (set)
s2 set model dfs, IlcExtended week set lex (set)
s3 fcpgfcdg dfs, IlcExtended group set IloChooseMinSizeInt, lex (set)
s4 fcpgfcdg dfs, IlcExtended week set IloChooseMinSizeInt, lex (set)
s5 fcpgfcdg dfs, IlcExtended static golfer IloChooseMinSizeInt, lex (set)
s6 fcpgfcdg dfs, IlcExtended static week IloChooseMinSizeInt, lex (set)
s7 fcpgfcdg dfs, IlcExtended min domain IloChooseMinSizeInt, lex (set)
s8 fcpgfcdd dfs, IlcExtended group set IloChooseMinSizeInt, lex (set)
s9 fcpgfcdd dfs, IlcExtended week set IloChooseMinSizeInt, lex (set)
s10 fcpgfcdd dfs, IlcExtended static golfer IloChooseMinSizeInt, lex (set)
s11 fcpgfcdd dfs, IlcExtended static week IloChooseMinSizeInt, lex (set)
s12 fcpgfcdd dfs, IlcExtended min domain IloChooseMinSizeInt, lex (set)

Table 2. Social Golfer and Extra Golfer Strategies (Strategies s1 and s2 are used only
for the Social Golfer Problem)

For algorithms and heuristics, we follow [2], which gives us a good number of
competitive strategies. In particular, we use ILOG Solver’s Depth-First Search
algorithm (dfs) with the propagation level parameter for global constraints set
to IlcExtended, which maximises the propagation [10]. We have used five variable
ordering heuristics but just one value ordering heuristic, IloChooseMinSizeInt,
lex (set) [2]. Space limitations preclude a description of their details.

Dataset Characteristics Our Social Golfer dataset contains 367 instances
prior to filtering. (The exact number of instances after filtering depends on the
parameterisation of the winning window.) Fig. 2 shows, for different winner
parameterisations, the number of instances where there are ties for first place; we
show in how many instances there is a clear winner, in how many two strategies
tie, in how many three strategies tie, and so on. More ties and higher cardinality
ties make prediction easier. Fig. 3 shows, for different winner parameterisations,
the percentage of instances for which each of the twelve strategies is one of the
winners. The sum of the percentages exceeds 100% because an instance can have
more than one winning strategy.

Results Figs. 4 and 5 show the prediction rate and the total execution time
for CBR, unpruned decision trees (which gave better results than pruned ones)
and the benchmarks, again for different winner parameterisations. The results
are discussed in Sect. 5.3.

5.2 The Extra Golfer Problem

The Extra Golfers Problem is a generalisation of the Social Golfers Problem. It
introduces x additional golfers (in our experiments x ∈ [1..4]), i.e. t = m×n+x.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1

%
 o

f I
ns

ta
nc

es

Winner Definition

Clear Winner
x2
x3
x4
x5
x6
x7
x8
x9

x10
x11

Fig. 2. Ties, Social Golfer Dataset

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1

%
 o

f I
ns

ta
nc

es

Winner Definition

s1
s2
s3
s4
s5
s6
s7
s8
s9

s10
s11
s12

Fig. 3. Strategy Distribution, Social Golfer Dataset

Thus there is an excess of golfers and some golfers rest each week, i.e. the set
of golfers is no longer partitioned into groups each week, as there will be some
golfers left over. This may not seem like a very different problem. But, in fact,
this small change to the problem brings large differences in terms of winning
strategies (compare Figs. 2 and 3 with Figs 6 and 7), and therefore it is an
interesting second problem for us.

Features We summarise the features in Table 3. Compared with the Social
Golfer Problem, there are some additional features, and the ‘predictiveness’ of
the features (summarised in the final three columns) is different. In this dataset,
there is no dominant strategy (unlike s2 in the Social Golfers dataset), and so
all the decision trees are more complex than they were for the Social Golfers.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1

%
 C

or
re

ct
 P

re
di

ct
io

ns

Winner Definition

CBR
C45 unpruned

Use-Best
Wt. Random

Random

Fig. 4. Prediction Rates, Social Golfer Dataset

 100000

 1e+06

 1e+07

 1e+08

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1

Cu
m

ul
at

ive
 E

xe
cu

tio
n

Ti
m

e

Winner Definition

CBR
C45 unpruned

Use-Best
Wt. Random

Random
Best Possible

Fig. 5. Total Execution Time, Social Golfer Dataset

Candidate Strategies Ten of the same strategies that were used for the Social
Golfer Problem (Table 2) can be used for the Extra Golfers Problem. The two
which use the pure set-based model, s1 and s2, are inapplicable because the
set-based model assumes that the golfers are partitioned.

Dataset Characteristics Our Extra Golfers dataset contains 440 instances
prior to filtering. The number of ties and the distribution of the strategies are
shown in Figs. 6 and 7. As we mentioned above, these graphs show the Extra
Golfer datasets to be quite different from those for the Social Golfer Problem.

Results Results are shown in Figs. 8 and 9, and are discussed in Sect. 5.3.

Predictive?
Feature Type Min. Max. CBR Full DT Pruned DT

w integer 1 13 ! depth 3 "

m integer 2 7 " depth 3 "

n integer 2 10 ! depth 1 or 3 depth 1

t integer 5 74 " depth 2 or 3 "

x integer 1 4 " depth 2 or 3 "

m/w real 2
13 7 ! depth 3 "

n/w real 2
13 10 ! depth 0 or 3 depth 0

t/w real 5
13 74 ! depth 2 depth 2

x/w real 1
13 4 " depth 3 or 4 "

n/m real 2
7 5 ! depth 1 or 2 or 3 depth 2 or 3

t/m real 5
7 37 ! " "

x/m real 1
7 2 ! depth 3 "

t/n real 5
10 37 ! depth 2 or 3 depth 2

x/n real 1
10 2 " depth 3 "

x/t real 1
74

4
5 " depth 3 or 4 depth 3 or 4

Table 3. Extra Golfer Problem Features (w : number of weeks; m : number of groups;
n : number of golfers per group; x : extra golfers; t : total number of golfers)

5.3 Discussion of Results

As we would expect, the graphs for prediction rate (Figs. 4 and 8) exhibit better
performance as the winning strategy definition is relaxed: as the number of joint
winners grows, it becomes easier to predict a wining strategy. Of the techniques,
for the Social Golfer dataset, CBR outperforms the next best techniques (use-
best and decision trees) by about 10%, achieving a prediction rate of between 70
and 80%. For the Extra Golfer dataset, while CBR still has the best prediction
rate, use-best and decision trees are not far behind.

The graphs for total execution time (Figs. 5 and 9) give an indication of the
quality of a technique, regardless of whether a winning strategy is predicted or
not. The Social Golfer dataset is the tougher of the two, because the differences
in execution times render the costs of making a wrong decision greater. Here,
CBR significantly outperforms the other strategies — note the logarithmic scale.
This is largely because it predicts far fewer strategies that time out. The Extra
Golfers dataset again brings use-best, decision trees and CBR closer in terms of
performance with CBR doing slightly better.

6 Conclusions and Future Work

In this paper, we have demonstrated that CBR outperforms four other strategy
selection techniques on two problems with quite different characteristics. We

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1

%
 o

f I
ns

ta
nc

es

Winner Definition

Clear Winner
x2
x3
x4
x5
x6
x7
x8
x9

Fig. 6. Ties, Extra Golfer Dataset

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1

%
 o

f I
ns

ta
nc

es

Winner Definition

s3
s4
s5
s6
s7
s8
s9

s10
s11
s12

Fig. 7. Strategy Distribution, Extra Golfer Dataset

have shown empirically that CBR achieves higher prediction rates than the other
techniques, and predicts fewer strategies that fail to find a solution in reasonable
time. By using CBR to select solution strategies, we have demonstrated that
significant amounts of computation time can be saved; such savings can have
considerable economic impact.

We have shown that it is possible to achieve good results using just surface
features. We have added clarity to strategy selection methodology by introducing
a parameterised definition of winning strategy and determining the impact of
different parameterisations.

Future work will involve other datasets for other constraint programming
problems; more considered selection of case base size and contents (including
consideration of case-base editing); scaling the system to facilitate a broader

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1

%
 C

or
re

ct
 P

re
di

ct
io

ns

Winner Definition

CBR
C45 unpruned

Use-Best
Wt. Random

Random

Fig. 8. Prediction Rates, Extra Golfer Dataset

 100000

 1e+06

 1e+07

 1e+08

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

Cu
m

ul
at

ive
 E

xe
cu

tio
n

Ti
m

e

Winner Definition

CBR
C45 unpruned

Use-Best
Wt. Random

Random
Best Possible

Fig. 9. Total Execution Time, Extra Golfer Dataset

selection of candidate strategies; deploying a wider range of strategy selection
teqhniques (e.g. statistical methods); and further analysis of how dataset char-
acteristics impact strategy selection.

References

1. Beacham, A., Chen, X., Sillito J. and Van Beek, P.: Constraint Programming
Lessons Learned from Crossword Puzzles. In Procs. of 14th Canadian Conference
on Artificial Intelligence, pp.78–87, 2001

2. Bessiere, C., Hebrard, E., Hnich, B. and Walsh, T.: Disjoint, Partition and Inter-
section Constraints for Set and Multiset Variables. In The Principles and Practice
of Constraint Programming, Procs. of CP-2004, pp.138–152, 2004

3. Borret, J.E. and Tsang, E.P.K.: A Context for Constraint Satisfaction Problem
Formulation Selection. Constraints, vol.6(4), pp.299–327, 2001

4. Carchrae, T. and Beck, J.C.: Low-Knowledge Algorithm Control. In Procs. of the
19th AAAI, pp.49–54, 2004

5. Gebruers, C., Guerri, A., Hnich, B. and Milano, M.: Making Choices using Structure
at the Instance Level within a Case Based Reasoning Framework. In Integration of
AI and OR Technologies in Constraint Programming for Combinatorial Optimiza-
tion Problems, Springer Verlag, pp.380–386, 2004

6. Gent, I., Walsh, T. and Selman, B.: CSPLib: A Problem Library for Constraints.
http://4c.ucc.ie/t̃w/csplib/ (Last accessed 02/02/2005)

7. Gomes, P.: A Case-Based Approach to Software Design, PhD Dissertation, Univer-
sidade de Coimbra, Portugal, 2003.

8. Grabert, M. and Bridge, D.: Case-Based Reuse of Software Examplets. Journal of
Universal Computer Science, vol.9(7), pp.627-640, 2003

9. Guo, H.: Algorithm Selection for Sorting and Probabilistic Inference: A Machine
Learning-Based Approach. PhD Dissertation, Dept. of Computing and information
Sciences, Kansas State University, 2003

10. ILOG Solver. http://www.ilog.com/products/solver/ (Last accessed 02/02/2005)
11. Kohavi, R. and John, G.: Wrappers for Feature Subset Selection. Artificial Intel-

ligence, vol.97(1–2), pp.273–324, 1997
12. Little, J., Gebruers, C., Bridge, D. and Freuder, E.: Capturing Constraint Pro-

gramming Experience: A Case-Based Approach. In International Workshop on Re-
formulating Constraint Satisfaction Problems, Workshop Programme of the 8th In-
ternational Conference on Principles and Practice of Constraint Programming, 2002

13. Minton, S.: Automatically Configuring Constraint Satisfaction Programs: A Case
Study. Constraints, vol.1(1), pp.7–43, 1996

14. Nadel, B.: Representation Selection for Constraint Satisfaction: A Case Study Us-
ing n-Queens. IEEE Expert, vol.5(3), pp.16–23, 1990

15. Novello, S.: An ECLiPSe Program for the Social Golfer Problem.
http://www.icparc.ic.ac.uk/eclipse/examples/golf.ecl.txt (Last accessed
02/02/2005)

16. Pang, R., Yang, Q. and Li, L.: Case Retrieval using Nonlinear Feature-Space Trans-
formation. In Procs. of the 7th European Conference on Case-Based Reasoning,
pp.361–374, 2004

17. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993
18. Smith, B.: Reducing Symmetry in a Combinatorial Design Problem. Technical Re-

port 2001.01, University of Leeds School of Computing Research Report Series,
2001

19. Sqalli M., Purvis, L. and Freuder, E.: Survey of Applications Integrating Con-
straint Satisfaction and Case-Based Reasoning. In Procs. of the 1st International
Conference and Exhibition on The Practical Application of Constraint Technologies
and Logic Programming, 1999

20. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, 1993
21. Wallace, M.G.: Practical Applications of Constraint Programming. Constraints,

vol.1(1–2), pp.139–168, 1996
22. Wilson, D. C., Leake, D. B. and Bramley, R: Case-Based Recommender Compo-

nents for Scientific Problem-Solving Environments. In Procs. of the 16th Interna-
tional Association for Mathematics and Computers in Simulation World Congress,
CD-ROM, Session 105, Paper 2, 2000

23. Wilson, R. and Martinez, T.: Improved Heterogeneous Distance Functions. Journal
of Artificial Intelligence Research, vol.6, pp.1–34, 1997

