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In this article, we present an extensive survey of music information retrieval (MIR) research into music playlists.
Our survey spans more than 20 years, and includes around 300 papers about playlists, with over 70 supporting
sources. It is the first survey that is self-contained in the sense that it combines all the different MIR research
into playlists. It embraces topics such as algorithms for automatic generation, for automatic continuation, for
assistingwithmanual generation, for tagging and for captioning. It looks at manually constructed playlists, both
those that are constructed for and by individuals and those constructed in collaboration with others. It covers
ground-breaking research into enhancing playlists by cross-fading consecutive songs and by interleaving
consecutive songs with speech, similar to what happens on a radio show. Most significantly, it is the first
survey that can fully incorporate the paradigm shift that has taken place in the way people consume recorded
music: the shift from physical media to music streaming. This has wrought profound changes in the size of
music collections available to listeners and thus the algorithms that support the construction, curation and
presentation of playlists and the methods adopted by users when they also construct, curate and listen to
playlists.
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1 Introduction
The technological revolutions of the late 20th century, such as the Internet, have shaped many
parts of our contemporary lives, including how we interact with recorded music.1 In the digital era
we are living in, music streaming services are one of the most popular ways to interact with music.

1Music listening can also happen at live performances. But the focus of this article is on recorded music.
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Fig. 1. A playlist of three songs.

According to the global music report of the International Federation of the Phonographic
Industry (IFPI), streaming accounted for 17.5 billion dollars of revenue in 2022, which is nearly
67% of the total global recorded music industry revenues for that year [160]. In the context of this
article, we consider music streaming services as the default medium to interact with recorded music.
In exchange for a monthly subscription fee, or for free in exchange for exposure to advertisements,
music streaming services allow their users to access an enormous catalogue of music, from different
devices, such as smartphones and personal computers, at any time.

The abundance of available music raises the risk that users of streaming services will be over-
whelmed [140]. For example, at the time of writing (early 2024), the music streaming services
Spotify2 and Deezer3 have catalogue sizes of respectively 100 and 120 million tracks. The need,
therefore, for efficient modalities of music access becomes apparent. In this scenario, playlists,
which can be defined as “sequence[s] of tracks intended to be listened to together” [306], have
become one of the preferred ways of accessing music. An example of a three-song playlist is in
Figure 1. Listeners use playlists to structure their listening, efficiently accessing the right music at
the right time [112].

The importance of playlists is evident by looking at the home page of the music streaming
service Spotify, which features playlists as a prominent element, as shown in Figure 2. Notice that
the playlists of Figure 2 are personalized, that is they are chosen to meet the user’s preferences
and requirements. The value of playlists is also highlighted by several statistics: in 2016, playlists
accounted for 31% of music streaming time among listeners in the USA, which is more than albums
(22%), but less than single tracks (46%) [306].

Playlists are created for users by professional curators and algorithms, and by users for themselves
and other users, for convenience and self-expression [358]. A study conducted in 2017 revealed
that 58% of users in the USA create their own playlists, and that 32% of users share their playlists
with other users [306]. In total, the music streaming service Spotify was hosting more than four
billion playlists in 2021.4 The statistics that we have quoted reveal the commercial value of playlists.
Partly in consequence, notable research efforts have ensued during the last two decades. Much of
the research on playlists is concerned with automatic generation of playlists, e.g. [111, 127, 343,
351]. Other work looks into how humans manually construct playlists, e.g. see [140, 281].

In this article, we present an extensive survey of music information retrieval (MIR) research
into music playlists. It spans more than 20 years, and includes around 300 papers about playlists. It is
the first self-contained survey to include all the different MIR research on music playlists, combining
in particular the two topics mentioned above (automatic generation and human construction). It
also includes research that, as far as we know, has not been surveyed before, such as research
into playlist tagging, playlist captioning, and enhancing the delivery of consecutive songs through
cross-fading or spoken links.

2https://spotify.com
3https://deezer.com
4https://backlinko.com/spotify-users
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Fig. 2. The home page of the music streaming service Spotify, which features playlists as a personalized and
prominent element. Picture taken 15 June 2022.

The remainder of this article is organized as follows. In Section 2, we formalize the concept of
playlists, we divide the research on playlists into several topics, and we compare it with other related
research. In Section 3, we summarize existing surveys on playlists, we describe the relationships
between these and our own survey, and we highlight the contributions that ours make. In Section 4,
we describe how we select relevant papers for inclusion. In the remaining sections, we present those
relevant papers, by dividing them into the research topics we identify in Section 2. In particular,
Section 5 reviews work on automatic playlist generation, and Section 6 surveys the field ofmanual
playlist generation (MPG). Section 7 looks at ways researchers are enhancing playlists by cross-
fading consecutive songs, interleaving songs with speech, assigning them descriptive tags, and
automatically captioning them. Section 8 offers possible directions for future research. Section 9
furnishes some conclusions.

2 Definitions and Research Landscape
This survey is about the consumption of recorded music, which, for conciseness, we refer to simply
as “music.” We refer to a person who is interacting with a music application as a “user,” irrespective
of whether they are listening to music, constructing a playlist, organizing their playlists, or any
other activities that the application allows. For a music streaming service, “user” refers not only to
a subscriber to the service but also anyone who uses a free version of the service.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 114. Publication date: November 2024.
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In this article, we define the concept of playlists as follows:

Definition 2.1. A playlist is a sequence of songs, intended to be listened to together.

Definition 2.1 is equivalent to what we find in notable references, e.g. [107, 306, 364]. Some
authors define playlists in simpler terms; for example, Bonnin and Jannach write that a playlist is
“a sequence of songs” [39]. We fear that this simpler definition is too broad. For example, a random
sample of songs from a song catalogue satisfies the simpler definition, but does not correspond to
the concept of playlist that is commonly intended, i.e. a sequence of songs organized according to
some principle [81]. Note also that Definition 2.1 entails a notion of ordering, that is a playlist is
made of songs in a specific order. However, the importance of song order in music playlists is a
debated topic. For example, Andric and Haus offer some evidence that the order does not matter
[10], while De Mooij and Verhaegh find that the order does matter [86]. We further discuss this
topic in Section 6.1.2.

One final remark about Definition 2.1 is its use of the word “song.” Some authors draw a distinction
between “songs” and “tracks.” The latter are specific recordings of the former; multiple recordings
(tracks) can exist for a single song, e.g. where the song is recorded by different artists. Using this
distinction, Definition 2.1 would need to be changed to refer to a sequence of tracks, as in [306].
However, similar to the way we use the word “music” to only refer to recorded music, we have
chosen to use only the word “song” from now on5.

In the remainder of this section, we first present several research topics on playlists; then, we
briefly relate the research on playlists to research on music recommender systems (RSs) and to
the research on sequence-aware and session-based RSs in other domains, such as e-commerce.

2.1 Playlist Research Topics
We divide the research on playlists that we survey into several topics. We organize these topics
with a diagram in Figure 3, and we briefly introduce them in the following sections.

2.1.1 Playlist Generation. Research on playlist generation is concerned with the construction of
playlists. We adopt the definition of playlist generation presented in [39]:

Definition 2.2. Given (1) a catalogue of songs, (2) background knowledge, and (3) some target
characteristics of the playlist, construct a sequence of songs fulfilling the target characteristics in
the best possible way.

The target characteristics of the playlist are the organization principles which make a playlist of
a sequence of songs to be listened to together, which is consistent with Definition 2.1, while the
background knowledge allows the agent which carries out the construction to select the songs
from the catalogue so as to match the target characteristics. For example, a target characteristic
may be a playlist for a beach day, the background knowledge may be some notion of what musical
genres are more suited for a beach day, along with some modeling of the users’ musical tastes, and
the catalogue of songs may be all the music hosted in a music streaming service.

Depending on the agent which carries out the construction, research in playlist generation can
be divided into automatic and manual:

Automatic Playlist Generation (APG). In APG, a playlist is constructed automatically for the user by
an algorithm. For example, Flexer et al. present an algorithm for creating a playlist that progresses
smoothly from a specified start song to a specified end song [111]. APG is a major research topic,

5In a similar vein, we do not intend by using the word “song” to confine attention to music in which there is singing. Our
use is intended to cover the whole range of musical pieces that are found on music streaming services.
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Fig. 3. Diagram of the research topics we survey.

counting hundreds of publications. The interest in APG is motivated by the fact that MPG (below)
can be experienced as a tedious, time-consuming activity, and it may require special background
knowledge [39]. APG research dominates our survey, which is one of the reasons we review it
first.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 114. Publication date: November 2024.
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One special case of APG is automatic playlist continuation (APC). In APC, the goal is to
extend an existing playlist with further songs. In terms of the definition of playlist construction
above, the existing playlist provides the target characteristics since the goal is to add songs that
are compatible with the original playlist. We discuss this further in Section 5.1.2.
The above characterization of APG tacitly assumes that playlists are constructed for a single
user. However, there exists a special subset of work on APG which deals with the case in which
playlists are constructed for a group of users. Where we wish to distinguish these from each other,
we use APG for individuals (APG-I) and APG for groups (APG-G).

Manual Playlist Generation (MPG). In MPG, the playlist is constructed manually by the user. MPG
is an activity that dates before the digitization of music. For example, in the 1980s it was common
to compile mix-tapes and to exchange those mix-tapes with other users [113]. MPG is an activity
which is important also nowadays because users in streaming services frequently create playlists.
They do this for two main reasons:

(1) Convenience [112]. Users create playlists, and give them a title, so as to have a personal
interface to their music, built inside the streaming service. This helps users to access the
right music at the right time, in a fast way.

(2) Self-expression [358]. In music streaming services, all users have access to the same cata-
logue of music, without actually owning any of it. But playlists allow users to select and
organize music, giving them the opportunity to express their personality and musical tastes.

A study conducted in 2017 revealed that 58% of users in the USA of the Spotify music streaming
service create their own playlists, and that 32% of these users share their playlists with other
users [306].
Some research in MPG considers the scenario in which the user is assisted by an algorithm
while manually constructing the playlist [96]. For example, in [182] the user is assisted by an
algorithm that recommends the next song to add as the user constructs the playlist, while in [352]
an algorithm organizes songs in a color map, and the user can create playlists by drawing on the
map. We refer to these approaches as assisted manual playlist generation (A-MPG). A-MPG
combines MPG and APG, as the user is still in control of the playlist construction process, but the
task is facilitated by an algorithm.
Just as work on APG can be for individuals (APG-I) or groups (APG-G), we can divide the work
on MPG: MPG-I is where playlists are constructed for and by a single user; MPG-G is where they
are constructed for and by a group of users.

2.1.2 Playlist Enhancement. Research on playlist enhancement is concerned with automatically
decorating existing playlists with additional content, so as to increase such things as the enjoya-
bility or accessibility of the playlist. The first two enhancements that we consider deal with the
presentation of consecutive songs. One is based on mixing consecutive songs, so as to obtain a
continuous music flow. The other is based on interleaving pairs of consecutive songs with speech,
similar to what happens on a radio show.

The remaining two enhancements that we consider look into automatically describing playlist
content at a semantic level that can be understood by humans. Playlist description is a useful
way to cope with content overload. As we have already noted, music streaming services feature
billions of playlists created by users, professional editors, or algorithms [88]. Playlist description
allows for effective and automated organization and access to playlists [69]. One way to describe
playlists is by using tags, which are closed-vocabulary short textual descriptions, naturally limited
in expressiveness. Another way is by captioning a playlist with well-formed natural language,
which is expressive but more complex to generate.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 114. Publication date: November 2024.
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2.2 Related Research Topics
The MIR research on playlists that we describe in this survey has relationships with other re-
search, most notably with research into RSs, and especially with the topics of sequence-aware
recommender systems (SARSs), session-based recommender systems (SBRSs), and music
recommender systems (MRSs).

2.2.1 SARSs and SBRSs. SARSs are used to recommend sequences of items, typically by gener-
ating item after item, iteratively. As well as recommending products in the e-commerce domain,
SARSs have been adopted in the tourism domain for recommending the next point-of-interest to
visit in a tour. We refer the reader to the survey in [291].

In SBRSs, users interact with items within a continuous but bounded period of time—usually a
fairly short period. The RS must take into account the user’s short-term preferences, which may be
specific to the session. Like SARSs, SBRSs can be found in e-commerce domains: in one session, a
user might want a hotel for a business trip; in another session, the same user might want a hotel
for a family vacation. We refer the reader to the survey in [354].

SARSs and SBRSs are different: in the former, order is significant; in the latter, the time period
and its short-term preferences are paramount. But they often coincide. This happens when the
order of item interactions within a session is significant.

Research in APG is very much related to the research in SARSs and SBRSs. A playlist typically has
characteristics in common with a session: a playlist has a bounded duration and may be designed
to satisfy short-term preferences, such as the user’s mood or activity. Furthermore, Definition 2.1
states that playlists are sequences, and hence ordered—although, again, we refer the reader to
Section 6.1.2 for further discussion of this. Many algorithms for APG can be seen as applications of
SARSs and SBRSs in the music domain.This is especially true of the work in APC that we mentioned
earlier: in the same way that many of these RSs recommend the item that comes next in a sequence
and/or session, APC systems recommend the next song to add to the playlist based on the songs
already in the playlist; see Section 5.1.2.

However, the music domain is different from other domains, for a number of reasons, as argued
by Schedl et al. in their survey on MRSs [305]. Songs are different from other items because they
are consumed in a relatively short time and because they are often consumed more than one
time. Owing to these peculiar characteristics, much research effort has been put into building RSs
explicitly for the music domain, which are of interest for this survey.

2.2.2 MRSs. MRSs are RSs that work in the music domain, tackling tasks such as the recom-
mendation of a personalized selection of songs, artists, or albums [305]. Since algorithms for APG
are also tasked with recommending a selection of songs, i.e., the playlist, they can be seen as MRSs.
However, APG algorithms are different from general MRSs because the selection of songs must
satisfy some additional soft constraints, such as matching some user-defined target characteris-
tics, and general characteristics, such as the right level of song diversity/coherence, as well as a
non-jarring song ordering; see Section 6.1.2.

3 Related Surveys and Contributions
MIR research on playlists is a two-decades-old research field: the oldest of the citations to playlist
research that we include dates back to 1997 [86]. We are not the first authors to survey the literature.
To the best of our knowledge, there are two others that are closely related to ours:

(1) Bonnin and Jannach’s “Automated Generation of Music Playlists: Survey and Experiments,”
published in 2014 [39]; and

(2) Dias et al.’s “From Manual to Assisted Playlist Creation: A Survey,” published in 2017 [96].

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 114. Publication date: November 2024.
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Survey (1) is specific to APG, as it presents algorithms for APG based on three attributes: (a)
what background knowledge the algorithms employ; (b) how the target characteristics of the
desired playlist can be input to the algorithms; and (c) the type of algorithm. Each attribute admits
a number of possible categories; for example, the background knowledge can be content-based
data, metadata and expert annotations, social web data, and usage data. We give more details in
Section 5.1. We borrow some ideas from (1), as we also characterize APG algorithms based on the
same three attributes. However, we include novel categories of those attributes, so as to better
accommodate the work that we survey but that is not cited in (1). For example, we cover APG
algorithms based on (neural) sequence modeling and on reinforcement learning (RL), which
have grown in significance since 2014.

Survey (2) is mainly about A-MPG but, in order to better position A-MPG algorithms in the
literature, it also includes a discussion of MPG and APG. The part of (2) on APG is a subset of
what is included in (1), while the part of (2) on MPG briefly discusses characteristics of manually
constructed playlists, such as recurrent playlist themes, and notable manual construction styles.
Nevertheless, the main contribution of (2) is a review of A-MPG algorithms. It presents several
algorithms for A-MPG, all based on visualizations, i.e., that assist the user in the manual construction
of a playlist by using visualizations of the song catalogue. Survey (2) identifies several categories
of A-MPG algorithm, based on the kind of visualization that is employed: maps, graphs, dots,
and radar. Our survey also includes the A-MPG algorithms that were covered by (2), as well as
other work published from 2017 onward. However, the recent work does not belong to any of the
categories proposed in (2). For example, recent work provides lists of song recommendations for
addition to the playlist, which is not a catalogue visualization of any kind. Hence, we propose a
novel categorization of A-MPG algorithms, to cover both recent and non-recent work. Specifically,
we divide algorithms into two categories: visualization and recommendation.

Despite some overlap, our survey is substantially different from (1) and (2), as we give a fresh
look at APG and A-MPG research, by including relevant work published after the publication of (1)
and (2). A fresh look is needed. In recent years, we have witnessed a change of paradigm in how
people access recorded music. It has shifted from physical media to music streaming. According
to the IFPI [160], the share of revenue coming from music streaming was nearly 10% of the total
revenue for recorded music in 2013, nearly 30% in 2016, approaching 57% in 2019, and nearly 67%
in 2022. The rise of music streaming has had a dramatic impact on research on music playlists,
especially in terms of sources of data and song catalogues.

In the case of sources of data, streaming services allow for the collection of enormous quantities
of usage data. Examples of usage data are manually constructed playlists, as well as listening logs
where the streaming service records the actions of its users when they are listening to music. A
few years after publication of (1), large datasets of usage data became available for researchers to
use. One example is the Million Playlists Dataset (MPD), released in 2018, which contains manually
constructed playlists, and is one order of magnitude larger than the datasets commonly employed
in the research included in (1) [39]. Others are the 30Music dataset [332], which contains nearly
60,000 playlists; the AOTM dataset [237], comprising over 100,000 playlists; and the ALF-200k
dataset [365], containing more than 11,000 playlists. The availability of usage data has dramatically
changed research in APG. The recent APG algorithms that we survey here, post-dating the ones
in (1), rely mainly on usage data, while few of them employ content-based data, metadata and
expert annotations, which is the predominant background knowledge used in APG algorithms
included in survey (1) [39] (see Table 1 for more details). The availability of large quantities of usage
data allows for the use of sophisticated machine learning algorithms, which are known to provide
satisfactory results only when large quantities of data are available [200]. Many of the recent
APG algorithms that we survey here, post-dating those in (1), use deep learning for computing
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Table 1. Organization of APG-I Algorithms, Based on the Category of Background Knowledge They Use,
and Dividing Those Published up to 2013 from Those Published from 2014 Onwards

Category Up to 2013 From 2014

Content-based data [14, 15, 21, 36, 43, 46, 55, 67,
74, 75, 98, 100, 108, 111, 123,
135, 153, 174, 194, 207, 226,
228, 233, 237, 244, 258, 259,
264, 284, 285, 294, 303, 309,
349, 360]

[1, 12, 32, 40, 49, 64, 71,
104, 115, 117, 129, 136, 157,
159, 161, 162, 165, 171, 192,
220–222, 273, 286, 299, 300,
324, 328, 336, 337, 339, 351]

Metadata and expert annotations [5, 6, 26, 35, 55, 56, 66,
75, 79, 145, 153, 155, 158,
174, 207, 237, 243, 251, 252,
263, 274, 277, 283, 294, 349,
370]

[12, 124–126, 156, 157, 164,
165, 171, 185, 232, 286, 298,
301, 335, 346, 351]

Social web data [56, 75, 98, 108, 130, 144, 194,
237, 246, 251, 252, 284, 293,
302, 309, 315]

[32, 170, 171, 181, 185, 262,
286, 304, 337, 339]

Usage data [3, 18, 38, 61, 130, 144, 158,
233, 237, 246, 292, 367, 370]

[4, 12, 32, 40, 49, 59, 71, 73,
87, 102, 124, 126, 156, 157,
159, 162, 164, 166, 170–172,
185, 187, 189, 191, 199, 229,
232, 245, 264, 265, 283,
298–301, 312, 326, 330, 331,
333, 335–337, 339–342, 345,
346, 351, 361–363, 369, 372]

Those published up to 2013 are also reviewed by Bonnin and Jannach in their 2014 survey [39]. The categories are the
ones used by Bonnin and Jannach.

embeddings and for sequence modeling and RL, while fewer of them rely on music similarity, which
was the predominant approach of APG algorithms included in (1) [39] (see Table 3 for more details).

In the case of song catalogues, in the pre-streaming era users had access to small personal
collections of music, which typically consisted of, at most, thousands of songs.Withmusic streaming,
users have access to large song catalogues, consisting of millions of songs. As such, recent APG
algorithms need to scale with catalogue size, which is not always the case for many APG algorithms
included in survey (1), especially those that work by solving expensive discrete optimization
problems with non-linear complexity. As a result, we encounter almost no discrete optimization
APG algorithms in the recent research, post-dating (1), see Table 3.The shift from small to large song
catalogues has also impacted research on A-MPG, as the goal of recent A-MPG algorithms, post-
dating (2), is to assist the user in the manual construction of playlists by providing recommendations
for songs to add to the playlist. A-MPG work included in survey (2), instead, mainly focuses on
visualizations that assist the user in the manual construction of playlists by visualizing the song
catalogue in a map or in a graph, and which do not scale to catalogues of millions of songs.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 114. Publication date: November 2024.
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Finally, we discuss a substantial amount of work that was not in surveys (1) and (2), such as
the research on group automatic playlist generation (APG-G), on group manual playlist
generation (MPG-G), as well as the research on playlist enhancement.We also include an extensive
account of research on MPG. Survey (2) also contains research on MPG, but it gives only a partial
account, from just five papers. We, by contrast, review over 50 papers on MPG, and we cover MPG
topics not covered in (2), such as a detailed discussion of the role of song diversity and homogeneity
when manually selecting songs.

4 Research Methodology
We collect relevant papers by following a well-defined procedure, where we first define a search
string, and then we review all the relevant papers that match the search string, as well as all the
relevant papers contained in the references of those papers, in “snowballing” fashion. For example,
we retrieve a relevant paper ?1 and we scan its references. If we find a relevant paper ?2 in the
references of ?1, we review ?2 and we scan its references. If we find a relevant paper ?3 in the
references of ?2, we review ?3 and we scan its references, and so on, until we run out of relevant
papers.

We consider a paper to be relevant by performing an initial scan of its contents, where we
search for the keyword “playlist.” If the paper never mentions “playlist,” it is safe to assume that
it is not relevant. If the paper does mention “playlist,” then we look at it more carefully and we
consider it to be relevant if playlists are the main topic of investigation of the paper. For example, a
paper that creates a dataset of songs from a dataset of playlists and then extracts song embedding
representations to power a song RS is considered not relevant since the playlists are incidental to
the work.

We defined the search string by scanning the proceedings of the International Society for
Music Information Retrieval Conference (ISMIR),6 which is the premiere venue for research
in MIR. In particular, based on papers published in ISMIR, we crafted a search string that includes
keywords from the titles of those papers.7 We use the string to search the academic aggregator
DBLP.8

In total, our survey reviews around 300 relevant papers, and it also cites over 70 additional
supporting sources.

5 APG
APG is the most popular topic within research on playlists. Research in APG is concerned with the
design, implementation, and evaluation of algorithms for constructing playlists. In this section, we
survey the literature on APG, presenting first algorithms to generate playlists for individual users
(APG-I, Section 5.1), and then algorithms to generate playlists to be listened to by groups of users
(APG-G, Section 5.2).

5.1 APG for Individual Users
Bonnin and Jannach [39] surveyed the literature on APG-I in 2014, organizing APG-I algorithms
based on three attributes: (1) what background knowledge they employ; (2) how the target char-
acteristics of the desired playlist can be input to the algorithm; and (3) the algorithm type, e.g.,
content-based, collaborative filtering (CF), and so on. According to Definition 2.2, three inputs
6https://ismir.net/
7The search string we use is “playlist continuation |continuing |expansion |expanding |creation |creating |recommendation |
recommender | recommending | generation | generating | user | study | trial | evaluation | evaluating |interview |interviewing |
sequencing |sequence |representation |representing |caption |captioning”.
8https://dblp.org/
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are required for an APG-I algorithm: a catalogue of songs, background knowledge, and some target
characteristics of the desired playlist. The first two of Bonnin and Jannach’s attributes correspond
with two of the inputs that are mentioned in the definition of APG-I. In this section, we adopt
Bonnin and Jannach’s organization: we also characterize APG-I algorithms based on the same three
attributes, but we complement their work, as we incorporate the newer literature up to the date of
writing.

5.1.1 Background Knowledge. The background knowledge is the information used to choose the
songs from the catalogue in order to construct a playlist that matches the target characteristics. The
background knowledge should be represented in some machine readable form, in such a way that it
can be used by algorithms. In their 2014 survey on APG-I, Bonnin and Jannach [39] identify several
categories of background knowledge. In this section, we review those categories, while adding fresh
details from the more recent work that we have surveyed. We organize APG-I algorithms based on
their background knowledge in Table 1. We highlight differences from the research surveyed by
Bonnin and Jannach [39] to the research we exclusively survey by dividing algorithms published
up to 2013 from those published from 2014 onward.

Content-Based Data. Researchers in the field of MIR have been concerned for a long time with
extracting information, or features, from the music audio signal, a research topic which is often
referred to as content-based MIR [249].9 These content-based features can be high-level, such as
the emotions evoked by a musical piece [324, 366], its genre [76], timbre [279], chords [101], pitch
[373], and beats per minute (BPM) [307], or low-level, such as representations of the audio signal,
for example mel frequency cepstrum coefficients (MFCC) [371], or such as learned embedding
representations, as extracted, for example, by convolutional neural networks (CNNs) [162, 273].
Often, low-level features are used for extracting high-level features, e.g. see [72, 287, 359]. We refer
the reader to [249] for a survey of content-based MIR.

Some APG-I algorithms rely on high-level content-based features. For example, Griffiths et al.
extract the emotion evoked by songs, and construct a playlist that matches the emotion of the
user, which is extracted by using several sensors [135]. The same approach is taken in [136, 324].
The work in [40] is similar to the above, except that users manually input their current emotion,
e.g., melancholy. Liebman et al. [221, 222] propose a RL algorithm for APG-I in which songs are
represented as vectors containing timbre, pitch, BPM, and statistics thereof.

Some other content-based algorithms rely on low-level content-based features. For example, Pohle
et al. compute the similarity between songs in the catalogue based on an MFCC representation, to
create a playlist in which consecutive songs are as similar as possible, so as to guarantee a coherent
listening experience [285]. A similar approach is followed by [21, 111, 226, 228]. In [71, 162], instead,
song representations extracted by a CNN are used as input to a recurrent neural network (RNN),
so as to predict the next song in the playlist.

Metadata and Expert Annotations. Following [39], we use the word metadata to refer to any
information describing the playlist or its songs that is not derived from the audio signal. An example
of playlist metadata is the playlist title or caption, when assigned by an expert. (When assigned
by an end-user, it might be preferable to classify them as examples of social web data, like user
tags—see below.) Examples of song metadata are the year of release, the record label, the lyrics, and

9The term content-based has different meanings in different research communities. For example, in the RSs community,
content-based features are any type of feature describing an item, such as the song lyrics or its musical genre [250]. We
position our survey more in line with the MIR community, in which content-based features typically refer to those features
which are extracted from the music audio signal [249].
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the genre,10 among others [118]. Usually, experts manually annotate songs with their metadata. A
notable example is the Music Genome Project [50], a database of songs and their metadata created
and maintained by experts employed by the Pandora music streaming service.11

Different types of metadata are sometimes represented in a single structure, for example in a
knowledge graph, where nodes represent both songs and also heterogeneous types of metadata
[103], and edges express the relationships between the songs and the metadata, and the metadata
with other metadata. For example, song names, album names and years can be represented as nodes,
and a “belongs to” edge can link a specific song name to its album name, and a “released in” edge
can link the album name to its year of release [118]. Knowledge graphs are also used in [87, 165,
237, 251, 252, 333]. Edges in a knowledge graph might also represent relationships between classes,
subclasses, and instances, e.g. between genres and subgenres. Indeed, ontologies and taxonomies
offer an alternative to knowledge graphs, placing the focus on classes, subclasses, instances, and
their properties. For example, Ben-Elazar et al. use a taxonomy of musical genres [32].

One way to use metadata in APG-I is by allowing users to specify constraints on the metadata
and then generate a playlist that satisfies those constraints. For example, in [277] users can input
constraints on the song genre, release year, and length (in seconds), and an optimization algorithm
is used to generate a playlist which satisfies these constraints. The same strategy is followed in [5,
15, 55, 155, 263, 275, 276].

Social Web Data. Social web data is data shared online by Internet users. Following [39], we list
three types of social web data:

User tags. A user tag12 is a free text annotation that a user applies to a musical item, e.g. a song or
an artist [201]. User tags can be very rich and varied, as they can cover a wide range of different
topics, such as musical genres (e.g., “rock”), years (e.g., “90s”), countries (e.g., “Ireland”), activities
(e.g., “chill”), seasons (e.g., “summer”), among others.

Ratings. A rating is a piece of explicit user feedback for a musical item, often expressed in a 1-to-5
rating scale or as a “like” or “dislike” judgment. The usage of ratings as background knowledge
is becoming less and less common, as ratings are too difficult to gather for the majority of the
user base [305]. In particular, we do not encounter any work that uses ratings as background
knowledge in the literature from 2014 to the date of writing.

The social graph. A social graph connects people by different relationships, such as “friend” or
“spouse,” and to musical items, e.g. person G “likes” artist ~, in social networks such as Facebook.13
Social graphs are sometimes used as background knowledge, under the assumption that people
who are closely connected in the graph have similar musical tastes [130]. A playlist for a user
can be constructed, for example, by including music that is liked by the user’s friends, giving an
automated version of word-of-mouth recommendation.

10Note that genres appear in our classification of background knowledge both as examples of content-based and as examples
of metadata. This is because song genres can be extracted by an algorithm from the audio signal, or they can be assigned by
experts. For example, in early 2000s work, small catalogues of songs were manually annotated with their musical genres
[263]; in recent work, accurate content-based MIR algorithms are often employed to extract the musical genres of large-scale
song catalogues [287].
11https://pandora.com
12The word “tag” is ambiguous. In some work, it is used to indicate free text, e.g. [201]; in other work, it is used to indicate
an item of text drawn from a fixed vocabulary, e.g. [68]. This survey needs to use the word “tag” in both of its meanings. For
example, in this section, tags are free text, while in Section 7.3 tags are drawn from a fixed vocabulary. In order to make
clear which of the two meanings we intend, we use “user tag” for free text, and we use simply “tag” where there is a fixed
vocabulary.
13https://facebook.com
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Usage Data. In streaming services, usage data record interactions between users and musical
items.

Listening logs. Listening logs record the songs a user listens to, including those that they skip,
those that they listen to completion, and those that they download. As such, listening logs provide
indications about user tastes. For example, it is common for algorithms to interpret a skip as an
indication of a song that the user does not like [32, 66, 100, 157, 192, 265], although, of course,
it could just signal that the song does not suit the user’s context, such as their mood or activity.
Listening logs can be used to compute embedding representations. One strategy is to rely on the
word2vec algorithm [240], by treating songs as words, and listening logs as phrases, by analogy
with natural language.

Popularity. Usage data gives a clear indication of the popularity of musical items, e.g., of songs. We
can, for example, simply count the occurrences of each song in the listening logs of all the users.
Popularity is sometimes used as background knowledge for building simple but effective heuristics
for APG-I. For example, Bonnin and Jannach show that it is possible to build high-quality playlists
by simply including the most popular songs made by artists similar to the artists that the user
likes [38]. Moreover, popularity can be employed as a fallback strategy for estimating the musical
tastes of new users, i.e., those that are new to the streaming service.

Manually constructed playlists. Users frequently create playlists for convenience [112] and self-
expression [358]. These user playlists can be used as background knowledge for creating new
playlists. For example, McFee and Lanckriet learn song-to-song transition probabilities based
on a database of user playlists, and they use these probabilities to generate new playlists [238].
Manually constructed playlists can also be used to compute embedding representations; see our
discussion of listening logs, where we mentioned the word2vec algorithm as a possible way of
computing these embeddings.

Discussion. The categories of background knowledge we review above differ in their availability,
consistency, and abundance:

Availability. The availability of some background knowledge may not be guaranteed for all the
songs in the catalogue. For example, recently added songs may have no user tags, or may occur
few times, or never, in listening logs or in manually constructed playlists. The same goes for
“long-tail” songs [195], i.e., those songs which are rarely listened to, that constitute the large
majority of the catalogue [51]. The unavailability of background knowledge for such portions of
the catalogue leads to biases against new songs (the cold-start problem [89]) and against long-tail
songs (popularity bias [169]). In fact, algorithms cannot evaluate a song for inclusion in a playlist
if there is no background knowledge to match the song to the target characteristics of the playlist.
Content-based data is the only category of background knowledge which can be available for
every song in the catalogue, as content-based data is extracted from the song audio itself. As such,
content-based data allows for the construction of “fair” algorithms, in the sense that they can
select any song in the catalogue for inclusion in the playlist.

Consistency. Some background knowledge may be noisier than other background knowledge. For
example, the level of noise in metadata is often low because metadata annotations are typically
made manually by domain experts. Nevertheless, inconsistencies in metadata may exist, especially
because somemetadata is not objective. For example, Flexer et al. find that different annotators may
disagree on the musical genre of songs [110]. Similarly, the level of noise in content-based data also
tends to be low because content-based data is extracted by automatic procedures. Nevertheless,
inconsistencies in content-based data may arise because those automatic procedures are never
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100% accurate. For example, predicting the tempo of a song is challenging and the results can be
inaccurate [58, 278].
Usage and social web data are typically much noisier than content-based and metadata, as they
record the unpredictable behavior of Internet users. For example, Lamere analyzes a dataset of
user tags and finds misspellings, spelling variants and synonyms among user tags, as well as user
tags with little to no relevance to music, such as the user tag “random” [201]. Similarly, Hagen
finds that manually constructed playlists often do not have clearly defined target characteristics
but may be used as a randomly arranged container of the user’s favorite music [140].

Abundance. Usage and social web data are by far the most abundant category of background
knowledge, as they are generated in large quantities by billions of Internet users every day.
Content-based and metadata are less abundant as their extraction depends, respectively, on
computationally bounded procedures [308] and on the expensive annotation work of domain
experts.

Using one category of background knowledge rather than another influences the quality of
the generated playlists. For example, there is some evidence that algorithms relying solely on
content-based data produce playlists of low quality, especially when compared with other types
of systems, e.g. those which rely on usage data [321] or metadata [338]. However, it is wrong to
consider one category of background knowledge to be superior to another. A more correct view is
to consider them as complementary: while content-based data can help to create coherent playlists
in terms of acoustic properties, usage data gives information about the musical tastes of the user,
allowing the creation of personalized playlists. Hence, it is common to combine different categories
of background knowledge. There are several papers that show how the quality of generated playlists
is enhanced by making effective use of more than one category of background knowledge, e.g. [32,
171, 237]. One way to readily include different sources of background knowledge is to organize
them in a unifying structure, for example a knowledge graph (described earlier) [103]. In addition
to representing songs and their metadata, knowledge graphs can represent listening logs: nodes for
users would link to nodes for the songs they listened to [261].

If we refer back to Table 1, we can see the differences between the research up to 2013 (the first
period), which was already surveyed by Bonnin and Jannach [39], with respect to the research
from 2014 onward (the second period). The majority of algorithms from the first period rely on
content-based and metadata for their background knowledge, especially because the song catalogue
sizes before the streaming era allowed for the manual annotation of songs or the extraction of
content-based data. In the second period, when streaming became the prevalent type of music access
[160], the emphasis shifted to usage data, mainly due to the availability of that type of background
knowledge, easily recorded by the music streaming service.

5.1.2 Target Characteristics. The target characteristics of a playlist are the organization princi-
ples which make a playlist of a sequence of songs to be listened to together.The target characteristics
should be input in some machine readable form, so that they can be readily used by algorithms. In
their 2014 survey on APG-I, Bonnin and Jannach [39] identify several categories of target character-
istics. In this section, we review those categories and make a small update to better accommodate
the more recent work.14 We organize APG-I algorithms based on the target characteristics in
Table 2. We highlight differences between the research surveyed by Bonnin and Jannach [39]
and the research we exclusively survey by dividing algorithms published up to 2013 from those
published from 2014 onward.

14Specifically, we update the category “free-form keywords” proposed in the survey by Bonnin and Jannach [39] to the
more general “free-form text.”
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Table 2. Organization of APG-I Algorithms, Based on the Category (and Sub-Category) of target
Characteristics They Receive as Input, and Dividing Algorithms Published up to 2013 from Those Published

from 2014 Onwards

Category Sub-category Up to 2013 From 2014

Explicit preferences
and constraints Seed songs [3, 18, 21, 38, 43, 46,

61, 67, 98, 108, 111,
123, 130, 144, 194,
207, 226, 228, 233,
237, 246, 264, 265,
274, 275, 283, 285,
292, 302, 303, 309,
315, 349, 360, 367,
370]

[4, 12, 32, 36, 59, 64,
71, 87, 102, 104, 115,
117, 124, 126, 129,
161, 162, 164–166,
170–172, 185, 187,
189, 199, 220, 222,
229, 245, 273, 286,
298, 304, 312, 326,
330, 331, 333, 335,
337, 339, 342, 345,
346, 351, 361, 369,
372]

Free-form
text [75, 246, 293] [12, 73, 102, 104, 187,

189, 191, 229, 245,
298, 324, 335, 345,
351, 361, 363, 369,
372]

Explicit and
pre-defined constraints [6, 15, 55, 74,

107, 145, 153, 155,
174, 233, 243, 263,
275–277, 293]

[1, 40, 136, 328]

Real-time
feedback [56, 66, 123, 158, 264,

265, 293]
[40, 157, 181, 192,
220, 222, 262]

Past user
preferences [56, 78, 108, 130, 158,

251, 252, 370]
[32, 40, 49, 156, 157,
170, 171, 185, 331]

Contextual and
sensor information [3, 26, 35, 79, 100,

135, 158, 244, 258,
259, 293, 294]

[116, 125, 126, 159,
232, 304, 324]

Those published up to 2013 are also reviewed by Bonnin and Jannach in their 2014 survey [39]. The categories and
sub-categories are the same ones used by Bonnin and Jannach, except for a minor change we make so as to better
accommodate recent work: we rename their category “free-form keywords” to “free-form text.”
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Explicit Preferences and Constraints. Some algorithms allow users to input the target characteris-
tics manually, in different ways:

Seed songs. Users can guide the algorithms in their song selection by specifying the first song [32],
or the first and last song [5, 8], or a list of songs already contained in the playlist [331], or the
set of all the songs to include in the playlist15 [194]. Some algorithms allow users to specify seed
artists, instead of seed songs [32, 304].

Free-form text. In this case, users specify constraints on the songs by providing free-form text,
which is used to select relevant songs [73]. The free-form text can be single keywords, such as
artist names, musical genres, or moods [362, 363]. But free-form text can also be well-formed
natural language phrases. For example, the APG-I algorithm proposed in [324] generates a playlist
from a natural language text.

Explicit pre-defined constraints. Similar to free-form text, users can specify constraints on the
playlist. However, in this case, the user does not have the flexibility of free-form text. Instead,
constraints are pre-defined and users choose among them, e.g. the user chooses a desired mood
from six categories [40], or the user chooses a tag from a tag-cloud [233], or colors from a
color-picker [1].

Real-time feedback. Users provide feedback on the playlist as it is being played and generated.
Feedback might be explicit, by liking or disliking a song [264], or implicit by listening to a song
to completion or by skipping a song [265]. The playlist can be modified in real time according to
the feedback [192]. As well as giving feedback on songs, users can give feedback about metadata
associated with the songs. For example, in [181, 262] the user is shown the tags of the current
songs and can select one or more of those tags in order to influence the selection of the next song.

Past User Preferences. The users’ musical preferences are an important target characteristic. In fact,
although users may input some explicit target characteristics, such as a seed song, they implicitly
desire that the constructed playlist contains music that they like [11]. For example, Lee et al. find
that a user’s opinion about a whole playlist can be easily influenced by a single song that the user
loves or hates, or even by a specific element of the song that the user loves or hates [205]. This
means that music in a playlist should be highly personalized. The musical preferences of a user
are usually estimated by considering usage data, such as listening logs and manually constructed
playlists [38, 292] (see Section 5.1.1).

Contextual and Sensor Information. The listening context influences the musical choices of users
[2]. For example, the user’s mood and location can influence their musical choices [65, 90]. There-
fore, context-awareness is an important target characteristic. Mood and location are only two
examples of listening context, which is a broad concept. Indeed, Kaminskas and Ricci define the
listening context as “any contextual conditions that might influence the user’s perception of music”
[186]. Other examples of listening contexts are user activities, e.g., “party” [68]; the time of day
[149]; the weather conditions; characteristics of the user’s listening device such as the battery
level; ambient conditions such as light and noise levels; and motion, e.g., as measured by an
accelerometer [304].

Acquiring the listening context of a user is a first, necessary step towards context-awareness.
Some listening contexts may be easier to acquire than others. For example, the level of light can be
easily acquired with sensors that feature in nearly any device. Other contexts may be more difficult
to acquire, especially those contexts which are not observable by means of a sensor, such as the
mood of the listener. In the literature, we find examples such as: building a model to infer a user’s
15In this last case, algorithms are tasked with arranging the provided set of songs, without applying any song selection.
These special APG-I algorithms are sometimes called sequencing algorithms [36].
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mood from audio signals detected by microphones [260]; inferring the user’s mood from free-form
text [324]; and inferring what activity the user is engaging in from listening logs [159].

Once the listening context is determined, a playlist can be constructed by means of handcrafted
rules that link the context to the music. For example, we find several papers that extract a model of
user’s pace from accelerometer data and construct a playlist where the BPMs of songs depend on
the user’s pace [35, 100, 244, 258, 259].

Discussion. The categories of target characteristics that we present above are complementary. For
example, while a seed song broadly defines how a playlist should sound, past user preferences and
contextual information can tailor the playlist to the tastes of the user and to their current context.
Hence, some algorithms combine different target characteristics to construct high-quality playlists
[171].

Nevertheless, the most common way of specifying the target characteristics is via seed songs, as
Table 2 shows. The other ways of specifying the target characteristics are generally under-explored,
especially in the literature from 2014 until now. One notable way of specifying the seed songs is by
providing a list of songs already contained in the playlist. In this latter case, the algorithm adds
more songs to the playlist, so as to fit the same target characteristics as the original playlist [364],
which is a task known as APC. APC has benefits both for listening to and for creating playlists: APC
enables users to enjoy listening sessions that continue beyond the end of a finite-length playlist,
while also making it easier to create longer, more compelling playlists without the need to have
extensive musical familiarity [306].

APC was the focus of the ACM RecSys Challenge 2018,16 in which participants were asked to
add more songs to user-created playlists taken from the Spotify music streaming service [364]. In
total, 113 teams participated in the Challenge, which represents a landmark in APC research. APC
is the dominant research trend in APG-I: we estimate that over 40% of the works in APG-I from
2014 onward focus on APC.

5.1.3 Algorithm Type. We review algorithms for APG-I based on their type. In their 2014 survey
on APG-I, Bonnin and Jannach [39] identify several types of algorithms. In this section, we review
those types, while adding two types that emerge from the more recent work: sequence modeling
and RL. We organize APG-I algorithms based on their type in Table 3. We highlight differences
between the research surveyed by Bonnin and Jannach [39] and the more recent research by
dividing algorithms published up to 2013 from those published from 2014 onward.

Similarity. Similarity algorithms use song similarity to construct playlists. Song similarity can
be derived from different kinds of background knowledge, such as content-based data [14, 21, 46,
161, 265, 285], metadata [274, 283], tags [284, 304], manually constructed playlists [38, 233, 292],
listening logs [346], ratings [56, 315], or any combination of the above [174]. For example, both
Pohle et al. and Cai et al. compute the similarity between songs based on an MFCC representation
[21, 46, 285]; Pauws and Eggen and Polignano et al. count the values of metadata features that
two songs have in common [274, 286]; and Bonnin and Jannach consider how often two songs
co-occur in manually constructed playlists [38]. More recently, we have seen increasing reliance on
song embedding representations [85, 199, 346], learned using the word2vec algorithm [240]. These
embeddings are obtained by treating songs as words and treating manually constructed playlists as
phrases, by analogy with natural language. Song embedding representations can also be given as
input to a clustering algorithm, such as :-means, to generate playlists of similar songs by sampling
from the clusters [116].

16https://recsys.acm.org/recsys18/challenge/
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Table 3. Organization of APG-I Algorithms Based on Their Type, and Dividing Algorithms Published up to
2013 from Those Published from 2014 Onwards

Algorithm type Up to 2013 From 2014

Similarity [21, 38, 43, 46, 56, 67, 74, 75, 98,
107, 108, 111, 123, 130, 153, 174,
194, 207, 226–228, 233, 251, 252,
264, 265, 274, 283, 285, 292, 302,
303, 309, 315, 349, 360]

[1, 12, 36, 40, 49, 64, 115, 117, 129,
161, 164, 165, 232, 273, 286, 304,
346]

Collaborative filtering [3] [4, 12, 59, 102, 104, 104, 166,
170–172, 185, 187, 189, 191, 229,
245, 298, 326, 331, 335, 337, 339,
351, 361–363, 369, 372]

Frequent pattern mining [38, 61, 144] [39]
[156]

Statistical models [61, 237, 238, 246, 367, 370] [32, 73, 87, 199, 304, 330, 333, 345]

Case-based reasoning [18] [124–127]

Discrete optimization [5, 6, 15, 98, 145, 155, 194, 243, 263,
275–277, 284, 285, 309]

[156]

Sequence modeling — [33, 34, 71, 162, 172, 191, 311, 312,
340, 342]

Reinforcement learning [66, 158] [192, 220–222, 299–301, 328]

Those published up to 2013 are also reviewed by Bonnin and Jannach in their 2014 survey [39], except for two papers
on reinforcement learning, that were published before 2014 but did not make it into their survey. The algorithm types
are similar to those used by Bonnin and Jannach, except for some changes we make so as to better accommodate the
recent work that we exclusively survey. Specifically, we include two additional algorithm types: sequence modeling and
reinforcement learning

Integrating multiple sources of background knowledge is beneficial when computing similarity.
For example, in the context of judging the similarity between a song that could be added to a
playlist and the songs already in the playlist, research shows that users consider content-based
features, such as energy and tempo, as well as meta-data, such as musical styles and lyrical content
[22, 323].

The perception of song similarity is subjective. Even expert listeners are found to disagree when
asked to rate the similarity between songs [109]. For example, some people consider content-based
data more than metadata while judging similarity, and other people may do the opposite [205]. Some
work in APG-I integrates personalization in the similarity computation. For example, Sotiropoulos
et al. allow users to set different weights for different features when assessing similarity, e.g., a user
might weight content-based data more than metadata or vice-versa [316]. And, in [302], Sandvold
et al. propose a system where users can assign tags to songs, drawing from a vocabulary of tags.
Then, the system learns how to tag new songs, so that the predicted tags reflect the user’s tagging
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style. Finally, playlists can be created using a similarity measure based on both kinds of tags (those
that are assigned and those that are predicted), which means that similarity is personalized based
on the user’s tagging style.

Once similarities are computed, songs can be chosen for their similarity with the seed songs [14,
38, 226], or for their similarity with other songs liked by the user [158]. Another possibility is to
create playlists so as to maximize the similarity between songs [194].

Playlists generated with similarity-based algorithms are expected to be coherent. However,
coherence is not the only quality criterion for playlists, as some other criteria exist, such as diversity
[290]. Also, a risk with optimizing for similarity is that the playlist may become monotonous [205],
e.g., containing songs from the same album. See Section 6.1.2 for a discussion of coherence and
diversity.

One use-case for similarity algorithms is that of playlist sequencing, the special case of APG-I
where the target characteristics are given as a set of songs, and algorithms are tasked simply with
arranging the set of songs, without applying any further song selection, in such a way that the
music is coherent, from one song to the next song [36]. For example, Bittner et al. and Cliff both
use a similarity algorithm working on content-based similarity [36, 74]. Their approach compares
the distance between songs based on several features and then arranges the songs in such a way
that those distances are minimized. Sarroff and Casey [303] use the approach of building a machine
learning predictor working on content-based features that can distinguish suitable from not-suitable
song-to-song transitions. Finally, Furini and his co-authors go in the direction of personalized
sequencing [115, 117]. They analyze song-to-song transitions in a user’s playlists so that they can
sequence playlists in a personalized way.

CF. CF is a common approach in the RSs literature. It is based on the heuristic that if the active
user agreed with certain users in the past, then these users are similar to the active user, and
items that these users liked should be relevant to, and can be recommended to, the active user
[296]. Hence, the use of CF algorithms is facilitated by the existence of usage data, recording the
preferences of other users. Specifically, they typically assume a sparse user–item matrix that may
record user ratings for items or user interactions with items. CF is then a family of methods for
predicting the rating a user would assign to an item or the relevance of an item to a user, based on
the data that is given in the rest of the matrix. It is the fact that this data may come from other
users that makes these approaches “collaborative.”

The most common way of employing CF for APG-I is by applying the playlists-as-users analogy
[38, 298], in which a user is a playlist and an item is a song: instead of a user–item matrix that
records each interaction between a user and an item, we have a playlist–song matrix that records
information about the presence of each song in a playlist. Another common analogy is the titles-as-
users analogy [298, 351, 369], in which a user is a playlist title and items are again the songs. Which
analogy to employ depends on the target characteristics. The playlists-as-users analogy fits the
case in which the target characteristics are given as seed songs. The titles-as-users analogy fits the
case in which the target characteristics are given as a playlist title, i.e. a special case of free-form
text. For simplicity of exposition, most of the rest of this section uses only the playlist-as-user
analogy.

In the playlist-as-user analogy, the playlists–songs matrix can be unary [172], i.e., recording
a 1 if a playlist contains the song. Or, it can be non-unary; e.g., it may assign a value to a song
according to its position in the playlist, giving more weight to the later songs [12, 331]. Given a
playlists–songs matrix, CF algorithms that would ordinarily predict the relevance of an item to a
user can be re-purposed to predict the suitability of a song for a playlist.
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One option is to employ nearest neighbors CF algorithms [255]17. For example, the system in
[341] computes the similarity between the active playlist and the other playlists in the dataset
as the cosine similarity of their row-vector representations in the playlists–songs matrix. Then,
for each song in the catalogue, it computes a score by summing the similarities of the active
playlist to the : most similar playlists in the dataset that contains the song, where : is a positive
integer hyper-parameter. Finally, the highest-scoring song is selected to be added to the playlist.
The algorithm above corresponds to the user-based :-nearest neighbors CF algorithm in the RSs
literature [198]. The user-based :-nearest neighbors algorithm is also employed in [166, 172].

Another option is to use the item-based :-nearest neighbors algorithm [91]. For example, the
system in [340, 342] computes the similarity between songs as the cosine similarity of their column-
vector representations in the playlists–songs matrix. Then, for each song in the catalogue, it
computes a score by summing the similarity of the last song in the playlist to the : most similar
songs in the catalogue.

Some work uses similarity functions other than cosine; e.g., Jaccard [331]. Additionally, the
similarity functions can be augmented with heuristics, e.g., by giving higher weight to unpopular
items [189].

But there exist CF algorithms, other than nearest neighbors, for constructing playlists. For
example, Aizenberg et al. [3] use a matrix factorization (MF)-based approach, in which the
playlists–songs matrix is factorized into two low-dimensional matrices, containing the playlist
embeddings of every playlist in the dataset and the song embeddings of every song in the catalogue.
Then, for each song in the catalogue, the system computes a score by taking the dot-product of
the playlist and song embeddings. Finally, the highest-scoring song is selected to be added to the
playlist.

In some cases, MF is the first step of a two-step APG-I algorithm, especially in the case of APC,
e.g. [298, 351]. MF is used to learn a model that can predict the relevance of every song to a playlist.
But these relevances are used to filter to a more manageable (but still large) set of candidate songs
to add to a playlist. These remaining songs are associated with features such as their popularity
[351] or the degrees of homogeneity and diversity they would bring to the playlist [298]. A second
model learns to re-rank the remaining candidates based on these features. Re-ranking algorithms
commonly used in APG-I include gradient boosted trees [351], for example, XGBoost [62]

The years since the publication of the Bonnin and Jannach survey have also seen the rise of deep
learning. Deep learning is a form of machine learning that is based on the use of many-layered
artificial neural networks. It has led to advances in different application fields of AI, such as natural
language modeling [42] and object classification in images [200]. Given those promising results,
deep learning has recently been applied to the task of APG-I. We will discuss its use in sequence
modeling in a later subsection, but here we can see the effect it has had on CF-style approaches to
APG-I.

One example is to be found in the work of Zhao et al. [369]. They take a similar approach to
Aizenberg et al. above, i.e., using an MF algorithm to factorize the playlists–songs matrix. But then,
where Aizenberg et al. compute scores between playlist and song embeddings, Zhao et al. provide
for extra learning: the playlist and song embeddings are fed into a feed-forward neural network,
which outputs a score indicating the fit of the song for the playlist.

A well-known family of deep learning models are the autoencoders. In the simplest case, an
autoencoder consists of two components, encoder and decoder, both of which are usually feed-
forward neural networks. A more sophisticated autoencoder is the adversarial autoencoder, in

17Nearest neighbors CF algorithms can be considered similarity algorithms, but we review them in this section and not in
the “Similarity” section as they are commonly categorized as CF, especially in the RSs community [296].
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which the hidden vector distribution is regularized so as to match a Gaussian prior distribution
[234]. Autoencoders of both kinds are used for APG-I by setting the input to be a binary vector
indicating which songs are in the playlist [335, 361]. This, in effect, is the playlist-as-user analogy
and so we can regard these as CF approaches to APG-I. The output is a vector approximating the
input vector, that can be used for selecting other songs for addition to the playlist. Vagliano et al.
[335] successfully integrate additional background knowledge into an adversarial autoencoder
for APG-I, by concatenating embeddings of textual data, such as the playlist title, to the hidden
representation.

The playlists-as-users analogy has three main limitations: (1) the constructed playlists are not
personalized, (2) the performance depends on the number of songs in the playlist, and (3) they may
perform poorly on songs that occur in very few playlists. Concerning limitation (1), the songs are
chosen so that they are tailored to those already in the playlist, but not to the listener’s musical
tastes. Some work tweaks CF approaches so that they become personalized. One approach, for
example, is to modify the active playlist by adding songs from other playlists created by the same
listener [3, 170, 185]. Concerning limitation (2), CF algorithms are affected by the cold-start problem,
which manifests with small or newly created playlists [59]. In fact, the accuracy of CF algorithms
is positively correlated with the number of seed songs, i.e., the algorithm will generate a better
playlist when provided with more seed songs [364]. And, CF algorithms are not able to generate a
playlist if no seed songs are provided. In such cases, it is necessary to resort to a fall-back strategy,
for example by working with other target characteristics or by employing simple heuristics based
on song popularity. The solution to limitation (3) is usually some form of hybrid. For example, Val
et al. combine song embedding representations extracted from content-based data, metadata, and
manually curated playlists by means of a deep feed-forward neural network, so as to model the
probability that a specific song is a good fit for a specific playlist [337, 339].

The titles-as-users analogy shares the same three limitations. Some authors propose a solution to
alleviate the cold-start problem when using the titles-as-users analogy, which consists of clustering
similar titles together, so as to increase the number of songs for each title [369]. One way to cluster
titles is to rely on simple text pre-processing pipelines, which transform the text to a common format,
for example by removing special characters [362, 363, 369]. Another way to cluster titles (although
here employed in a recurrent neural network) is by employing text-embedding procedures, such
as FastText [175], and by running a clustering algorithm on those embeddings [245]. Yang et al.
[361], on the other hand, treat playlist titles as sequences of characters and use a CNN to process
the characters, obtaining an embedding vector that can be used to predict the songs in the playlist,
given the title. They combine the CNN with an autoencoder to obtain a system that has both a
titles-as-users approach and a playlist-as-users approach.

One last drawback of CF approaches, however, is that they are not designed for the specific
challenges of APG-I, and aspects such as song coherence have to be addressed separately [39].

Frequent Pattern Mining. Frequent pattern mining approaches work by mining patterns from a
dataset of manually constructed playlists. A pattern can be expressed in the form (1 ⇒ (2, where
(1 and (2 are two sets of songs. The pattern signifies that it is likely to find the songs in (2 after the
songs in (1. In sequential pattern mining, (1 and (2 would be sequences of songs, not sets of songs.

Patterns can be used to generate playlists. For example, consider three songs: B1, B2 and B3; given
a playlist with B1 and B2 as seed songs, if we have extracted the pattern (1 ⇒ (2, where (1 is the set
{B1, B2}, and (2 is the set {B3}, then a candidate continuation for the playlist is B3. Pattern mining
is not often applied to APG-I. However, Bonnin and Jannach show that patterns and sequential
patterns can, in fact, achieve comparable performance to other types of algorithms that were in
use in 2014 [38, 39]. Chen et al. furnish one example of the use of sequential patterns [61]. They
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propose to use a simple bigram model that extracts (1 ⇒ (2 rules by counting how frequently the
set of songs (2 follows the song (1 in the dataset, corrected with Witten-Bell discounting [177].

One problem with this approach is that patterns based on songs will be very rare, and sequential
patterns even rarer. For example, even in a very large dataset of playlists, the number of times that
Alice Coltrane’s Wisdom Eye follows Post Requisite by Flying Lotus will be small. The patterns will
be associated with very low confidence values, and many reasonable patterns will be not be seen
at all. The solution is to mine patterns based, not on songs, but on representations of songs, e.g.,
based on hand-crafted features or latent features. In [144], for example, the PrefixSpan algorithm
[142] is used to mine sequential patterns on song latent embeddings. The song latent embeddings
are obtained by applying Latent Dirichlet Allocation to the songs’ tags [37].

Statistical Models. Statistical models work by modeling the probability of adding a song to the
playlist.18

One class of statistical models are the Markov models, i.e., those that model the probability of
adding a song to the playlist based on the current “state.” In the APG-I research cited below, the
state is defined as the last song in the playlist. Markov models are proposed in [61, 87, 237, 246, 333,
345, 367].

The core component of Markov models is the estimation of the song-to-song transition prob-
abilities. McFee and Lanckriet [238] offer a comparison of a number of Markov models, which
differ on how the probabilities are estimated: some of them count song co-occurrences in manually
constructed playlists, while others rely on content-based or metadata similarity, and in some cases
latent representations. This recalls the problem with frequent pattern mining (above): song co-
occurrences will typically be low frequency; using song representations or Hidden Markov Models
(e.g., [367]) can overcome this.

Markov models may lead to the construction of problematic playlists [342]. For example, adding
a song based only on the previous one may lead to a lack of coherence throughout the playlist.

Some other statistical models are not Markov models, and model the probability of adding a
song to the playlist based on the other songs in the playlist. For example, Hu and Ogihara [158]
consider a playlist as a time series and use an autoregressive integrated moving average model
[146] to predict the next song.

The most sophisticated statistical models are also personalized, i.e., they model the probability
of adding a song to the playlist based on the other songs in the playlist and based on the user’s
musical tastes. For example, Ben-Elazar et al. [32] propose a Bayesian classification model whose
parameters are estimated via variational inference based on the playlist songs and on the other
songs liked by the user. Two similar models are proposed in [330, 370].

Other notable statistical models are proposed for the scenario in which the target characteristics
are specified using natural language. For example, Chung et al. propose a statistical model for
linking a word to a song [73]. It is trained on a dataset of manually constructed playlists and their
titles. In practice, they learn an embedding for every word and song, in such a way that a particular
song embedding is aligned with a particular word embedding if that song is likely to appear in a
playlist which contains that word in its title.

Case-Based Reasoning (CBR). CBR is an approach to problem-solving that involves reasoning with
prior experiences. CBR can be effective when two tenets hold [204]: similar problems have similar
solutions; the types of problems an agent encounters tend to recur. Case-based APG-I assumes that
18Some of the other types of algorithm are also statistical models. In particular, CF, sequence modeling, and RL are statistical
models. Also, similarity algorithms can be used to build statistical models. However, we devote a separate section to each of
those as they are notable and recognizable algorithm types for RSs in general and for APG in particular. The algorithm type
designated as statistical models, following Bonnin and Jannach [39], are ones that explicitly compute transition probabilities.
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existing playlists encode the results of prior reasoning, and that it is therefore worthwhile to re-use
existing playlists when creating new playlists.

Given a dataset or case base of existing playlists and an initial seed playlist, Gatzioura and
Sànchez-Marrè use CBR to recommend a set of songs for playlist continuation (APC) [124]. Their
system retrieves from the case base a set of : playlists that are similar to the user’s seed playlist. In
this system, similarity is an aggregate of song similarity, where song similarity is based on shared
meta-data. The system recommends songs taken from the : playlists, based on the playlist similarity
scores.19 The approach is extended to include time-of-creation pre-filtering [125] and shared latent
topic pre-filtering [126, 127].

By contrast, Baccigalupo and Plaza [18] deal with case-based playlist generation from a seed
song (APG-I), rather than case-based playlist continuation and treat the order of the songs in the
playlists in the case base as significant. In their approach, the system retrieves and combines a
set of so-called relevant patterns. Relevant patterns are subsequences that contain the user’s seed
song and which recur across multiple playlists in the case base.20 There is an even greater risk of
low frequency patterns than there was in frequent pattern mining and Markov model algorithms:
Baccigalupo and Plaza’s algorithm works with songs, rather than representations of songs, and the
patterns it mines must include the seed song.

Both Gatzioura and Sànchez-Marrè and Baccigalupo and Plaza equip their systemswith additional
scoring mechanisms that try to take coherence and diversity into account, these being concepts
that we discuss further in Section 6.1.2.

Discrete Optimization. A different way to approach playlist generation is by setting up a discrete
optimization problem. Given the catalogue of songs and a set of explicitly specified constraints that
capture the desired target characteristics, the goal is to construct a sequence of songs that satisfies
the constraints, while maximizing some utility function [39].

Discrete optimization approaches to APG-I differ in their constraints. Some approaches impose
constraints on consecutive songs, for example by requiring that their similarity should be higher
than some value, as measured by a song similarity measure [5, 263]. Other approaches impose
constraints directly on metadata or content-based data [6, 15, 145, 155, 263, 275]. In the case of [15],
for example, this is done by requiring that at least = songs in the playlist should have a specific
musical genre. In [156], constraints are sequential patterns that have been mined from a user’s
listening history.

In addition to constraints that must be satisfied, there may be a utility function to be maximized.
For example, the approaches in [145, 194, 284] seek to maximize the similarity of consecutive songs
in the playlist, as measured by a song similarity measure [195].

Also, different approaches use different strategies to solve the optimization problem. Some use
linear programming [5, 6]; others use constraint satisfaction [15, 263, 275]; yet others use simulated
annealing [145, 277]; and at least one uses each of genetic algorithms [155], ant-colony optimization
algorithms [243], and tabu search [156]. In all cases, the greatest challenge is coping with the
combinatorial explosion that results when scaled up to large music collections.

Sequence Modeling. We have already discussed the recent contribution that deep learning has
made to new CF algorithms for APG-I. We have also seen some algorithm types (most notably

19This CBR system could alternatively be classified as a similarity algorithm, but we review it in this CBR section and not
in the “Similarity” section because of the way it computes not just song similarity but also playlist (case) similarity and
because this is how the authors view their work and how it is viewed in [39].
20This CBR system could alternatively be classified as a frequent pattern mining algorithm, but we review it in this CBR
section and not in the “Frequent Pattern Mining” section because this is how the authors view their work and how it is
viewed in [39].
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sequential pattern mining and statistical models) that depend on the sequence of songs in a corpus
of playlists. In what we are here referring to as sequence modeling algorithms, we look at the
application of deep learning methods to the song sequence data.21

One well-known family of deep learning models are RNNs [224]. RNNs are particularly suited to
learning from sequential data. At their core, there is the concept of hidden state, which is updated
at each step of the sequence, as a function of the current and past elements of the sequence. The
hidden state contributes to the prediction of the next value in the sequence.

RNNs can be applied to APG-I by considering that a playlist is a sequence of songs. As such,
RNNs can naturally predict the next song in the sequence, i.e., the song to add to the playlist. They
can be used to construct a playlist from scratch, song by song, but may be particularly suited to
APC, where they propose a continuation of an existing playlist. In [172, 340–342] a particular RNN,
known as GRU4Rec [150], originally proposed for SARSs, is used for APG-I. They train the RNN on a
dataset of manually constructed playlists, with the objective of correctly replicating those playlists,
i.e., the RNN is fed the playlist up to song =, and its parameters are optimized so that it correctly
predicts the song in position = + 1. Related work makes use of other RNN models, such as LSTMs
[71, 162]. Shih and Chi [312] propose an additional RNN training step, in which other training
objectives are included, such as song diversity and freshness, by resorting to a policy-guided RL
algorithm [154]. Moreover, by treating a playlist title as a sequence of characters, it is possible to
use RNNs to process the characters, obtaining an embedding vector, that can be used to predict the
songs in the playlist, given the title [191].

Another family of deep learning models are the CNNs. The use of CNNs was popularized in
computer vision, where they yield state-of-the-art accuracy in tasks such as image recognition [200].
While not always seen as sequence models, CNNs have been adapted to do language modeling
[178] and this inspires ways of using CNNs for APG-I. For example, by applying the songs-as-words
analogy, it is possible to use a CNN to predict the next song in the playlist [351].

Our final type of deep learning model is the transformer [347]. It is only very recently that
transformers have been applied to APG-I, e.g., [33, 34, 311]. In the context of APG-I from seed
songs, Bendada and his co-authors [33, 34] report a comparison in a A/B test of two approaches: a
transformer and a latent factor model. The transformer model resulted in longer listening times,
which is a positive result. However, for more mature users, this was accompanied by a reduction
in actions such as adding songs from the playlist to a list of favorites. We mention transformers
in Section 8 as a promising direction for future work. Indeed, sequential modeling in general is a
promising approach, but it does require the availability of large quantities of reasonably high-quality
playlists.

RL. RL is a form of machine learning in which an agent, through interaction with its environment,
learns how to take specific actions so as to maximize a long-term numerical reward. In each step,
the agent takes an action and the environment transitions from one state to another state. After
each action, the agent may observe a reward. The agent aims to learn a policy that defines which
action should be taken in each state in order to receive the greatest cumulative reward [325].

RL is suitable for modeling sequential problems, in which each action is taken as a consequence
of the previous action. Playlist construction can be modeled as a RL problem, by considering an
action to be the addition of a particular song to the playlist for which there is a reward. The goal is
to learn a policy that maximizes cumulative reward. The survey of APG-I by Bonnin and Jannach
does not contain any RL algorithm for APG-I, since most were published after 2014.

21The name sequence modeling could, of course, be used generically to cover sequential pattern mining, Markov models,
and some of the other work cited in the previous section. We choose to use it more narrowly to refer to neural approaches
that build models from sequential data.
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In APG-I work that is based on RL, the current state is given by the list of songs in the playlist.
For example, if the playlist has been constructed up to the 10th song, and the agent is tasked with
choosing the 11th song, then the state is the list of those 10 songs; an action is the addition of a
specific song to the playlist.

The observed rewards depend on the user, and on the newly added song. In some work, rewards
are observed implicitly; for example, a skip is a negative reward, while listening to a song to
completion is a positive reward [192]. In other work, rewards are observed explicitly, for example
by asking the user to rate the newly added song on a numerical scale [221]. In some works, rewards
are calculated from the system’s background knowledge. For example, in [299, 300], reward is based
on similarity in an embedding of acoustic features, and this is extended in [301] to similarity also
in a knowledge graph embedding combined with measures of popularity and novelty. In this way,
rewards help balance smooth transitions, diversity, and discovery.

In some APG-I work based on RL, the agent learns a policy from the observed rewards directly.
The work in [66, 157, 192], for example, uses Q-learning [357] to learn a policy from observed
rewards. In other work, the agent estimates a reward function from the observed rewards and uses
this reward function to determine the policy. The work in [221, 222], for example, parameterizes
the estimated reward function as a linear transformation of the newly added song’s content-
based data.

One apparent issue with the formalization of APG-I as RL above is that of combinatorial explosion.
For example, if the catalogue size is just 10 million songs (much smaller than it is in some music
streaming services [318]), then there are 1070 possible states just for playlists that contain 10 songs,
and 107 possible actions. One way to tackle the state explosion problem is by factorizing the song
representation in terms of their features, such as content-based features [192, 221, 222], metadata
[157] or mood [66], and/or by applying windowing, e.g. by representing just the last three songs of
a playlist in a state [66, 157].

At the time of writing, RL algorithms for APG-I are promising but relatively under-explored.
Their need for reward data is their greatest limitation, and it is not clear that calculating rewards
from other data is an adequate substitute for human reward data.

Having now reviewed the different algorithm types, we finish this section with some topics that
are algorithmic but which cut across the different algorithm types.

Discussion: Trends. Our survey of algorithm types enables us to identify some trends in the
research. We gave an overview of these in Section 3, where we were contrasting our survey with
previous ones. But, now, at the risk of some repetition, we can use Table 3 and our presentation
of the algorithms above to confirm them. There are differences between the research up to 2013
(the first period), which was already surveyed by Bonnin and Jannach [39], and the research from
2014 onward (the second period), that we exclusively survey. We can explain the changes in terms
of at least three factors: (1) the paradigm shift in music consumption from small personal music
collections to streaming services, requiring algorithms that scale well to millions of candidate
songs; (2) consequentially, the availability of certain kinds of data, most notably usage data, such as
the MPD, released in 2018 for the ACM RecSys Challenge, which enables approaches that train on
collections of manually constructed playlists; and (3) the rise of deep learning across ML in general.

Accordingly, work on Similarity algorithms has declined a little since the first period, perhaps
because some approaches do not scale well. The more recent Similarity algorithms use embeddings
learned from datasets of manually constructed playlists. Use of CF algorithms has grown enormously,
exploiting, for example, the MPD, mentioned above. A little of the CF work uses nearest-neighbors
methods, but these do not always scale well. Instead, MF has become common, and the most
recent work combines MF with models for re-ranking or with multi-layered neural networks,
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autoencoders, and the like. Discrete optimization methods have largely not survived the transition
to music streaming services. When there are millions of songs, it is near impossible to utilize
discrete optimization algorithms, as their worst-case computational complexity is exponential.

Approaches that try to learn from the order in which songs appear in playlists have changed
greatly. Neural approaches to sequence modeling, such as recurrent neural networks and trans-
formers have superseded frequent pattern mining and, to some extent, statistical models. Finally,
RL, which seems to promise much in terms of modeling but also the handling of user feedback, has
grown strongly.

Discussion: Hybrids. The types of algorithms we reviewed differ in their performance. There is, for
example, some evidence that CF and sequence modeling excel in generating high-quality playlists,
especially in the case where the target characteristics are specified as a list of seed songs [39, 364].
However, it is wrong to consider one type of algorithm to be superior to another. A more correct
view is to consider them as complementary. Algorithms of different types usually leverage different
sources of background knowledge. For example, while CF algorithms are mostly limited to usage
data, similarity algorithms can easily include content-based data. Also, algorithms of different
types usually accommodate different ways of specifying the target characteristics. For example,
while CF algorithms are mostly limited to the case in which a static playlist is generated from a
list of seed songs, RL algorithms can generate dynamic playlists that adapt to the user feedback in
real time.

It is therefore necessary to employ hybrids that combine algorithms of different types or that
use different data, in different circumstances, especially depending on the background knowledge
available, and on the way the target characteristics are specified. For example, Schedl et al. [304]
use a similarity-based algorithm to generate a playlist, which is then adapted in real time based on
the contextual information, gathered from sensors and processed by a statistical model. Frequently,
different types of algorithms are combined with the goal of attaining playlists of higher quality
[172, 248, 326, 364]. One common way of combining algorithms is to compute a weighted average
of their predictions [229, 351].

Deep learning is often used as a powerful tool to combine heterogeneous features and infor-
mation sources [320]. For example, Vall and his co-authors [337, 339] combine song embedding
representations extracted from content-based data; metadata; and manually curated playlists, by
means of a deep feed-forward neural network, so as to model the probability that a specific song is
a good fit for a specific playlist.

We refer the reader to [44] for an understanding of the possible ways in which RS algorithms
can be combined, many of which can be adapted to APG-I.

Discussion: Re-Ranking. Finally, we will discuss re-ranking, which can be thought of a particular
type of hybrid algorithm. Systems that use re-ranking typically have a two-stage architecture. In
the first stage, a model ranks the candidate songs for their relevance to a playlist. In the second
stage, the candidates are re-ranked by a second algorithm, typically using data that was not used in
the first stage.

In APG-I, there are at least two motivations for using re-ranking. One motivation is to improve
scalability. The first stage would use a model that can score all the songs in the catalogue for
relevance but at speed. A common choice is an MF model. Only those candidates with the highest
scores from the MF model are passed to the second stage, where they are ranked by a model
that takes different data into account and may not operate as quickly as the model in the first
stage [298, 351].

The second motivation for re-ranking is to improve the top-= song recommendations that are
selected for display to the user of, e.g., an APC system. Songs appearing lower in the ranking
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produced by the first stage might be ‘promoted’ in order to produce a set of = recommendations
that satisfy additional criteria. In [187], for example, the intuition is that the set of songs that
is recommended for continuation of a playlist should match the level of diversity of songs that
are already in the playlist. Kaya and Bridge use sub-profile aware diversification [188] to im-
plement this intuition, measuring an increase in accuracy. A similar approach is taken in [229],
where diversity is measured by means of content-based features. The intuition of [116] is, in-
stead, that some songs recommended for continuation of a playlist should be familiar to the
user, while some others should be novel. All these papers implement their intuitions using a
re-raking approach.

5.1.4 Evaluating APG-I Research. Up to now, we have referred to playlist quality as the way we
would measure the performance of APG-I algorithms. Playlist quality is, however, an ill-defined
concept, difficult to pin down to a mathematical definition that would allow its measurement.
In fact, playlist quality depends on the musical tastes of the user, on the user’s familiarity with
the music [356], and on the listening context [2]. For example, two different listeners may rate
the quality of the same playlist differently, because they may have different musical preferences,
because they may already know the songs, or because they are listening to the playlist in two
different locations, e.g., at the beach or in the bus.

In their 2014 survey on APG-I, Bonnin and Jannach [39] review the different strategies for
measuring the quality of playlists. They identify three categories of evaluation protocols:

(1) User studies, where users are involved in rating the quality of playlists;
(2) Objective measures, where statistics of the constructed playlists are computed, under the

assumption that those statistics (e.g., coherence or diversity of the songs’ musical genres)
reflect the notion of playlist quality; and

(3) Ground truth playlists, where algorithms are tested for how well they can recreate manually
constructed playlists or listening logs, under the assumption that the manually constructed
playlists or listening logs reflect a gold standard.

These three categories are still valid today, covering also the evaluation protocols in papers
published from 2014 onward. In the following, we focus on how APG-I algorithms are evaluated in
the papers that are exclusive to our survey, i.e., papers published from 2014 onward.

Evaluation protocol (3) is probably the most common and can be described as a three step
procedure: (a) preparation, in which a number # of songs are withheld from a ground truth playlist;
(b) recommendation, in which an APG-I algorithm is used to get a ranked list of  candidate songs
to be added to the playlist; (c) scoring, in which metric" is used to measure the fitness of the  
recommended songs relative to the # withheld songs.  can assume any value from 1 to the size of
the song catalogue. # can assume any value from 1 to the playlist size. The three steps are repeated
for every ground truth playlist in the dataset, and the resulting values of" are averaged.

Different instances of evaluation protocol (3) differ for the choice of # ,  and" . For example,
in a comparative evaluation of APG-I algorithms, Bonnin and Jannach set # to 1 and allowed  to
range from 1 to 1,000 [38, 39]. They used hit-rate as" , which, for a ground truth playlist, measures
whether the set of  recommended songs contains the withheld song. They reported the percentage
of ground truth playlists for which there was a hit. By contrast, in the ACM RecSys Challenge 2018,
# is different for each ground truth playlist,22  is set to 500, and" is set to a number of different
metrics related to hit-rate, including Normalized Discounted Cumulative Gain and a metric they
called R-precision [364].
22Specifically, # was the length of the playlist less the number of songs that were not withheld. For some playlists, all songs
were withheld; for others, five were not withheld; and there were other playlists where the numbers not withheld were 10,
25, and 100.
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In general, there is no agreement on what combination of # ,  and" to use, but there is work
that offers insights into some combinations to adopt or avoid. For example, Bonnin and Jannach
show that using average log-likelihood as " , which was used in some other work [238], leads
to inconsistent conclusions with hit-rate-related metrics, and recommend to avoid its use [38,
39]. Kamehkhosh and Jannach carry out a user trial where users are asked to choose the most
appropriate continuation for a playlist among four song alternatives, three of which are generated
using an algorithm and the last is the withheld song [183]. They find that users are likely to select
the withheld song as a favorite continuation. Their experiment provides evidence that the choice
of # as 1,  as 1, and" as hit-rate is a reliable setting. In contrast, Vall et al. criticize the choice
of setting a specific cut-off for  , by showing that the relative ordering in performance of a set
of competing algorithms changes when varying  from 1 to the size of the song catalogue, while
keeping # fixed to 1 and" to be hit-rate [341].

Evaluation protocol (3) is explicitly designed to work in the case where the target characteristics
are specified using seed songs, which is the most common scenario in the recent literature, see
Table 2. However, evaluation protocol (3) can be adapted to work when the target characteristics
are specified in different ways. For example, Chung et al. propose an APG-I algorithm for which
the target characteristics are input as free-form text, and they evaluate the algorithm using ground
truth playlists, setting # to the playlist size,  to vary from 5 to 20, and hit-rate as" [73].

Evaluation protocol (3) works under the assumption that the ground truth playlists represent
a gold standard, and thus the ability to replicate those playlists reflects the ability to construct
high-quality playlists. However, the assumption may be too strong in some circumstances. For
example, Hagen finds that manually constructed playlists often do not have clearly defined target
characteristics [140]. For example, they may sometimes be used as a randomly arranged container
of the user’s favorite music, created for convenience of access. Similarly, although listening logs
can be assimilated to the concept of playlist, they may contain spurious interactions, such as songs
recommended by the automatic continuation features of streaming services during periods that
the user is not paying attention to the recommendations. In some work, listening logs are filtered
before running the evaluation, for example removing skipped songs [41]. Ideally, the quality of
the ground-truth playlists must be checked before running the evaluation, which circles back to
the original question of how to evaluate playlist quality. One guideline to distinguish suitable
datasets of manually constructed playlists for evaluation is offered in [81], as they find that playlists
manually constructed by users for sharing with other users usually satisfy high -quality standards
and have clearly defined target characteristics.

Lastly, evaluation protocol (3) is undermined to a degree by several biases, most notably by
popularity bias [31]. Since most of the ground truth playlists tend to contain popular songs [51],
an APG-I strategy that constructs playlists in a popularity-driven fashion will usually yield good
performance [38, 39]. However, while a playlist with popular songs would satisfy a large share
of users, it would not suit minorities of listeners. There exist several strategies for de-biasing
evaluation protocol (3) with respect to popularity, for example see [60]. A simple strategy is used in
[341], where evaluation protocol (3) is run separately for popular songs and for the rest of the songs,
finding that the relative ranking in performance of algorithms changes for these two segments of
the song catalogue.

Evaluation protocol (2) is sometimes adopted for evaluating APG-I algorithms. It works by
computing statistics on the constructed playlists, under the assumption that those statistics reflect
aspects of playlist quality. For example, several papers measure song diversity and coherence from
song tags or musical genres [73, 170, 171, 185]. Additionally, there are papers that measure song
popularity [73], and others that measure song novelty, i.e., the degree to which songs are known
by the listener, and freshness, i.e., the degree to which the songs are recently released [312]. These
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statistics do offer insights into the characteristics of constructed playlists, but it is not clear how
those characteristics relate to the concept of playlist quality. For example, it is not clear what
value of song diversity in a playlist is ideal: research suggests that songs should be somewhat
diverse, while staying coherent overall [86, 182]. See Section 6.1.2 for a discussion of coherence
and diversity.

Evaluation protocol (1) consists of user studies. For example, RL algorithms require real-time
interaction with the listener and are evaluated with user studies in which the quality of an algorithm
is estimated by monitoring implicit user signals, such as the number of skips [192], or by explicitly
asking the user if they like the music or not [221, 222]. As another example, Ikeda et al. employ
a user study to evaluate the smoothness of song-to-song transitions in playlists [161]. However,
user studies have the disadvantages that they may not be reproducible and they are costly and
time consuming. Another strategy for involving users in the evaluation of playlists is via A/B
tests, in which users of streaming services are partitioned, and each partition receives playlists
constructed by a different algorithm. Users in each partition are monitored for their engagement
with the playlists, for example by monitoring the play counts [40], which is an indicator of playlist
quality. Unfortunately, A/B tests require resources not accessible to most researchers, such as the
availability of a music streaming service platform in which the A/B test can be conducted. A middle
ground between an A/B test and evaluation protocol (3) is counterfactual evaluation, which allows
estimation of the performance of a candidate algorithm, as if it were in production, by relying
on listening logs extracted from whatever algorithm is currently in production. Researchers at
Spotify share their recipe for counterfactual evaluation in [138], showing that they can rely on
high correlation with actual A/B tests.

This concludes our survey of APG for individual users. We turn now to the case of APG for
groups of users.

5.2 APG for Groups of Users
The APG work that we reviewed above tacitly assumes that the playlist is constructed to serve a
single user, suitable for private listening sessions. However, listening to music is often a collective
activity, consisting of users enjoyingmusic together. Collective listening allows the discovery of new
music, gives insight into the music tastes of peers, and creates shared moments where the listening
can bring people closer together [141, 225]. Instances of collective listening can happen during a
shared car journey, at a party, or at the gym, for example. For these occasions, it is important to
tailor the playlist for the group, so as to satisfy the musical preferences of every user. There exists a
category of APG algorithms which are explicitly designed to generate playlists for groups, i.e., the
APG-G algorithms.

The work in APG-G that we survey is closely related to the work on APG-I that we surveyed in
the previous section, not least because the two research topics share the end goal of generating a
playlist automatically. Definition 2.2 states that playlist generation is the problem of selecting a
sequence of songs from a catalogue of songs, while using some background knowledge, in order to
match some given target characteristics. The fundamental difference between APG-I and APG-G
resides in the target characteristics. APG-I algorithms handle target characteristics coming from a
single user, while APG-G algorithms handle target characteristics coming from multiple users, i.e.,
the musical preferences of the group members, which, as we will discuss below, are then aggregated
to construct the playlist. The aggregation step is not present in APG-I algorithms, as the target
characteristics are coming from a single user. Also, some APG-G algorithms support a way of
giving target characteristics that is peculiar to the group setting: song requests (see Section 5.2.1).
With a song request, any of the group members can suggest what song to play next in the playlist.
This is similar to a seed song in APG-I algorithms. However, differently from seed songs, which
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specify the music to start the playlist, a song request specifies a song to include at any point in the
playlist, interactively.

APG-G algorithms are strongly related to group RS, which are tasked with recommending items
to a group of users. In their survey of group RS, Masthoff and Delić [235] describe the typical design
of a group RS as a three step procedure, that we borrow and adapt for our discussion of APG-G
algorithms: (1) preference acquisition, in which the musical preferences of all group members are
acquired; (2) preference aggregation, in which the musical preferences of all group members are
aggregated into group preferences; and (3) playlist construction, based on the group preferences. In
the rest of the section, we describe the APG-G algorithms in terms of their preference acquisition,
preference aggregation, and playlist construction mechanisms. Also, we describe strategies for
evaluating APG-G algorithms.

5.2.1 Preference Acquisition. APG-G algorithms differ in what kind of data are acquired as
musical preferences. We can distinguish implicit from explicit data. Implicit data are obtained by
monitoring users’ behavior, without any explicit actions required by the users. Examples of implicit
data include listening counts, which can be acquired by inspecting log data [78, 219]. Explicit data,
instead, are filled in by the user manually. Examples of explicit data are ratings, such as a one to
five rating [19], like/dislike [54], or a vote [257] for a musical item, as well as song requests [99,
319, 348], and pairwise ratings, indicating the preference of one song over another song [16].

Explicit and implicit data are limited in that they are restricted to the users’ actions. For example,
it is not possible to know the preference of a user toward a musical item if they never interacted
with it. Some APG-G work uses explicit and/or implicit data to infer unknown preferences. For
example, the Poolcasting system [19] infers unknown song preferences by taking the average of
the known preferences for songs composed by the same artist. And, the Flytrap system [78] uses a
taxonomy of musical genres to infer unknown song preferences based on the known preferences
for songs of similar genres. Similarly to Flytrap, the PartyVote [319] system uses song similarity
based on content-based data for preference inference. Finally, the Flycasting system [147] uses CF
to infer the unknown song preferences based on the known preferences for songs of a community
of users.

The musical preferences of group members can be acquired statically, if the acquisition happens
only once, or dynamically, if, instead, the acquisition continues over time. For example, in the
MusicFX system [236], the preferences are acquired statically during a registration process, where
users are asked to rate musical genres in a range from minus two to two. As another example,
in the Poolcasting system [19] the musical preferences are acquired dynamically based on the
feedback that users give to the current song, which will influence the choice of the next song.
We note that in the case of static acquisition the three steps of preference acquisition, preference
aggregation, and playlist construction happen sequentially, while in the case of dynamic acquisition
the three steps happen iteratively, because the next song in the playlist is selected by aggregating
the group feedback for the previous song, e.g. see the Adaptive-radio system [54]. One advantage
of the static acquisition technique is that the algorithm is ready to work for new users, while the
dynamic acquisition technique requires the users to interact with the system. However, dynamic
preferences are advantageous because they improve over time with usage. Some work combines
the two techniques. For example, the Poolcasting system [19] selects the first song in the playlist by
aggregating static group preferences acquired from listening logs and then selects the subsequent
songs by also considering user feedback.

Some of the preference acquisition mechanisms above acquire “private” musical preferences,
i.e., the musical preferences of users for their private music listening [19], and use those private
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Table 4. Classification of the APG-G Work That we Survey Based on How the Musical Preferences of
Group Members are Acquired, on How They are Aggregated, and on How the Playlist is Constructed on the

Basis of Those Group Preferences

Reference Preference acquisition Preferences aggregation Playlist construction
Mechanics Type Inference Strategy Requests Strategy Similarity
Stat. Dyn. Impl. Expl. correction

[19] Avg wo misery Deterministic
[78] Avg Stochastic
[236] Avg wo misery Stochastic
[147] Avg Deterministic
[16] Avg Deterministic
[54] Avg wo misery Stochastic
[99] Avg Stochastic
[319] Avg Deterministic
[219] Avg Deterministic

We distinguish static (Stat.) from dynamic (Dyn.) preference acquisition; we distinguish the acquisition of implicit (Impl.)
from explicit (Expl.) data as preferences; and we also indicate whether preference inference is done or not. Additionally,
we distinguish two strategies for aggregating individual preferences, Average (Avg) and Average without misery (Avg wo
misery), and we indicate whether song requests are handled or not. Finally, we distinguish the strategies to construct the
playlists, and we indicate whether similarity correction is applied or not.

preferences in a group setting. This makes the assumption that a person’s private tastes are also
their communal tastes. However, the private and communal tastes of an individual may differ [84].

Table 4 classifies the APG-G work that we survey for how the preference are acquired, dis-
tinguishing implicit from explicit preferences, static from dynamic acquisition mechanics, and
indicating whether preference inference is done or not.

5.2.2 Preference Aggregation. Once themusical preferences of all groupmembers are determined,
the next step is to aggregate those preferences into the group musical preferences. The APG-G
papers that we survey perform preference aggregation in two different ways:

Average. The group preference for a musical item is the arithmetic average of the musical prefer-
ences of the group members towards that item. For example, the Flytrap system [78] averages the
preferences of group members for songs.

Average without misery. This is similar to Average, but items for which at least one user has ex-
pressed an extremely low rating are avoided. For example, the MusicFX system [236] avoids
musical genres that have been given extremely low ratings by at least one user in the group. And,
the Adaptive-radio [54] system implements an interesting variant of Average without misery
where group members are allowed to determine songs to avoid, while the remaining songs are
treated as having equal group preference.

It is worth mentioning that the above preference aggregation mechanisms, Average and Average
without misery, are two of the many mechanisms used in group RSs research. For example, Masthoff
and Delić list 11 preference aggregation mechanisms to be found in group RSs research [235].

Along with the mentioned preference aggregation mechanisms, some of the APG-G work that
we survey handles song requests separately. Song requests are a type of musical preference that
consists of suggestions of songs to be played next in the playlist. One way to handle song requests
separately from the other user preferences is via a queue, i.e., song suggestions are played in the
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order that they arrive, until the last song in the queue is played. If no songs are in the queue, the
next song to play is selected via the group musical preferences, aggregated as described above.
When faced with multiple requests coming from the same user, systems may decide to play a subset
of those requests, while still considering the other requests as explicit preferences [319].

Table 4 classifies the APG-G work that we survey for how the preference are aggregated and
indicating whether song requests are handled or not.

5.2.3 Playlist Construction. Once the group preferences are aggregated, the last step is to
construct the playlist. The APG-G papers that we survey follow two main strategies for selecting
music for the group playlist: deterministic and stochastic. The deterministic strategy consists in
selecting the music with highest group preference. For example, the CoCoA-radio system [16]
applies the deterministic strategy, by selecting the next song in the playlist as the one with highest
group preference. The stochastic strategy consists in producing a probability distribution based on
the group preferences, e.g., songs with highest group preference have highest probability of being
played. The stochastic strategy allows for discovery of new music, at the risk of selecting music
that the group does not like [51]. For example, the MusicFX system selects a genre by drawing
from a probability distribution over genres, determined by the group preferences for genres.

Together with group preferences, other considerations can be made for constructing the playlist.
One common strategy is that of similarity correction, that is considering similarity to the previously
played song, together with group preferences, for selecting the next song. For example, in the
Flytrap system [78], the probability distribution over the candidates for next song is corrected with
a multiplicative term, which takes into account the similarity with the previously played song.

Table 4 classifies the APG-G work that we survey on whether the music selection strategy is
deterministic or stochastic, and indicating whether similarity correction is applied.

5.2.4 Evaluating APG-G Research. Let us turn our attention now to evaluation of APG-G algo-
rithms. Recall from Section 5.1.4 that three protocols are used to evaluate research in the case of
APG-I for individual users: (1) User studies; (2) Objective measures; and (3) Ground truth playlists.

Overwhelmingly, protocol (1) — conducting a user study — is the main approach to evaluation of
APG-G research. One strategy for evaluating APG-G algorithms is to present a playlist to a group
of listeners and to measure the playlist quality by monitoring the engagement of the group with
the playlist, for example by means of a survey. For example, Chao et al. install their Adaptive-radio
system in an office environment so as to provide co-workers with music during working hours;
they report the results of a survey, where the co-workers are asked for their opinions about the
musical choices [54]. Similarly, McCarthy and Anagnost install the MusicFX system in a gym and
poll participants on whether the music playing in the gym has improved since the installation of
MusicFX [236]. A similar experiment is reported in [147], and in [289], where the authors compare
several preference aggregation and playlist construction strategies.

We do have an example of protocol (3), where listening logs provide a ground-truth [219].
Specifically, Li et al. take check-in data for a coffee-shop from Foursquare,23 as well as the listening
histories of the people in the shop from Last.fm;24 they analyze the accuracy of algorithms in
predicting songs in the listening histories of users currently in the coffee-shop.

We have no clear examples of protocol (2) for APG-G. Indeed, a conspicuous share of APG-G
work that we survey (four of nine papers) does not offer any evaluation.

23https://foursquare.com/
24https://last.fm
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6 MPG
MPG is a major topic within research on playlists. Research in MPG looks into how people construct
playlists manually. Research in MPG is important as understanding how people construct playlists
manually can help to improve research in APG, as well as improving user interfaces for playlist
construction.

We define the task of playlist generation in Definition 2.2 as the problem of selecting a sequence
of songs from a catalogue of songs, while using some background knowledge, in order to match
some given target characteristics of the playlist. In MPG, users set their minds to some desired
target characteristics (or themes, see Section 6.1.1) and manually select songs from a catalogue
so as to match those desired target characteristics. One notable playlist construction style would
start with the user selecting a handful of anchor songs to reflect the theme [81] and, on the basis of
those anchor songs and on the theme, the user would then search through the catalogue for similar
songs to add to the playlist [27, 323]. The search for songs might be based on familiarity, drawing
from the user’s musical knowledge, or by looking for other songs from the same artists, or of the
same genre, or by exploring the catalogue for songs coming from similar artists or having similar
genres [96].

6.1 MPG for Individual Users
In this section, we survey the literature on MPG for individual users, presenting common themes
for playlists in Section 6.1.1, and criteria for selecting the songs, with a special focus on the issue of
song ordering, in Section 6.1.2. Finally, in Section 6.1.3 we review a special case of MPG: assisted
MPG, i.e. the case in which the user is assisted by an algorithm while constructing the playlist
manually.

6.1.1 Themes. The target characteristics of a playlist are the organization principles which make
the playlist of a sequence of songs to be listened to together. In MPG, the target characteristics
are expressed by users for themselves, because they are the agents that carry out the playlist
construction. This is different from APG, where the target characteristics need to be expressed
in a machine readable form, which inevitably limits expressiveness to the kinds of things that
algorithms can interpret. We distinguish the target characteristics as expressed in MPG from those
expressed in APG, by using the word “themes” to refer to the target characteristics for MPG.

Hagen [140] analyzes the themes of playlists created by users of music streaming services and
provides a categorization of those themes, employing four categories:

Standardized. Themes concerning standard music organization principles, including: genres, e.g.,
“Hawaiian music”; artists, e.g., “100% Prince”; albums, e.g., putting songs from one or more albums
in a playlist; styles, e.g., “British & psychedelic”; instrumentation, e.g., “songs with cello”; and
performance, e.g., “female singers”; years, e.g. “1970s and older.” Other themes concern more
specific music organization principles, e.g., producer, label or composer, or content features, e.g.,
BPMs or energy.

Contextual. Themes concerning the listening context. The concept of listening context is broad,
one definition (repeated from earlier) being “any contextual condition that might influence the
user’s perception of music” [186]. Examples of contextual themes include: events and activities,
e.g., “birthday party,” “road trip,” “Christmas”; mood, e.g., “happy hits”; and time of day, e.g., “night
time.”

Personal. Themes concerning the user’s personal life, including: relationships: e.g., “breakup”;
biographical histories, e.g., “the soundtrack of my life” or “Amsterdam 1999”; and memories and
experiences, e.g., “memory lane.”
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Individual. Idiosyncratic themes. This last category is a container for a wide range of peculiar
themes that arise from an individual’s creativity. Examples include: messages and puzzles, e.g., a
playlist that sends a hidden message by playing with song titles, artist names or lyrics, such as a
playlist where all songs are about water; themes outside the music universe, such as soundtracks,
e.g. “Gossip Girl,” and cultural references, e.g., “Viva Las Vegas.” Another notable type of example
is a playlist containing favorite songs, e.g., “all time favorites” or “latest favorites.”

The categorization above is consistent with other categorizations proposed in related work, e.g.
see [81, 82, 92, 143].

It is worth noting that a playlist theme may not give a clear indication of the music included
in the playlist. For example, personal themes strongly depend on a user’s personal life, and their
musical choices may make sense to the playlist constructor only. In some cases, even the playlist
theme itself may make sense to the playlist constructor only, for example the individual theme
about water that we gave earlier. Other categories of themes, such as standardized and contextual
themes, may be more “predictable” in the sense that a third entity may be able to select a suitable
song to add to those playlists.

Moreover, even though every playlist is thematic by definition, the theme may be more or less
strictly followed by the playlist constructor. For example, Cunningham et al. report that playlists
created for personal use have a less strictly defined theme, as they may be employed as a background
for another activity, while playlists created for sharing with other users usually have a more clearly
defined theme [81]. And Kamehkhosh et al. suggest that playlists sometimes have more than one
theme [182].

A few studies investigate the popularity of different themes, i.e., how frequently users create
playlists of specific themes. For example, Cunningham et al. analyze playlist requests posted by
users in blog posts and find that the majority of requests are for standardized and contextual themes
[81]. And Pichl et al. carry out a data-driven analysis of manually constructed playlists in Spotify,
by clustering playlists on the basis of acoustic features and analyzing those clusters based on their
semantics, as extracted from the most relevant song tags in the cluster [281, 282]. They identify five
clusters. They call the biggest cluster “feel-good music” and find that 91% of playlist creators have
at least one playlist in this cluster. The other clusters contain more niche music, as only a minority
of playlist creators have a playlist belonging to these latter clusters.

6.1.2 Song Selection. In MPG, the songs are selected manually by the user so as to match the
playlist theme, and according to different guidelines. One obvious guideline is musical taste since
users commonly compile playlists of music that they like [86]. Interestingly, Hansen and Golbeck
find that songs liked the most by users are usually picked first [143]. Two other guidelines are song
coherence/diversity and song ordering.

Song Coherence/Diversity. Songs should remain coherent throughout the playlist. In the lit-
erature, the concept of song coherence is related to that of song similarity. For example, both
Kamehkosh et al. and Lee et al. mention that songs are coherent if they are similar in terms of,
e.g., tempo, mood, genre, time period, musical style, and/or lyrical content [182, 205]. Music simi-
larity is a multi-faceted and subjective concept that we discussed in Section 5.1.3. The work we
reviewed there measures coherence using metadata; for example, musical genres [168, 314] and
tags [70, 290].

As well as being coherent, songs should also be diverse through the playlist [143, 327]. We use
the concept of song diversity as a contrast to the concept of song coherence. For example, Lee et al.
point out that songs should be varied in their metadata, e.g., there should be relatively few songs
by the same artists, and there should also be some variety in musical genres [205].
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Striking the right coherence/diversity balance is key to successful song selection in playlists
[139, 182], almost as important as matching the listener’s musical taste [86]. Some work tries to
measure coherence/diversity in manually constructed playlists, with the goal of characterizing the
ideal tradeoff between the two quantities. For example, Jannach et al. utilize an intuitive measure,
counting the average number of songs from the same genre in manually constructed playlists, and
find that typical values are around three to four songs per genre [168]. Porcaro et al. [290] measure
coherence/diversity as a function of the year in which a playlist was created, by comparing playlists
created in the 2000s, in the 2010s and in the 2020s. They find that earlier playlists featured a higher
level of diversity, while in recent years playlists tend to be more coherent. They relate this change to
the advent of music streaming services, and the phenomenon of filter bubbles [7]. Slaney et al. [314]
measure coherence/diversity as a function of playlist length, finding that the longer the playlist,
the higher the diversity, which can be related to the fact that a longer listening time requires more
diversity so as to keep the interest of the listener alive. Choi et al. [70] measure coherence/diversity
as a function of playlist theme, as identified by relevant tags associated with a playlist, finding that
playlists with different themes are different in terms of diversity/coherence. These studies highlight
the fact that the appropriate tradeoff between diversity and coherence is difficult to determine since
it depends on several factors, including the year of creation, the number of songs, and on the theme.
Additionally, Lee et al. find that the appropriate tradeoff between diversity and coherence depends
on the preferences of the individual user [205]. Of course, this issue has also been explored in work
on APG, including work we cited earlier on RL [299, 301] and on re-ranking [116, 187, 229].

Song Ordering. We refer to song ordering as the process of arranging the playlist’s songs in a
particular order. The relevance of song ordering in the process of manually constructing playlists is
disputed. Some work maintains that song ordering is relevant; other work maintains the opposite.
All of the work agrees that song ordering is less important than other factors, such as striking the
right coherence/diversity balance [86].

There is work that investigates the relevance of song ordering via user studies, finding that song
ordering is relevant. For example, Cunningham et al. observe the playlist creation behavior of users,
reporting that they actively arrange songs so as to achieve a music flow, especially when they are
creating a playlist to be shared with other listeners [81]. And, De Mooij and Verhaegh explicitly ask
participants in their study about the importance of song ordering, and report a result of zero, on a
scale from −4 to 4 [86], which we interpret as an indication that song ordering has some relevance.
They also ask participants about the importance of other factors, such as the start and end songs,
rated as −2, choosing songs according to taste, rated as 2, and balancing coherence and diversity,
also rated as 2. In their playlist creation study, Kamehkhosh et al. ask study participants about the
importance of song ordering and six other factors [182]. While song ordering was ranked fourth,
suggesting low relevance, they noticed that about one third of their participants reordered the
songs at least once during playlist creation, which implies that it is important for at least some
people.

However, other work that also employs user studies finds that song ordering is not relevant. For
example, Andric and Haus ask study participants to send in a playlist of songs. Later, participants
are presented with the playlist they sent, along with an alternative playlist with the same songs
but shuffled, and are asked to rate the two playlists based on their quality by sight, i.e., without
listening to the music [10]. Andric and Haus find no difference in quality between the two options:
half of the participants mention that they picked songs at random from songs that they like when
building the playlist they sent in. Similarly, Tintarev et al. find that users do not expect playlists to
be ordered in the first place [327].
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Some work in APG also indirectly studies the relevance of song ordering. For example, Antenucci
et al. weight the final part of a playlist more than the initial part when predicting the next song,
observing an increase in performance compared with the case when both parts have equal weight
[12]. This is an indication that song ordering is relevant. But, Vall et al. instead find that song
ordering is not relevant [341]. They train RNN models for APG, which naturally take song order
into account. They train on a set of playlists and, separately, on shuffled versions of the playlists,
reporting the same accuracy in both settings, suggesting that ordering is not significant. A result
similar to [341] is presented in [237].

Some work investigates the importance of song ordering via statistical analysis. For example,
Schweiger et al. consider a set of manually constructed playlists and extract a variety of song
features, including content-based data and metadata [310]. The content-based data are acousticness,
danceability, energy, instrumentalness, liveness, loudness, speechiness, tempo, valence, key, and
mode. The metadata is genre, artist, and popularity. They compute song similarity using this data,
measuring higher similarity between songs that are close to each other in the playlists; the similarity
decreases when considering songs that are further apart in the playlists, which is an indication
that ordering is relevant.

We believe that the contrasting results presented above are due to the lack of a standardized
experimental procedure. For example, Schweiger et al. adopt a statistical analysis which proves
the relevance of ordering, as songs closer to each others in playlists are found to be more similar
to those further away [310]. The difference in similarity is only slight, but can still be detected
with statistical analysis. The slight relevance of ordering may not be detectable in user studies. The
studies above also differ in their experimental settings, and song ordering may be relevant in some
experimental settings, and not relevant in some others. One experimental setting in which song
ordering is relevant is when users construct playlists to be shared with other people, as opposed
to when they construct playlists for private use, which is one experimental setting in which song
ordering is not so relevant [81]. Looking at the studies above, those that deal with playlists to be
shared find that song ordering is important, e.g. [12, 86, 310], while those that deal with playlists
for private use find that song ordering is not important, e.g. [10, 182, 327]. More generally, song
ordering might not be relevant in cases when a playlist is constructed to be listened to in shuffle
mode, such as playlists for private use [81]. The research of Leong et al. [215–217] looks at shuffle
listening in playlists, highlighting the positive listening experiences allowed by shuffling, like
serendipity, as well as studying the different use cases when shuffle listening is appropriate, which
may be a good starting point for researching other use cases in which song ordering is relevant.

Song ordering has some connection with song coherence/diversity, as different orderings of the
same set of songs may result in different perceived coherence/diversity. Dias et al. [96] present two
empirical rules of thumb for song ordering in order to help to strike the right coherence/diversity
balance. Rule (1): avoid putting songs by the same artist or with the same genre together in a
sequence, unless there is a special link between the two songs, for example, two parts of the same
continuous recording [80, 81]; Rule (2): place songs with complementary sounds and styles together
consecutively, so as to avoid the “clash of one song against the other.”

6.1.3 A-MPG. A-MPG is a special case of MPG, concerned with the development and evaluation
of algorithms for assisting users in the process of manual playlist construction. An example of
work in A-MPG is [182]. In [182], Kamehkosh et al. utilize algorithms for recommending the next
song that the user may want to add to the playlist, in order to relieve users from the burden of
searching for songs manually.

A-MPG represents a middle ground between MPG and APG. In MPG, the user is tasked with
constructing the playlist, finding songs by manually browsing the song catalogue. In APG, an
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Table 5. Organization of Work on A-MPG Based on How the User Is Assisted During the Playlist
Construction Process

Category Up to 2016 From 2017

Visualization [48, 63, 77, 94, 132, 133, 152, 176, 196,
203, 213, 223, 242, 247, 254, 266, 329,
343, 344, 352]

—

Recommendation [28, 29, 95, 131, 151] [182, 184, 241, 288]

We distinguish work that assists users with visualizations and with recommendations. Additionally, we divide work
published up to 2016 from work published from 2016 onward.

algorithm is tasked with constructing the playlist, aligned with some target characteristics input
by the user. Both MPG and APG have advantages and disadvantages. An advantage of MPG is
that users are left in control of the playlist construction process, which allows for self-expression
through their own musical choices [358]. But, the process of MPG is time consuming, especially in
music streaming services, where catalogues contain millions of songs. An advantage of APG is that
it relieves the user of the task of manual song selection. But, APG lowers the control of users over
the construction process.

In A-MPG, the user is tasked with constructing the playlist, but algorithms are employed as
facilitators, to assist users in selecting the songs.25 A-MPG unites the two paradigms, leaving users
in control of the playlist construction process, while alleviating users of the burden of manually
searching enormous song catalogues. A-MPG thus strives to achieve a tradeoff between the time
spent in creating the playlist and the user satisfaction with the playlist: MPG is very time consuming,
but leads to highest user satisfaction with song choices, since users have full control over them;
APG is faster, but may lead to low user satisfaction with the song choices [193]; and A-MPG is less
time consuming than MPG, but more time consuming than APG, and can result in user satisfaction
with the song choices that is lower than MPG but higher than APG [28].

In their 2017 survey, Dias et al. [96] review the research on A-MPG to that date. They present
several categories of algorithms, all based on visualizations: maps, graphs, dots, and radar A-MPG
algorithms. In our survey here we include the A-MPG algorithms that were covered by their survey,
as well as more recent work. However, the recent work does not belong to the categories proposed
in their survey. Hence, we propose a novel categorization of A-MPG algorithms, to cover both
recent and non-recent work. Specifically, we divide algorithms in two categories: visualization and
recommendation. In Table 5 we divide the work on A-MPG based on the categorization, and we
distinguish the research up to 2016, which was already surveyed by Dias et al., from the research
from 2017 onward, that we exclusively survey.

Visualization. Some of the work in A-MPG uses visualizations for assisting users in the manual
construction of playlists. An example of visualizations are maps that represent the songs in the
catalogue by similarity, i.e., similar songs are close in the map, and dissimilar songs are further away
from each other. Maps can either be two-dimensional (2D), e.g. [176, 266], or three-dimensional
(3D), e.g. [196, 203]. In Figure 4, we show examples of maps from two A-MPG algorithms.

Figure 4(a) is a map proposed in [196]. The authors represent the songs in a multi-dimensional
space made of multiple types of content-based data. Then, they use self-organizing maps (SOMs)

25In MPG, the users are also assisted by algorithms, in particular by search engines, while manually browsing the catalogue.
However, those search engines are not tailored to song selection for playlists.
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Fig. 4. Examples of visualization used in A-MPG to assist users in manually creating playlists. (a) Reproduced,
with permission, from Peter Knees et al. [196]; and (b) Reproduced, with permission, from Marc Torrens
et al. [329].

[197] to project the songs to a 2D space. Finally, they build a 3D map by analogy with a landscape,
with hills in correspondence to dense clusters of songs, and valleys in correspondence to sparse
areas, while the sea represents areas with no songs. SOMs are frequently used in this kind of work,
especially for their ability to project songs not seen at training time, and for their scalability [266].
Similar work that uses SOMs includes [176, 213, 242, 247, 254, 344, 352].

Figure 4(b) is a map proposed in [329]. The authors represent songs as the leaves of a tree, whose
upper levels represent, from top to bottom: musical genres, sub-genres, and artists. Then, they use
treemaps [313] to transform the tree representation to a map representation. It is possible to draw
a map representation at the different tree levels, i.e., at the level of genres, sub-genres, or artists.
Figure 4(b) shows a map drawn at the level of genres. Another work that uses treemaps is [94].

Visualizations can also consist of graphs. For example, Gouyon et al. create a graph of artists
[133], using similarity between artists, as retrieved from Last.fm, which is known to rely on usage
data [47]. Artist-to-artist similarity is symbolized as edges, with longer edges joining less similar
artists and shorter edges joining more similar artists. A similar work using graphs is [77].

Visualizations can be drawn using simpler strategies, such as associating songs to points in the
valence-arousal space [134], without applying other transformations [48], or by associating songs
to colors [152], and drawing a color-map representing a collection of songs.

The visualizations discussed so far in this section represent songs by similarity based on content-
based data and metadata. However, using other sources of background knowledge is also possible.
For example, Goussevskaia et al. rely on usage data [132]. Some visualizations even leave the user
in control to decide their preferred background knowledge for computing song similarity. For
example, van Gulik and his co-authors propose a map where song similarities can be computed
based on different metadata, such as the year of release, the genre, or based on content-based data,
and users are left in control of deciding which sources of background knowledge to use [343, 344].

Once the visualization is created, the user can interact with the visualization while creating a
playlist. For example, in the case of maps, different types of interactions are possible, including
manual song picking in the map [329], as well as drawing paths [176, 223] or shapes [254] in order
to create a playlist of the songs included on the path or shape.
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Recommendation. Another way in which algorithms can assist users in the process of manually
constructing playlists is by providing recommendations for songs to add to the playlist. In principle,
any APG algorithm we present in Section 5.1 can be used for providing those recommendations.
For example, Kamehkosh et al. use the APG-I feature that is part of the Spotify API and an
heuristic algorithm based on popularity [182, 184], while Goto and Goto use a similarity-based
algorithm [131].

The recommendations are usually displayed as elements of the user interface. A standard ap-
proach is to present recommendations as a list of songs that can be clicked on [182, 184]. A more
creative approach is in [131], which presents recommendations as discs that can be dragged and
dropped on top of other discs, so as to build a playlist. Another approach is Rush [28]. Rush asks
the user to select a seed song, and it then presents the user with a carousel of five songs that can be
added to the playlist; as soon as the user selects one of these songs, another carousel of five songs
is presented, with recommendations dependent on the previous song, and so on, until the playlist
is fully built. The same authors present Rush 2 [29], which works in the same way as Rush, but now
carousels are replaced by wheels that have at their centre the last selected song, and recommended
songs are displaced around the wheel based on their relevance to the seed song. The user can
customize Rush 2’s recommendations by setting filters on BPMs and genre. AudiRadar is a system
that is similar to Rush 2 [151]. MixTape [288] is also an A-MPG algorithm similar to Rush, but it
follows a different interaction paradigm: it shows the user just a single song recommendation,
which the user can either accept or reject. As soon as the user gives feedback, another song recom-
mendation is displayed, dependent on the user feedback. MixTape chooses between exploration
and exploitation: it explores the song catalogue if the user skips a song recommendation, and it
exploits similarity when the user accepts a song recommendation. PlaylistCreator [95] displays
recommendations using a standard list strategy, but the interface allows users to customize the song
recommendation algorithm. For example, they can specify the playlist theme, or they can filter songs
by metadata. Another way to present recommendations is together with explanations. For example,
Millecamp et al. provide explanations based on the visualization of content-based features and find
that the presence of explanations increases the satisfaction of users with the process of playlist
construction [241].

Kamehkhosh et al. [182, 184] conduct a user study where users select a theme among six themes
and then compose a playlist around that theme. Users are partitioned in two different treatments:
rec and no-rec. Rec users see 10 song recommendations while building the playlist. No-rec see
no recommendations. Users in both treatments can search for songs to add to the playlist using
a search bar. They find that 67% of rec users adopted at least one song recommendation. The
users who did not adopt any recommendation were either experts in playlist construction or had
low enthusiasm for music. Increasing user trust in song suggestions is mentioned as an area of
improvement for increasing the adoption of song recommendations. Also, the mere presence of the
recommendations is found to influence the songs that rec users search for, even in the case that the
song recommendations are not selected.

Discussion. Table 5 reveals the differences between the research on A-MPG up to 2017 (the
first period), which was already surveyed by Dias et al. compared with the research from 2017
onward (the second period). Research from the first period focuses mainly on visualizing the song
catalogue. In the second period, the focus is shifting to recommending songs to be added to the
playlist, probably due to the rise of music streaming services. In fact, with streaming services, the
song catalogue shifted from personal collections to millions of songs [318], which are difficult to
visualize on a map or on a graph. Recommendations, on the other hand, can help users by providing
a small selection of relevant songs.
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In Sections 5.1.4 and 5.2.4, we reviewed the evaluation of APG algorithms. There is not much to
add when discussing the evaluation of A-MPG algorithms, so we do so here in a short paragraph,
rather than in a separate section. Evaluation of A-MPG algorithms is primarily done using what we
referred to previously as protocol (1), i.e., through user studies. In some cases, what gets evaluated
is the usability of the A-MPG algorithm, which can be done using standard questionnaires, common
in the Human-Computer Interaction field, e.g. see [218], or through semi-structured interviews.
Other evaluation work investigates domain-specific aspects, for example satisfaction with playlists
that are constructed with the assistance of an A-MPG algorithm [28]. Finally, some works in A-MPG
do not report any experimental evaluation, e.g. [48, 132].

6.2 MPG for Groups of Users
Research in MPG-G looks into how a group of users constructs playlists, as well as the purposes
for constructing these playlists, and the practices around listening to these playlists. Earlier, we
defined MPG as the task of manually selecting songs from a song catalogue so as to match some
desired target characteristics of the playlist. MPG-G is a special case of MPG where a group of
users is involved in the manual selection of the songs, instead of a single user. For the purposes
of this section, we refer to a playlist constructed by a group of users as a collaborative playlist
(CP); and we refer to a playlist constructed by a single user as a personal playlist (PP). Finally,
we refer to the users involved in the construction of a CP as the collaborators.

CPs can be constructed by groups of varying size. For example, Park and Kaneshiro report
that the majority of CPs have a maximum of six collaborators [268]. The same study finds that
collaborators are usually groups of friends, or family, while it is much rarer to construct a playlist
together with strangers, which corroborates a similar study by Spinelli et al. [317]. CPs can be
listened to in a group, which can be composed of the people that contributed to the playlist, or may
include others, such as other guests invited to a party [83]. In a large proportion of cases, CPs are
also listened to by individuals on their own, for example to accompany everyday activities [268].
CPs are very dynamic as it is common for the collaborators to frequently update a CP [209]. For
example, during a party, a playlist could be modified so as to accommodate song requests from the
guests [317].

The practice of constructing CPs is widespread nowadays, because most popular streaming
services offer a dedicated feature where collaborators can add, delete, and re-order songs in a CP. In
their study, Park and Kaneshiro report that more than half of Spotify users in the USA collaborate
on CPs [269].

CPs serve a number of important purposes. Park et al. [270] divide the purposes of CPs into
three categories: practical, cognitive, and social. Practical purposes include creating a playlist to be
listened to in a group during a shared social occasion or speeding up the creation of a playlist via
collaboration between users. Cognitive purposes include discovering newmusic, since collaborators
may select songs which are novel to some of the other collaborators. Social purposes include to
keep in touch with the other members of the group, as well as developing a social connection
with them, by using music as a medium for bonding, or for sharing music between the members
of the group. We note that the practical and social purposes of CPs align with the convenience
and self-expression purposes of PPs (see Section 2.1). Several other works corroborate the three
categories of CP purposes proposed in [270]. For example, Park and Kaneshiro find that users
use CPs as a means of discovering new music added by the other collaborators, and that users
welcome these social recommendations because of the social links with the collaborators who
recommended them [268]. In a similar vein, Lehtiniemi et al. [210, 211] and Spinelli et al. [317]
report that social recommendations are more appreciated than algorithmic recommendations. And,
Park and various co-authors find that CPs facilitate the reinforcement of social connections [268,
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272], because music is often used as a medium for discovering the personality of other individuals
[214], and can spark conversations among collaborators [23]. Similarly, Lenz et al. find that CPs can
be used to keep in touch, for example using songs that evoke shared memories, acting a little like
souvenirs [214].

In the rest of this section, we continue our characterization of CPs. In Sections 6.2.1 and 6.2.2 we
talk, respectively, about themes and song selection strategies in CPs. In Section 6.2.3, we talk about
the group dynamics that arise in the construction of CPs.

6.2.1 Themes. The target characteristics of a playlist are the organization principles which make
the playlist a sequence of songs to be listened to together. In Section 6.1.1, we make use of the word
“theme” to refer to the target characteristics of a manually constructed playlist, and we analyzed
the themes of PPs. In this section, we make the same use of the word “theme,” as we analyze the
themes of CPs.

The themes of CPs mostly overlap with the themes of PPs, which we covered in Section 6.1.1.
Often, the themes of CPs tend to be related to group activities, for example a playlist for a house
party, an intimate dinner with friends [27], or a road trip [17, 84]. As well as being tailored to
the group activity, the themes of CPs are sometimes also tailored to the location where the group
activity happens, and to the social interaction the music is hoped to encourage [27]. Intuitively,
the theme of a CP needs to be understood by the collaborators, otherwise they will not be sure
what songs to add to the playlist [268, 269], and whether the playlist matches a desired listening
context [225]. The active engagement of the collaborators with a CP determines its success [268],
and so the theme of a CP is usually clearly defined and easy to understand by the collaborators,
which is different to what we reported for PPs in Section 6.1.1, as themes of PPs are sometimes
only loosely defined, related to the playlist creator’s personal life, and therefore difficult for other
users to understand.

6.2.2 Song Selection. In Section 6.1.2, we analyze song selection in PPs. One obvious guideline
for song selection in PPs is that the playlist constructor selects music according to their tastes. In
CPs, there are a number of playlist constructors (the collaborators), and so the song selection should
be tailored to the tastes of a group of listeners [268]. The group of listeners might be composed of
the collaborators, but may include also other people, for example other people invited to a party.
The degree of heterogeneity of the musical tastes among the group of listeners plays a role in song
selection for CPs. If the listeners have similar tastes, it is easier to select songs that everybody
will like, and the various collaborators can feel free to select music that they truly like, knowing
it will be appreciated also by the other listeners. If the listeners have dissimilar musical tastes,
song selection might deviate from each individual’s musical tastes, because the collaborators might
settle for something that pleases, at least partially, the musical tastes of all the listeners. This is
especially true in situations where the playlist will be listened to in a large group, and especially
with strangers. In such cases the collaborators might settle for a “safe” playlist of songs familiar
to most people, made, for example, of current hits and classics [317], and with a high degree of
diversity, so as to increase the chance that every listener likes at least some of the songs in the
playlist. In circumstances of high diversity, it is common to navigate the playlist by skipping songs
[83], and/or by sorting songs, for example by musical genre or by artist name [269].

6.2.3 Group Dynamics. The construction of CPs involves a group of collaborators who select
the songs to add to the playlist. The involvement of multiple users in the decision making process
raises questions about group dynamics, that we address in the rest of this section.

Collaborators’ Roles and Comfort in Modifying the Playlist. The collaborators assume different
roles in the process of constructing a CP. In particular, the user that initiates the playlist is sometimes
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called the host, and the other collaborators are the guests. The analogy is that of a physical setting,
for example a party, where a person, the host, invites other people, the guests [83]. Usually, the
role of the host is that of specifying the playlist theme, as well as adding an initial set of songs that
fit the theme, and inviting guests to contribute to the CP [83].

Since musical taste is linked to the personality of an individual, sharing music involves some
revelation of the personality of an individual [214], which can be a delicate matter, especially when
the collaborators are not linked by strong friendship relationships, and even more so when they
are strangers [84].

When collaborators do add songs to a playlist, they do so consciously, trying to fit the theme of
the playlist and the tastes of the other collaborators and any other intended listeners [210, 211].
Bauer and Ferwerda [25] set up an experiment where a user is asked to propose a song for a CP.
The user then receives feedback from four other collaborators, which can either be positive (like)
or negative (dislike). They find that, in most cases, it is enough to receive negative feedback from at
least one collaborator for the user to reconsider the song that they added. At the same time, the
user tends to give positive feedback to songs proposed by other collaborators, even if those songs
do not really fit the musical tastes of the user.

In a similar vein, Park and Lee measure the comfort of a user in performing different tasks,
namely adding, deleting, and re-ordering songs in a CP [271]. They measure comfort in the case
that the user is the host, and in the case that the user is a guest. They also distinguish the case in
which the user is deleting a song added by them or by another collaborator. They find that users
are quite comfortable in performing addition and re-ordering of songs, both in the case that they
are hosts and in the case that they are guests, even if the comfort slightly decreases in the case that
they are guests. They also find that users are comfortable in deleting a song they added, but very
uncomfortable in deleting a song added by some other collaborator. They mention that deleting
someone else’s song is a socially rude practice. The result corroborates the work in [268], which
finds that users often add or re-order songs, but rarely delete songs. This can cause CPs to grow
monotonically in size over time.

Privacy and Access Control. One purpose of CPs is to allow social connection between people by
sharing music, to keep in touch with friends, and to use music as a medium for bonding. The music
streaming services that allow their users to create CPs offer only basic features. For example, CPs
in Spotify are like PPs, with the difference that song addition, deletion, and sorting can be done
by a group of authorized users. Some works propose going a step forward, by developing a range
of social features in the context of CPs. The proposals include the logging of modifications to the
playlists, such as song additions, deletions, and re-orderings, as well as logging the author of the
modification [209, 225, 269]; a chat functionality, that can be used by collaborators, for example
to discuss whether a song addition is suitable for the playlist or not, or to simply socialize [209,
269, 271]; and a listening-together functionality, that would allow collaborators to tune-in to the
playlist, so as to listen to the same music at the same time [269].

Some work reports that users are in favor of including these social functionalities in streaming
services. For example, Park and Lee report that the chat functionality would increase the comfort
of users in adding, deleting, and re-ordering songs [271]. But, other work reports that these social
functionalities should be mindful of user privacy. For example, some users are opposed to the idea
of logging the changes to a CP, as they are afraid to be judged for their musical tastes [9, 23], which
circles back to the low comfort that collaborators may have in adding, deleting, and re-ordering
songs in the playlist (see previous section).

Related to the issue of privacy is the issue of access control. The creator of a CP should be able to
determine who can see the playlist, and who can modify it [269]. Some more fine-grained levels of
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access control are also discussed; for example, Lehtiniemi et al. propose that the playlist creator
should have the opportunity to approve any changes to the playlist [210, 211]. In general, the
literature sees fine-grained access control as a positive feature to have in CPs.

So far in our survey, we have focused on work that deals with the construction of playlists, both
automatic construction and manual construction. In the remainder of the survey, we focus on
another topic, the construction of enhanced playlists.

7 Enhanced Playlists
Section 2 defines a playlist as a sequence of songs intended to be listened to together. Some work we
survey goes one step forward, by enhancing playlists with additional features. In the following, we
discuss four types of enhancements: song mixing, interleaving songs with speech, playlist tagging,
and playlist captioning.

7.1 Cross-Fading
Some work in APG strives to create playlists but with the additional objective that there are smooth
song-to-song transitions, so that the ending of one song flows smoothly to the beginning of the
next song. For example, Sarroff and Casey propose a method to classify “good” song-to-song
transitions from “bad” song-to-song transitions [303]. But even in a playlist with “good” song-to-
song transitions, there is still a short silence between the end of one song and the start of the next.
Research into automatic cross-fading seeks methods for, as seamlessly as possible, superimposing
the beginning of one song over the end of its predecessor. Automatic cross-fading is similar to the
practice of DJs who often superimpose consecutive songs so as to create a seamless music flow.

Algorithms for song cross-fading mainly rely on digital signal processing techniques [297] and on
psychoacoustic studies [128]. Ishizaki et al. [163] propose a system that works in two steps. The first
step is to align the beats of the two songs to be mixed. Beats alignment can be achieved by slowing
down or speeding up songs, as well as shifting songs in time. Slowing down/speeding up songs may
result in a jarring listening experience. The authors determine a formula that states the discomfort
of users while listening to a particular song as a function of the slowing-down/speeding-up factor.
Then, they propose an algorithm that determines the slowing-down/speeding-up factor for the two
songs in such a way that the listening discomfort is minimized. The second step is to cross-fade the
two songs. They devise a cross-fading algorithm that takes into account the energy of the beats,
adjusting the energy of the beats of the first song to that of the following song when cross-fading.

A similar two-step strategy is followed in [74] and [36]. The latter work proposes a sophisticated
algorithm for determining the transition points, i.e. the points that mark where the two songs
should be cross-faded. The mechanism works by extracting the position of downbeats, and several
features of those downbeats. For example, they classify downbeats that mark division points in
the songs, e.g. those downbeats delimiting parts with lyrics and instrumental parts. Moreover, for
every downbeat, they extract timbre features, chroma features, loudness, and vocalness. They pair
each downbeat from the first song with each downbeat from the second song, and then they score
all the pairs using an heuristic. Downbeats with similar values of timbre and chroma features are
rewarded; downbeats with high loudness and/or vocalness are penalized; and downbeats happening
on division points are rewarded. Finally, they select the transition points as the pair of downbeats
with highest score.

The systems described above work particularly well with songs from the same genre, and
especially with dance music, whose regular structure makes it easy to determine the position of
the beats [137]. Basu [24] focuses on how to mix two songs coming from a variety of genres, e.g.,
classical music and techno, without relying on the two-step mechanism described above. Given
two songs, Basu’s system computes their energy signal. Then, it time scales and time shifts those
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energy signals and computes their correction, for different combinations of time scales and time
shifts in a range. Then, it selects the correlation signal with highest value, and converts the scaled
and shifted energy signal back in the time domain, which results in scaled and shifted versions of
the songs, which can be played together so as to achieve cross-fading.

The works on song cross-fading that we have reviewed are evaluated by means of user studies,
where listeners are asked to listen to song mixes and to complete questionnaires that report on
their listening experience, e.g. see [24, 36, 163].

7.2 Interleaving Songs with Speech
In playlists, one song follows another, from the first song to the last song. Playlists therefore do not
facilitate easy access to music contextual information while listening.26 However, studies report
that information seeking is one of the most important motivations for listening to music [206],
at least in certain contexts. In the era of music streaming, traditional radio remains a popular
means of music access. A recent study finds that music listeners consider radio and streaming
services as complementary, because radio allows them to satisfy their information seeking needs,
while streaming services fail to do so [53]. The work that we review in this section is concerned
with generating sequences in which every pair of consecutive songs is interleaved with speech.
This resembles the concept of radio programs. We refer to the sequence of songs and speech as a
music tour.

We are aware of two lines of work investigating music tours. The first line of work is that of
analyzing real radio programs and developing tools and knowledge that can help to replicate
those radio programs. For example, Jani et al. [167] construct a dataset of tuples, where each tuple
contains one block of music (e.g., a song) and one block of speech, crawled from actual radio shows.
Some tuples in the dataset are positive samples, i.e., were aired in sequence in radio shows, and
some are negative samples, i.e., were not aired in sequence. They propose an algorithm that, using
content-based data extracted from the speech and music, can distinguish positive samples from
negative samples, i.e., that can recognize if one musical block and one speech block are suited to be
listened in sequence. The algorithm has an accuracy of 75%. Lukacs et al. [230] construct another
dataset by crawling actual radio shows that contain music and speech blocks. They annotate the
radio shows, by marking the music blocks, the speech blocks, and hybrid blocks. Finally, they
present statistics on the annotated dataset, e.g., statistics on how much speech there is in radio
programs, compared to how much music is there. They show that the playlist theme and the time of
the day influence the statistics. For example, when comparing pop music radio shows and classical
music radio shows, they find that, on average, pop music radio contains more speech than classical
music radio, but that the statistic is the opposite when restricting to the evenings.

The other line of work is concerned with generating music tours. For example, Behrooz et al.
[30] propose an algorithm for generating small pieces of text, called segues, for connecting one
song to the next one in a playlist. Segues are then converted to speech using a text-to-speech
engine. The work of Behrooz et al. is limited in that they select the segue connecting two songs
with author-defined segue scores. The work of Gabbolini and Bridge [118] goes one step forward,
by defining a scoring function able to determine the interestingness of any segue. The authors
validate their measure of interestingness, finding that it positively correlates with human percep-
tions of segue quality. The same authors follow-up their work by providing several algorithms to

26Some work offers music contextual information in textual form that can be accessed while listening to a song, e.g. the
“behind the lyrics” feature on Spotify, https://genius.com/Genius-x-spotify-behind-the-lyrics-the-complete-experience-
playlist-annotated. However, attending to this textual information requires actions from users, as they need to access and
read the information while listening to the music. In this section, we are more interested in contextual information expressed
as speech interleaved with the songs in a playlist.
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generate music tours, with the objective being to maximize the interestingness of the segues in the
tour [119, 120].

7.3 Playlist Tagging
Music streaming services feature billions of playlists created by users, professional editors, and
algorithms [88]. In this content overload scenario, it is crucial to characterize playlists, so that
music can be effectively organized and accessed [69].

One common approach for characterizing playlists is tagging, which is the task of assigning to a
playlist one or more tags.27 (Another approach is automatic playlist captioning, which we cover in
the next subsection.)

Examples of playlist tagging can be found in [105] and [353], which describe datasets of playlists
annotated with a variety of different tags, such as musical genres and decades. Similarly, Choi et al.
[68] describe a dataset of playlists annotated with listening context tags. Examples of listening
context tags are “workout” and “party,” which characterize playlists as being suitable to be listened
to by users while working out and while having a party.

Existing work on playlist tagging focuses on listening contexts tags. Choi et al. [68] set up
a multi-label classification problem, in which playlists are classified for their listening contexts,
proposing four classifiers: two MF-based classifiers, that work by counting how many times a song
is associated with each listening context, and two CNN-based classifiers, that work with song audio.
Gabbolini and Bridge [121] follow-up Choi et al. by proposing four other classifiers, that integrate
metadata in the form of a knowledge graph, reporting state of the art accuracy.

7.4 Playlist Captioning
Tagging is limited to the usage of one, or to a set of, single words. However, playlists may sometimes
be centered around elaborated themes, see Section 6.1.1, that may not be explicable by using a
set of tags. For example, a playlist tagged as “Jamaica” and “UK” may refer to a playlist of UK
songs influenced by Jamaican traditional music or to a playlist of top-charted Jamaican songs in the
UK. Natural language, instead, allows for precise characterization of playlists at a high semantic
level.

Playlist captioning is introduced in [69] as the task of automatically describing a playlist using
natural language. In the same paper, Choi et al. [69] propose to use a sequence-to-sequence (seq2seq)
model based on an RNN, similar to those common in machine translation [20], adapted to translate
a playlist, as represented by song embeddings, to a caption. The song embeddings are extracted
from song audio using a CNN.They benchmark their model on a small dataset of captioned playlists,
reporting that their model fails to generalize to new playlists. Similarly, Doh et al. [97] use an RNN
and a transformer [347] model to translate a playlist, as represented by song embeddings, to a
caption. In their case, they rely on learned embeddings, and they use a larger dataset. Similar also
is the work of Kim et al. [190]. Gabbolini et al. [122] also use a transformer architecture. In their
case, their song embeddings capture musical knowledge from song audio and tags. Additionally,
they utilize linguistic knowledge held by the GPT-2 language model [42], reporting state of the art
performance in the captioning task.

8 Possible Future Research Directions
Despite more than two decades of research into playlists, much remains unknown or under-explored.
The need for more research is heightened by the advent of music streaming services, which wrought

27We remind the reader that we use the word “tag” where there is a fixed vocabulary, and we “user tag” where free text is
allowed.
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a revolution in how people consume music. We conclude this survey with some possible future
research directions. We do not attempt to be systematic or comprehensive. Inevitably, there is
something subjective about our selection, and readers of this article will no doubt have ideas of
their own that they feel should have been included but were not.

To organize the material a little, we have chosen to use four subsections. The first two correspond
to APG and MPG. The second two cut across the APG/MPG distinction: playlist presentation and
playlist recommendations. However, we should say in advance that this organization is quite porous
since research in one category may feed into research in another.

8.1 APG
Obvious topics for future work include more on sequence modeling, especially with transformers;
on deep learning in general; on RL; and on the use of knowledge graphs. But below, we select some
topics that we think are more unusual and intriguing.

8.1.1 Lyrics as Background Knowledge. Section 5.1.1 reviews the many types of background
knowledge that APG algorithms currently use. Notable is that the use of lyrics is under-explored.
Lyrics are used in playlist construction in [237] but it is difficult to find other examples.

A first necessary step is to find out whether lyrics are important for constructing playlists or not.
Such evidence as exists is somewhat mixed. In [22], for example, Barrington et al. try to discover
which factors influence user evaluations of next-song recommendations. Several content-based
features, such as energy, style, and so on, are the ones that count the most; the artist name also
counts; lyrics are found to be the one that counts the least. In [323], Stumpf and Muscroft do a very
similar thing, observing which song features are mentioned by users while constructing playlists,
also finding that lyrics were among the least mentioned features. But the participants in the small-
scale study in [205] do mention lyrical content and themes or stories, and some participants claim
to construct some of their own playlists based on lyrical content. In [237] itself, it is claimed that
lyrical features are most important for genres with salient lyrical content, such as folk music, and
are less important for genres such as electronic music. This finding adds nuance that is missing
from [22, 323].

There has been an explosion of recent work on large language models (LLMs); see, e.g., the
survey in [368]. For cases where lyrical or other textual content is important to APG and MPG, it
might be possible to exploit the work that is being done on LLMs.

8.1.2 Innovative Specification of Target Characteristics. In most of the work that we reviewed
in Section 5.1.2, the user specifies the target characteristics of a playlist via seed songs. Perhaps
the most interesting research direction here comes from finding new, innovative ways of eliciting
target characteristics.

There is, for example, a body of work from Nokia Research Centre and Tampere University of
Technology in the context of A-MPG that could form the basis for future research on APG [153, 207,
210]. For example, in [207], users move their mouse through a space of album covers organized by
genre; they hear audio clips when they hover; the final song that they alight on becomes the seed
song. Lehtiniemi and Holm [208] do a similar thing but with a handful of “mood pictures” instead
of album covers, where mood pictures are carefully chosen images or brief videos that represent
moods. In the context of CPs, Lehtiniemi et al. [211] introduce “mood shapes,” which are radar
charts that summarize a playlist’s moods.

Future work could also look further at explicitly inferring target characteristics from a set of seed
songs. For example, in [74] the user supplies a set of songs, and the system extracts the BPM for
each. The user can then specify a beat map, i.e., an outline of BPMs over time. In [74], the system
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sequences the songs to follow the beat map, but one can imagine an APG algorithm that instead
chooses songs to fit the map.

There are also innovative methods that do not rely on seed songs. Several are based on free-
form text. For example, in the Reflektor system [27], users converse about music through a chat
client; the system identifies and creates a visualization of keywords from the users’ contributions
to the conversation. Similarly, Chaganty et al. propose a conversational approach to playlist
generation [52].

Dedicated music fans might appreciate innovative ways of providing explicit constraints. The
SmarterPlaylists project, for example, provides a graph-based user interface that allows users to
define programs that specify how playlists are to be assembled [202]; e.g., a user might write a
playlist generating program that draws songs in alternating fashion from the top hits from today
with the top hits from the 1980s but filtered to exclude anything appearing in the user’s set of
banned songs.

In the cases we have discussed above (i.e., seed songs, free-form text, and explicit pre-defined
constraints), users specify target characteristics as an initial input to APG. But the user’s feedback
while the playlist plays also provides target characteristics that can guide subsequent real-time
APG, e.g. [264, 265]. This is relatively under-explored, not least because RL APG algorithms, which
are best-suited to using and learning from the feedback, are relatively under-explored. In the few
examples of RL for APG, the user feedback is limited to, e.g., skips [192] and explicit, numeric
ratings [221]. But feedback can come in other forms; in Section 5.1.2, for example, we described
systems where users give feedback by clicking on meta-data (e.g., tags) that describe the current
song and upcoming songs in the playlist [181, 262]. Instead of using this feedback heuristically
as is done in [181, 262], RL could learn from this or other kinds of feedback, resulting in a more
data-driven approach.

Of course, creative ways of specifying target characteristics, especially more cognitively demand-
ing forms of feedback elicited during playlist playback, must be usable by users, and welcomed
by them [96]. There is a need for future work of a similar kind to that in [180] that studies music
listeners’ desired levels of control and interaction, and how these relate to the listening context.

Target characteristics may also derive from contextual and sensor information (Section 5.1.2).
Considering its relevance, there is a surprising paucity of context-aware approaches to APG in the
literature. The context-aware approaches are mainly based on heuristics, and their accuracy is not
always evaluated. This is an obvious opportunity for future research.

One example of the kind of research we are envisaging can be found in [295]. Their user study
provides some evidence that user activity (i.e., what users are doing while listening to playlists)
affects their mood, which in turn influences their musical choices. Therefore, they suggest to rely
very much on activities in playlist generation algorithms, which can probably be more easily
inferred than mood can. There is work on song recommendation (as opposed to playlist generation)
based on daily activities [93] and on song recommendation based on listening contexts extracted
from playlist titles [280] that could feed into this line of research, as can work on the prediction of
playlist listening contexts [68, 121].

In fact, the previous paragraph hints at a general point which is that, while there is a relative
paucity of work on context-awareness for playlists, some of the issues have been investigated
in the literature on general music recommendation (e.g., [13]), from which it is possible to take
inspiration.

Finally, growing deployment of sensors offers more data to context-aware approaches. A fun
example is [173], where the mix of music is influenced by the mixing of drinks, detected by sensors
in drinks coasters!
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8.2 MPG
8.2.1 Studies on Playlist Characteristics. The literature on MPG has widely investigated the

concepts of song coherence/diversity and ordering; see Section 6.1.2. One interesting avenue for
future research is to take into account the playlists’ listening contexts (Section 7.3), e.g. whether a
playlist is for driving, for the beach, and so on. Future research could look, for example, at how
playlist diversity varies between playlists that have different listening contexts. There may even
be differences within listening context. For example, Mélo looks into playlists built for relaxation,
finding that they can cluster users into five different groups based on features of the songs in the
playlists of those users [239]. It would be interesting to know, not just how they vary in terms of
song features but also how they vary in terms of playlist characteristics, such as diversity.

Moreover, there are studies which report that playlist characteristics other than song coher-
ence/diversity and ordering are important too, such as achieving the right level of song popularity,
the right level of song familiarity, and the right level of freshness [96, 168, 169, 231, 290]. These are
under-investigated at present.

Of these, we think the most interesting is familiarity. It is a topic which has been explored a little
in the MRS literature, where there is a recognition that recommendation lists should include a mix
of items that the user is familiar with (e.g., known songs or known artists) and ones that are likely
to be novel to the user [305, 355, 356]. There is a challenge in knowing whether an artist or song is
unfamiliar to a user: the user may not have interacted with them on a given platform but may, e.g.,
have been exposed to them elsewhere [305].

Turning more specifically to playlists, the user study in [205] reveals the right mix of familiar
and unfamiliar music is key: people usually like learning about new music and would love to
have familiar and unfamiliar music in their playlists. The right mix of familiarity and unfamiliarity
seems to be personal, and the unfamiliar music should be linked to the familiar music somehow,
maybe by being very similar or by provision of explanations. In their study of A-MPG, Kamehkhosh
et al. [182] also find that users are generally interested in getting both familiar and unfamiliar
recommendations. There is very little other A-MPG literature (or even APG literature) on how to
generate playlists with familiar and unfamiliar songs. This is despite the fact that streaming services
do seem to include unfamiliar songs in the playlists they generate. For example, Bontempelli et al.
[40] present a feature on the music streaming service Deezer that is about constructing a playlist
containing familiar and unfamiliar songs, but the paper does not explain how unfamiliar music is
chosen. A paper that does report a method for balancing known and unknown music in a playlist
is [116]. They use the user’s interaction history to determine both whether something is known or
not and also the user’s preferences for known versus unknown music. We can also mention Hu and
his co-authors [157, 158], who use heuristics and RL to also integrate concepts such as freshness
and diversity. However, much more work can be done.

In the context of further research into algorithms for A-MPG and APG that take familiarity into
account, it may also be useful to see extensions to our own work on segues [118–120] (Section 7.2).
These textual connections between songs in a playlist can act as the explanations of unfamiliar
songs, linking them to familiar content, as found to be desirable in [205].

8.2.2 Studies of CPs. CPs are very popular among users of streaming services, but research on
CPs is limited to user studies that look into: how group of users construct playlists (MPG-G); the
purposes for constructing these playlists; and practices around listening to these playlists. We see
great potential for statistical analysis of CPs, for example looking at the diversity/coherence of CPs,
especially when compared to PPs. So while, for example, Popescu and Pu [289] report that song
diversity is important in CPs, quantifying the levels of diversity of existing CPs, for example as a
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function of group size, and comparing this to PPs might help to better understand CPs, and might
help to provide fresh knowledge for constructing effective algorithms for APG-G.

Indeed, the APG-G work that we reviewed in Section 5.2 is, to the best of our knowledge, all the
work on APG-G that exists. It is all framed for a physical setting, such as a gym or in a party, where
a playlist has to be constructed for a group of physically co-located listeners. However, with the
advent of music streaming, new ways of listening to co-created playlists have emerged, where the
listeners can access a co-created playlist via the Internet. Music streaming services allow for deeper
and more nuanced preference acquisition than in the physical setting, as there is access to all the
users’ listening histories. There is an opportunity for research into the automatic construction, or
manually-assisted construction, of playlists that will be listened to in this way. Some of the work
on on-the-fly radio programming, e.g., the work in [16, 148], might provide a starting point.

8.2.3 Studies of How Users Interact with Playlists. We do not have many studies on user listening
habits, especially in the era of music streaming. For example, Leong et al. [217] investigate listening
habits but the paper does so in terms of the listening modes of the day (e.g., sequential listening
versus shuffle on iPods). More recent is the survey in [179], which comes at the onset of the
streaming age. They look in particular at active and passive listening, finding that listening to
single songs dominates active listening while listening to playlists is preferred during passive
listening. Their later, larger-scale survey also seeks to answer questions about the degree of control
their respondents desire during listening [180]. In a similar vein, the even larger study in [114]
identifies seven different personas that capture different streaming service user listening behaviors
and degrees of control (e.g., active curator, guided listener).

One aspect of curation is playlist editing, and there are only a few studies about this. In the
context of MPG, Cunningham et al. [81] report that some playlists are designed to be edited and
others are designed to be left as is. For CPs in particular, Park and Kaneshiro [268] found that
78% of respondents in their study listened to their favorite CP unchanged, while 30% continued to
update it. Playlists may even transition to archival status and back again [140]. There is room for
more research into the contexts of playlist re-use, the factors that motivate change, and the kinds
of changes that are made.

8.2.4 Studies of Diverse Types of Music and Users. Most of the work considers playlists created by
and for users located in certain parts of the world. Addressing multicultural diversity is a challenge
that could be taken on in future MIR research on music playlists.

First, it may be that the criteria we are using when constructing playlists are best suited to
certain types of music. It would be useful to see work that assesses how universal these criteria are,
across the use of different scales, harmonies, rhythms, and instruments in the composition and
performance of the music.

Second, it is well-known that song RSs have gender biases, disproportionately recommending
male artists ahead of female artists, e.g. [106]. It would be useful to study whether these and other
biases affect algorithms for APG and A-MPG. If they do, then it would be good to see research into
a new generation of these algorithms that mitigate this bias, either using the kinds of methods
already to be found in the MRSs literature [106] or perhaps novel, playlist-specific methods.

Finally, where there are user studies, there is little consideration of who the users are; the
study in [114] is an exception, since it considers gender and personas. Participants are most likely
university students based in a relatively small set of countries. Studies that embrace a wide range
of participants, and analyze the results accordingly, might prove illuminating. Music streaming
services have the kind of reach that can make these kinds of studies possible.
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8.2.5 Integration into Playlist Generation Algorithms. One of the main reasons for studying
manually constructed playlists is to discover what makes a good playlist, so as to integrate this
knowledge into algorithms for APG and A-MPG. At the moment, for the most part, APG and A-MPG
algorithms optimize for some notion of similarity or learn to replicate user-created playlists; see
Section 5.1.3. There is room in the literature for more work that models the user-related concepts
that are uncovered through study of manually constructed playlists and integrates them in the
automatic playlist creation process. For example, Hu and his co-authors [157, 158] use heuristics
and RL but also integrate concepts such as freshness and diversity. However, much more work can
be done.

It follows too that the concepts that are uncovered should feature in the evaluation of algo-
rithmically created playlists. An exemplar of work of this kind is [168, 169]. They split a set of
user-curated playlists in half and use the first half for training APG algorithms, and the other half
for testing. Their evaluation metrics include accuracy, popularity, coherency, and diversity. Among
many results, they show, for example, that the APG algorithms that they use cannot replicate
the levels of diversity exhibited in the user-curated playlists. More work like this would be very
valuable.

We finish with two topics that are not specific to APG or MPG: playlist presentation and
recommendation.

8.3 Presentation of Playlists
There is very little research that looks at how to present playlists (whether automatically generated
or manually constructed) to the user, even though the topic is of importance. Of course, a linear
presentation is most obvious. But, even then, there is little research to guide decisions such as: the
balance between text and imagery, and the amount of metadata to display.

In systems that recommend continuations, there is little research into how to present the rec-
ommendations, for example how many competing recommendations, or how far into the “future”
recommendations should extend. One exception is [212]. In [212], Lehtiniemi and Seppänen con-
sider how to present recommendations, how many recommendations to present, as well as how to
give explanations to accompany recommendations. But they do so in a very small-scale study and
for small-screen devices only. Another small-scale study can be found in [262]. They distinguish the
case in which upcoming songs are shown and not shown, reporting that users prefer the former.
For upcoming songs, Nonaka and Nakamura [256] propose the concept of branching playlists. In
this way, the user can see the decision process. Predating the streaming era, Goto and Goto [131]
design an innovative interface for displaying multiple playlists and allowing users to extend and
merge them.

Some systems allow users to give feedback and even to have control during playback. For example,
streaming services may offer user interface elements such as those proposed in [205] that allow
users to explicitly ban songs from generated playlists; PlaylistPlayer by Nakano et al. allows users
to re-order the songs in playlists dynamically during playback [253]. We are not aware of any user
studies to date that consider the design of these kinds of interface elements.

Above, we mentioned that Lehtiniemi and Seppänen [212] briefly look at explanations to accom-
pany recommendations. But this is also under-explored. There is little work on how to generate
explanations in the context of APG and A-MPG; how to present them; and when and whether they
are valued by users. For example, Millecamp et al. [241] show only content-based explanations;
Moscati et al. [248] can explain recommendations in terms of the simple algorithms that make up
their hybrid RS. But there is room for other kinds of explanations.

The opportunity here is for explanations that are more oriented toward the properties of the
playlist. For example, a system might explain why a song fits the playlist theme, or how it enhances
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playlist diversity, or how it is compatible in music flow with the previous song. Playlist-based
explanations such as these have not been investigated yet. Of course, such explanations will only
have fidelity in APG and A-MPG algorithms that do in fact take these properties into account
during playlist construction.

Up to now in this section, we have been assuming that playlists are presented using text, e.g.,
list of titles, perhaps with accompanying images. But there are alternatives. The techniques we
discussed for visualizing music collections (Section 6.1.3) could be adapted to present playlists, as
is done in [334], for example; and there are even proposals for interfaces that present playlists in
an auditory fashion [322]. Both are interesting avenues for future research. More radical still is the
work by Burnett et al. [45], which attempts to bring back some of the properties of mix-tapes. By
storing playlist data on NFC tags attached to bracelets, they create playlists that are physical, and
that might be gifted and treasured.

8.4 Recommendation of Playlists
Most of the literature that we have surveyed here is about algorithms for constructing playlists
(APG and MPG). However, given that streaming services are filled with billions of playlists [88],
relatively little is known about recommending existing playlists [305]. One reason may be that
the research literature reflects the fact that streaming services seem to favor playlist generation
over playlist recommendation. Presumably, only high-quality playlists should be candidates for
recommendation. Among the multitude of playlists that a service hosts, quality is not guaranteed:
algorithms for APG and A-MPG may not always produce playlists that are worth recommending;
and, with MPG, users may be saving collections of songs that are not truly playlists, e.g. sets of
favorites [140].28 Research into automatic identification of high quality candidates might be a
necessary part of research into playlist recommendation.

Once candidates are identified, it is possible to recommend playlists by relying on algorithms
developed for the well-known task of song recommendation. Commonly used algorithms for song
recommendation represent the active user as an embedding, represent the songs as embeddings,
and recommend songs whose embeddings are closest to the user embedding [305]. It is possible to
recommend playlists instead of songs by operating in the same manner, but at the level of playlists,
computing a playlist embedding as, for example, an average of its song embeddings.

However, the strategy of computing a playlist embedding as the average of its song embeddings
is sub-optimal. In [139], users are asked to rate each song in a playlist and to rate the playlist as
a whole. The paper finds that the playlist rating cannot be predicted as the average of the song
ratings. This is in part because there is evidence that including even a single song that the user
does not like has a disproportionate effect on the user’s opinion of the whole playlist [355, 356].
Moreover, factors like song coherence/diversity and ordering are important quality criteria for
playlists (see Section 6.1.2), which are not taken into account by a simple average.

An alternative, found in some work, is the idea of learning a playlist embedding. An example
of this can be found in the work of Patwari et al. [273]. However, their evaluation is small-scale,
qualitative and concerned with the familiar task of suggesting a song to extend a playlist, rather
than the task of playlist recommendation that is the subject of this section. A different approach
can be found in [350]. The approach taken is to construct a dataset of playlists listened to in
sequence by a user (e.g., by taking chronological slices of a user’s listening log), and then learning
a playlist embedding from “current” playlists that can predict “future” playlists in the sequence. In
contrast to [273], Vintch validates the learned embeddings in several downstream tasks, including

28We are grateful to an anonymous referee for suggesting that this may be one reason why there is a preference for playlist
generation over playlist recommendation.
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recommendation, showing that learned embeddings largely outperform average embeddings [350].
Other work that uses learned embeddings includes [57, 267].

In general, we see great potential for research into developing powerful playlist embedding
representations beyond a simple average, which can power the next generation of playlist recom-
mendation systems and, more generally, of systems that operate on playlists.

We note too that recommending that an individual user listens to a playlist is only one setting.
RSs might also recommend playlists to groups of users. Or we can imagine that they recommend
CPs that the user could join, or that they recommend people with whom a user might collaborate.
These possibilities are, to the best our knowledge, not yet investigated.

9 Conclusion
In this article, we have surveyed two decades of research into music playlists, adopting the definition
that a playlist is a sequence of songs, intended to be listened to together. Our survey was conducted
using a systematic and reproducible methodology.The result, while not claiming to being exhaustive
in its selection of citations, is nevertheless the most comprehensive survey to date. At top-level, it
covers three main subjects: APG (Section 5), MPG (Section 6) and enhanced playlists (Section 7).

We divide the section on APG into two: automatic generation of playlists for individual users
(APG-I, Section 5.1), and for groups of users (APG-G, Section 5.2). For our review of APG-I, we
adopt a classification from Bonnin and Jannach’s 2014 survey [39], which allows us to show how
interest in different topics has changed in the last decade. Specifically, we present the systems in
the surveyed papers in terms of the background knowledge that they assume, the way they obtain
the target characteristics of the playlists they are to construct, and the type of algorithms they use.
We also discuss how researchers evaluate their APG-I algorithms.

We believe we are the first to survey work on APG-G. Inspired in part by work on group RSs,
we survey APG-G systems in terms of preference acquisition, preference aggregation, and playlist
construction, making connections to the classification of APG-I algorithms where relevant. As with
APG-I, we conclude with a discussion of the evaluation of these algorithms.

Our survey has revealed many changes in APG algorithms. In terms of their background knowl-
edge, we see a shift away from content-based data and metadata towards usage data— although, in
the case of the latter, there has also been a shift away from ratings towards listening logs and man-
ually constructed playlists. In terms of how a user specifies the target characteristics of a playlist,
the use of seed songs has grown ever more prevalent. There has been some growth too in the use
of free-form text. The recent explosion in the capabilities of natural language processing systems
may see even greater use of free-form text in APG in the coming years. In terms of algorithm type,
we see more use of embeddings across all the algorithm types. The rise of deep learning more
generally has had a profound effect. Most obviously, it has given rise to algorithms that use RNNs
and transformers for sequence modeling. But we find it too in some algorithms using MF for CF
and in RL, which itself has grown hugely. A final observation is that our survey reveals that there
has been very little recent work on APG-G.

Turning to MPG, we adopt the same division into two: MPG for individual users (MPG-I, Sec-
tion 6.1) and for groups of users (MPG-G, Section 6.2). Most of this literature has not, to the best of
our knowledge, been surveyed before.We consider the themes that users choose for the playlists that
they construct (relating this to the target characteristics in APG), and the way they choose and order
the songs. We reviewA-MPG, where algorithmic tools help the users to construct their playlists.
Our survey of A-MPG extends the one by Dias et al. from 2017 [96]. We find that approaches to
A-MPG have changed, reflecting the advent of large music collections: where visualization was
common, recommendation is now dominant.
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As with APG-G, we believe we are the first to survey work on MPG-G. Within this, the topics we
survey are similar to those for MPG-I, but additionally we survey the group dynamics, such as the
roles people play and their concerns for privacy. Interestingly, while there is not very much recent
research on APG-G, most of the work on MPG-G is fairly recent, perhaps reflecting the fact that
streaming services offer facilities that make it easy for people to construct playlists collaboratively.

Our survey also includes a review of work on what we call enhanced playlists—work that does
not directly address playlist construction. We find four main topics: cross-fading one song into
the next; interposing speech between consecutive songs; playlist tagging; and playlist captioning.
Work on these is all in its infancy but it holds great promise, not least since it can be integrated
into future work on playlist construction.

So much has been learned over the first two decades of research into music playlists. Yet we were
still able to conclude our survey with a substantial set of directions for future research. We chose
to highlight directions that we find intriguing. They will form only a small part of the research that
we can expect to see over the next two decades.
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