Options for Query Revision when
Interacting with Case Retrieval Systems

Alex Ferguson Derek Bridge
Department of Computer Science,
University College, Cork

a.ferguson@cs.ucc.ie d.bridge@cs.ucc.ie

Abstract

This paper is concerned with using similarity for case retrieval, especially
in interactive case retrieval systems (ICRSs). We define and exemplify
similarity metrics, which are a generalisation of similarity measures, hav-
ing any partial order as their result type. Within this new similarity
metric setting, we define the notion of the ‘best’ cases in case retrieval.
We then show the variety of ways in which users can proceed through an
interaction with an ICRS to widen, narrow or otherwise change the set of
retrieved ‘best’ cases. We show that using similarity metrics rather than
similarity measures increases the variety of interaction options open to
users.

1 Introduction

This paper is concerned with Interactive Case Retrieval Systems (ICRSs). In
an ICRS, as in all CBR systems, a similarity measure is used to compare some
or all of the cases in a case base,! ¢ € CB, to some particular probe case, p.
In ICRSs, the probe p is supplied by the user, and the cases in CB that are
‘most similar’ to p are displayed for user perusal. Users who are not satisfied
with the results of their single-shot query might then interact further with the
ICRS.

In CBR systems other than ICRSs, the ‘most similar’ case or cases are
not simply displayed for the user; they are processed further by the system.
For example, they might be automatically evaluated and/or adapted. Much of
what we say in this paper might apply in these settings too but the focus is
exclusively on ICRSs.

ICRSs are a legitimate and worthwhile field of study in themselves. Many
(though not all) of the main CBR research issues can be investigated in the
ICRS setting (e.g. storage and indexing of cases, computation of similarity,
learning behaviour and case base maintenance). And, the vast majority of
fielded CBR systems are actually ICRSs: most CBR-based help-desk support

LCBR systems in which the case base is indexed and case base interrogation is a two-
stage process are often examples of systems in which the similarity measure is applied to
only a subset of the cases in the case base: the first stage exploits the indexes to restrict
computational effort to certain cases, and then, in the second stage, a similarity measure is
applied only to the results of the first stage. For simplicity of exposition, in this paper we
will henceforth assume that the similarity measure is applied to every case in the case base.



systems and e-commerce systems for searching through product catalogues are
ICRSs. This paper uses examples from a product catalogue search application.

2 Similarity metrics

In the main, similarity measures have been binary operators that, when applied
to two objects of type a, return a number, usually a real from [0, 1], denoting the
objects’ degree of similarity. That is, their type is most usually a — a —|0, 1],
for any data type a.

We have elsewhere described similarity metrics, our generalisation of sim-
ilarity measures [7, 8, 9, 2, 4]. A similarity metric is a binary operator that,
when applied to two objects of type «, returns some value indicating the degree
to which the two arguments are similar. That is, if ~ is a similarity metric,
then

~:ta—a—P

for any data type «, and some suitable P.

All that we require of P is that it impose a relative degree of similarity,
e.g. so that we can say whether objects a and b are more similar to each other
than are objects ¢ and d. We require, therefore, that P be a partial order,>
P =(S,0C).

Of course, not every function of this type is a similarity metric. To be a
similarity metric, a function must also satisfy a number of similarity metric
axioms. These axioms have been discussed in [9, 2].

3 Examples of similarity metrics

We will use product catalogue searching as our example application. The par-
ticular mini case base (product catalogue) that will be used in the examples
is given at the end of this paper. It comprises computer representations of
a number of hotels in the Manchester area. Assume we can ‘project out’ of
these representations the value of certain attributes of the hotels. The lowest
price per night of a room, price, is an attribute of type A/; the amenities of the
hotel, amen, is a value of the powerset type P{d, f,m,s,w}, i.e. a subset of
{d, f,m, s, w} that indicates whether the hotel has a dining room (d), a fitness
room (f), meeting rooms (m), a swimming pool (s) and wheelchair access (w).

On occasion, we might want a boolean-valued similarity measure, i.e. one
which simply says whether two values are similar or not. To formulate these as
similarity metrics, we construct a suitable partial order Bool as the result type
of the function: the partial order is False C True?. The similarity metrics will
then be of type a — a— Bool.

2Tn our earlier work, we required P to be a complete lattice [7, 8, 9, 2], which is a more
restrictive requirement. We thought this to be a natural restriction. However, in [4] we lift
this restriction and provide example similarity metrics where the result type is a partial order
but not a lattice.

3And of course False C False, True C True.



An example Bool-valued similarity metric is:
T ~pricel Y = abs(m - y) <10

i.e. prices x and y are similar if they are within $10 of each other. Note that
this is not transitive. Hotel P ($§72 per night) and hotel H ($80) are similar
(the absolute difference in price is less than 10); hotels H ($80) and N ($85)
are also similar; but P and N are not similar (the absolute difference in price
is not less than 10).

Bool-valued similarity metrics can be used in ICRSs but they fail to capture
the intuitive notion of different degrees of similarity. This motivates numeric-
valued similarity functions. These too are special cases of our framework. Any
numeric set ordered by < or > gives the partial order we need as a result type.

A simple numeric metric is to measure the distance between the two values.
For example,

~price2 2 N2 N —=(2,<)
T ~price2 Y = - abs(a: - Z/)

By this function on prices, P ($72) and H ($80) are similar to degree —8
(negated absolute difference) and this is a higher degree of similarity than the
similarity of P ($72) and N ($85), which are similar to degree —13.

An example numeric-valued similarity metric for hotel amenities is given by
the cardinality of the intersection of the sets of amenities:

~amenl *: P{dv f,S,m,’lU}—>’P{d, f,S,m,'lU} _>(N7S)
xNamen1y£ |xﬂy|

which designates hotel X (which has a dining room and a swimming pool,
{d,s}) to be similar to degree 1 to hotel S (which has a dining room and
meeting rooms, {d,m}).

More conventional [0,1]-valued similarity metrics can also be defined. For
example, we could normalise to [0,1] the results of any of the above numeric-
valued metrics.

As a final example, we show that set-valued metrics are also possible. We
use intersection again, but this time we let the intersections themselves denote
the degrees of similarity:

~amen2 *: P{dv f,S,m,’lU}—>’P{d, f,s,m,w} _>(P{d7 f,S,m,'lU},g)
xNamenZyixﬂy

Now the similarity of X ({d, s}) and S ({d, m}) is {d} — the intersection itself
denotes the degree of similarity. Hotels X ({d,s}) and P ({d, f,m,s}) are
similar to degree {d,s}. When we compare the degrees of similarity, we see
that our second pair of hotels (X and P) are more similar to each other than
our first pair of hotels (X and S) are to each other: {d} C {d, s}.



The advantages of our framework are explained in [7, 9, 2]. We state them
very briefly here. The first advantage is that the framework subsumes many
ways of measuring similarity, e.g. boolean-valued, numeric-valued, set-valued
[6], feature structure-valued [10], and linguistic-hedge-valued [2]. In subsuming
so many approaches, we know that results we obtain in this framework (the-
orems, implementation techniques, etc.) will apply quite broadly. The second
advantage is the ‘naturalness’ of the similarity functions that we can define:
result types can be chosen to best suit the application. The third advantage is
the ease with which we can combine similarity metrics. Uniquely, we believe,
similarity metrics of the same, or even quite different, result types can be com-
bined without inter-conversion. For example, a numeric-valued and a set-valued
similarity metric can be combined into a single metric without first having, e.g.,
to convert the set-valued metric into a numeric-valued metric [7, 8, 9, 2, 4].

4 Retrieval uses unary metrics

Consider a user of an ICRS who wants to query the system’s case base. The
system has a similarity metric, ~, and the user supplies a probe, p. Every case
in the case base, ¢ € CB, is compared, using ~, to p. The ‘best’ cases, those
whose similarity to p is maximal, are displayed.

In this scenario, we are applying the function ~ repeatedly. One of the
arguments to ~ will be different every time: as we consider each case in the case
base in turn. But the other argument to ~ is the same each time: the probe,
p. So, instead of presenting the results of this paper using binary functions, we
can use unary functions. Suppose we have a similarity metric, ~, of type

~ia—=a—(S,6)

then, given some probe p, we can construct a unary function, u?,, of type
u?,  a—(S,5)

where
uweEp~c

i.e. u? is a unary function which takes in a case, ¢, and compares it to probe
p using similarity metric ~. We have ‘frozen’ one argument to the similarity
function, the result being a unary function. In functional programming, this is
referred to as partial application.*

Here is an example. From ~jicc2, we can define ul?; ., a function that
uses ~price2 10 compute the similarity of its argument to $80. Of course, there
is a family of such unary functions, one for each probe p. So, from ~p ice2 We

can also define, e.g., ud0; .0, Up09..o, €tc., by ‘freezing in’ different, probe values.

4Tf ~ is symmetric, then it does not matter which argument is ‘frozen in’: defining u as
p ~ c is equivalent to defining it as ¢ ~ p. However, if asymmetric similarity measures are
allowed, the choice of which of these two ways of defining u2, becomes significant and would
need to be decided by the system designer or the user.



Querying an ICRS now becomes a matter of taking a probe from a user,
partially applying a similarity metric to it to give a unary function, applying
this to every case in the case base, and displaying the best cases.

This is a useful move in this paper as a notational ploy. When we come
on to defining the best cases (section 5), the definitions will look simpler if
we use these unary functions rather than expressing them in terms of (binary)
similarity metrics.

Furthermore, it may inspire wider use of our framework. There are many Al
applications where objects need to be scored or ranked according to some crite-
ria; unary [0,1]-valued functions are often used for this purpose. For example,
utility measures in action planning and fitness functions in genetic algorithms
are typically of type a —[0, 1]. But, in the same way that we generalised similar-
ity measures of type a — a —0, 1] to similarity metrics of type a — a —(S, C),
utility measures and fitness functions might also be usefully generalised from
functions of type a —[0, 1] to functions of type a — (S, E). Then the results of
this paper (and our other papers) can be applied to action planning and genetic
algorithms.

So, the rest of this paper will be couched in terms of unary functions, u?,,
rather than binary similarity metrics, ~. We will refer to these unary functions
as unary metrics, and we will denote them simply by u, except where u?, would
be clearer.

(Note that none of the above is intended to imply that this is the only way
to use similarity functions. For example, in data mining and machine learning
systems, similarity measures and metrics are used to form ‘clusters’ of objects.
In these systems, pairwise comparisons of objects (e.g. each object with every
other object) are often required, and in these situations partial application to
form unary functions would serve little purpose).

5 Best cases

Having applied a unary metric to every case in the case base, we then want to
determine the best cases, i.e. those whose metric value is maximal: that is, the
value of the unary metric, applied to that case, is no worse than the value for
any other case in the case base. As the order is partial, in general we may have
several different maximal metric values, each incomparable to the other in the
ordering (as well as several different cases which yield the same metric value).

We will give the definition first, and then some examples.

Given a case base CB with each case being of type a and given a unary
metric, u, of type a —(S,C), the best cases are defined by a best case function
best,:

best, CB={c:c€ CB,3m € M : (uc) =m}
where M is the set of maximal metric values:

M =max(g){uc: c € CB}



and the function max(g ) is the usual maximal set operation on the partial
order (S, C), that is for §' C S:

max(s,0)S' ={z €S Va' € S,z Z z'}

In words, the best cases with respect to unary metric u, best,CB, are the
cases whose metric values are in M, where M is the best of the metric values of
the entire case base; some element of a set S’ is ‘best’, that is to say, maximal
iff if it is not lower in the ordering than any other element of S’.

This definition gives those cases which are adjudged the best in the case
base with respect to the given unary metric — or at least, those which it is not
possible to discriminate further between.

(Note that this definition is not an implementation prescription. If it were,
it would appear to involve ‘multiple passes’ through the case base, first to
compute M and then to compute best, from M. We have a different but
equivalent definition of best which, while more complicated and less clear, is
suggestive of a ‘single pass’ implementation, but we will not show this here.)

We give two simple examples using best. Consider a user who wants a
hotel room costing around $95 according to ~price2. Unary metric u? e 18
applied to every case. The set of maximal values so-computed is {—4} (vthe set
is a singleton because the ordering < is a total order). Hotels whose prices are
—4 similar to $95 are the best ones; they are shown in Figure 1a.

(b) bestu{d,f,m,s,w}

~amen2

158 | {d, f,m,w}
99 | {d, f,m,w}
115 | {d, f,s,w}

A || 158 | {d, f,m,s}
B 80 | {d, f,m,s}
L
)y J, M, S
]\1/{ 33 {d{;i’nu":}w} F || 112 | {d,m,s,w}
R G || 139 | {d,m,s,w}
vl 4 e [ s
R
T
14

Figure 1: Query results

Now consider a user who wants a hotel whose facilities are as similar (using
~amen2) as possible to {d, f,m, s, w}. When u{N‘i’i’ZZés’“’} is applied to each case,
the maximal values are {{d, f,m, s}, {d,m,s,w},{d, f,m,w}, {d, f,s,w}} —
there is no longer a unique maximal value. For example, hotel A is similar to
the probe to degree {d, f,m, s} and, in the ordering used in ~gmen2 (i-e. C),
this is neither higher, lower nor equal to the similarity of hotel C' to the probe,
i.e. {d,m,s,w}. This is one of the consequences of generalising from similarity
measures (whose result types, [0,1], are totally ordered) to similarity metrics
(whose result types are partially, and thus not necessarily totally, ordered).



Hotels with maximal similarity to the probe are shown in Figure 1b; they have
equal or incomparable degrees of similarity to the probe.

6 What can a user do next?

Interaction with an ICRS, especially for product catalogue search, is unlikely to
comprise only a single-shot query. While subsequent interaction might comprise
unrelated further single-shot queries, more likely is that a user, faced with a
set of best cases (e.g. as per Figure 1) will want to use these cases as a basis
for exploration in subsequent interaction.

An ICRS might offer users the following options at this point:

e changing the probe,

e changing the way degrees of similarity are computed,
e changing the case base contents,

e requesting the next best cases,

e requesting a subset of the next best cases, and

¢ indicating indifference between degrees of similarity.

The last two of these are new possibilities, opened up by our similarity metric
framework, reported for the first time in this paper. For completeness, we
describe all six options. The six options do not form an exhaustive list; they
are simply the main possibilities in simple ICRSs.

6.1 Changing the probe

An obvious way to revise a query in the hope of seeing a different set of retrieved
cases is to change the probe. For example, supplying a desired price of $90, in
place of the $95 used earlier, so that the best cases are computed using u°°

price2
instead of u?>

pricez> Will result in the user viewing the cases in Figure 2a.

~price2 ~price2

Lol o] @& JINI8]{dm}]

‘ (a) best o0 H (b) best,ss ‘
|

Figure 2: Query results

This option is universally available in ICRSs. But, in some ICRSs the only
way to change the probe is to enter a new probe into a form on the screen.
The problem with this is that it is not easy for a user to deploy this sensibly.
Seemingly small changes in probe values can radically change the set of retrieved
cases: queries that, in the user’s mind, were related may not produce related



results. For example, changing the probe value to $85 will result in the user
viewing the cases in Figure 2b, which are disjoint from those in Figures la
and 2a.

This problem can be lessened by displaying not just the best cases but other
highly ranked cases too (see subsections 6.4, 6.5 and 6.6). Then, cases retrieved
in one query may still appear in the result set of a subsequent query that uses
a different, but not very different, probe.

An interesting possibility, offered by only some ICRSs, is to allow the user
to select one or more new probes from the set of cases that have been so far
retrieved and are currently being displayed on the screen, rather than having
the user type in new probes from scratch. If this is done, then assuming that
the similarity metric is not transitive, a different, but related, set of cases will
be retrieved by the new query.

6.2 Changing the way degrees of similarity are
computed

In some ICRSs, users can change the way that degrees of similarity are com-
puted. For example, the user might have been using ~ppice1 (repeated below),
and might replace it in subsequent queries by ~pice3 OF ~prices to narrow or
broaden the set of cases that will be retrieved by the best function.

T ~pricel Y = abs(a: - y) <10
T ~prices Y = abs(z —y) <5
T ~priced Y = abs(m - y) <20

In fact, in existing ICRSs, it would be very rare for users to change individ-
ual similarity metrics in this kind of way. More usually, individual similarity
metrics are installed and maintained by the application designer.

There is, however, one aspect of similarity metrics that some ICRSs do allow
users to change: the way that individual similarity metrics are combined to form
overall similarity metrics. For example, an ICRS might have a similarity metric
for comparing hotel room prices and another for comparing hotel amenities.
These two functions need to be combined into a single function so that hotels
can be compared for similarity on both room prices and amenities together.

In the traditional similarity measure setting (o« — « —[0, 1]), the functions
are combined using numerically-weighted sums, products or averages. Some
ICRSs will allow users to alter the weights so that individual functions con-
tribute less or more to the overall degree of similarity.

Our similarity metric framework also offers this option to users. But, our
ways of combining functions have to be sensitive to the fact that the way we
denote degrees of similarity is not restricted to real numbers from [0,1] but can
be values from any partially ordered set. We have covered this issue in a recent
paper [4] and, due to its length, we will not repeat that material here.



6.3 Changing the case base contents

It is obvious that a change to the contents of the case base can change the set
of best cases retrieved. It is less obvious that this could be an option open to
users of ICRSs. No existing CBR shell provides for this, for example.

However, in a number of reasonable future developments, this could become
an option. For example, imagine a web-based ICRS in which parts of a case
base are down-loaded for client-side similarity-based retrieval, instead of the
more common server-side retrieval. In other words, the comparisons take place
on the user’s machine; the server simply delivers an initial set of cases. It
might then be an option, over the course of an interaction with the system, to
down-load further partitions of the case base: users might elect to down-load
a second partition if their queries are not satisfactorily answered on the first
partition that they down-load.

We can envisage many other similar scenarios. For example, initial sets of
cases to which similarity-based retrieval is applied might be obtained by using
a traditional database query on a legacy database or by instructing a softbot
to collect cases from the Internet. By issuing further database queries or by
waiting for the softbot to discover further cases on the Internet, the user will
be interacting with an evolving set of cases.

6.4 Requesting the next best cases

It is common to offer the user the option of requesting more than just the best
cases. We can retrieve larger sets of cases by retrieving those of successive
ranks.

In general, we can define O}, the nth rank of cases with respect to u, as
follows. The rank 1 cases w.r.t. u are the best cases w.r.t. u:

O.CB = best,, CB

The next lower rank of cases are those that are best when the ‘real’ best ones
are taken out of the picture. Inductively:

O3 +'CB = best, (CB — | ] 0},)

i=1

(Again, the definition is not intended as an implementation prescription.)
The rank 2 cases for u’; ., and uii;{z;g’s’w} are shown in Figures 3a and 3b.
(The rank 1 cases are, of course, those already shown in Figure 1.)

Relatedly, we may wish to find, rather than a given number of ranks, simply
a given number of cases, i.e. the ‘best-n’ For example, we may wish for the best
50 cases, regardless of whether this means calculating 50 ranks or only 1. We
can obviously define this as the union of successive ranks, until the cardinality
of the answer set is 50. The problem with this is that we have to allow for
the possibility of ‘ties’ for ‘last place’: that is, the final rank we add may give
us more, and possibly even many more, cases than the ‘n’ we requested. One



5 (b) Oiid’f‘m‘;w}
‘ (a) Ougp ., ‘ K [ 104 | {d, m,w}
[EJ100 ] {d} ]| L [ 88 | {d,muw}
Z || 104 | {f,m,s}

Figure 3: Query results

might compare this to the ‘cut’ rule in golf, where one allows, for example,
‘40th place and ties’ into the final rounds.

Accordingly, we define best, to be the optimal n entries in the case base,
with respect to the metric u, plus any entries which are incomparable with
those n cases (and, therefore, are effectively just as good for the purposes of
that query). It is given by:

best; = B,,
such that:
|Bm| > n,|Bm-1| <n

where By ... B,, are a family of sets of best cases:

B; = LZJ(O{L CB)

j=1

6.5 Requesting a subset of the next best cases

Consider a user who is viewing a set of retrieved best cases. These cases are
ones that are highly similar to the user’s probe. The user may favour some
of these cases over others. Let’s suppose that the ICRS’s interface offers the
user a way of selecting these favoured cases (e.g. by clicking on check-boxes).
Thus the user selects a ‘distinguished’ subset of the retrieved cases, which we
designate below by D. The user might like to see only those cases in the next
rank that are most like those in D.

We have already, in subsection 6.1, dealt with the situation where the user
uses the cases in D as new probes. To avoid confusion, let us state explicitly
that we are now describing a different possibility. Here, the probe remains as
before and we are dealing with the retrieval of cases from the next rank.

So, the set of cases on the screen, of which D is a subset, are the most
similar to the probe. Assuming all else remains unchanged (e.g. that the probe
and similarity metric remain unchanged), any further cases we retrieve will
come from the next rank of cases. But, we are suggesting here that, rather
than retrieve all cases in the next rank, the user may want only those in the
next rank that are most similar to the favoured ones in D.



The function for computing the next rank in this selective manner, the best
in CB w.r.t. w and D, 05, is:

OPCB = best, {cc CB,3d € D: (uc) C (ud)}

In fact, the idea we are presenting in this subsection is only useful in situ-
ations where the similarity metric’s result type is not totally ordered. We will
demonstrate this with two examples.

Suppose the user is looking at the cases in Figure 1a, computed using u)?; ...
The subset of hotels that the user prefers in this result set is, say, {U}, i.e.

D = {U}. If the user then applies Oigs} to the case base, the cases retrieved

price2

are the best of the cases that have lower similarity to the probe than the ones
in {U}. Since hotel U was —4 similar to the probe, the cases now retrieved are
those that are —5 similar to the probe. But, this is the whole of the next rank,
as depicted in Figure 3a. You can see that, in this situation, using 0535}

price2

is no different from using 0295 from earlier. Picking a particular element

price2

from the current rank is unnecessary, since they are all equivalent as far as a
totally-ordered metric is concerned.

But, now we give an example in which the similarity metric is ~gmen2,
whose result type is not a total order.

This time, the user is viewing the cases in Figure 1b. Perhaps wheelchair
access is especially important, so the user selects the hotels on the screen
that offer wheelchair access, i.e. D = {C,F,G,R,T,V}. Now, we compute

O{?d’_l;jijff}’v}. Hotels C, F,G,R,T and V were similar to the probe to de-
u

amen2

grees {d,m,s,w}, {d, f,m,w} and {d, f,s,w}. The new cases displayed are
the best of those whose degrees of similarity are lower than these degrees of
similarity. They are shown in Figure 4, and should be compared with those
in Figure 3b. (Case Z no longer appears in the result set because, although

O{C,F,G,R,T,V}
A fom s )

amen2
K || 104 | {d,m,w}
L || 88 | {d,m,w}

Figure 4: Query results

it is in the next rank, it is not of comparable similarity to the user’s favoured
cases.)

6.6 Indicating indifference between degrees of similarity

We introduce the notion of degrees of indifference between degrees of similarity
and use this to change the set of retrieved cases. While we will use ~pyicc2 and
~amen2 N our examples, this idea is one that is more useful when the result
type of the similarity metric is not totally ordered.



Consider the similarity metric ~ppice2, from above. Someone trying to find
a suitable hotel room is unlikely to regard small differences in the degrees of
similarity of two rooms according to this metric as being decisive in the choice of
which match is best. For example, if the probe value is $90, it would probably
be unwise to regard an $89 room (similar to the probe to degree —1) to be
decisively more similar than an $88 room (similar to the probe to a strictly
lower degree, —2). Yet, by our definition of best, such small differences would
indeed be decisive in determining what appears in the best set. Better in the
case of small differences (where ‘small differences’ for a hotel room metric might
be differences as large as, say, 10) would be to broaden the best set to include
cases that, while not maximally similar to the probe, are ‘as good as’ maximally
similar to the probe (i.e. similar to the probe to a degree that is so close to
the maximal degree that we are indifferent about the shortfall). This is not
necessarily the same as taking the next rank of cases, as you will see in one of
our examples, after we have given the definitions.

We need a new definition of best that is insensitive to small differences in
degrees of similarity. But it also means that we have to say what we mean by
‘small differences in degrees of similarity’. For this we introduce the idea of
degrees of indifference between degrees of similarity.

In order to do this, we must change the signatures of similarity metrics.
We augment the result type with a boolean-valued binary function that will be
used to indicate whether we are indifferent between two degrees of similarity:

~: a—a— (P ~p)

where P, as before, is a partial order, P = (S, C).

Then, we need to formalise this notion of indifference between degrees of
similarity (~p). The relations that formalise this notion will generally not be
equivalence relations. To use an equivalence relation would have the same effect
as simply using a less discriminating result type in the similarity metric; there
would still be cases of small differences in the similarity metric that were having
decisive effects.

For example, suppose we wished to declare, for the price metric, similarities
within 10 to be equivalent:

~price2 N%N_)((Za S):Rp'r'ice2)
T ~price2 Y = — abs(m — y)
51 Rpriceass = s1 div 10 = sg div 10

Here R)yice2 is indeed an equivalence relation. But this is, in essence, the same
as simply using = as the indifference relation with prior integer division by 10:°

~price2 . /\f—)/\f—)((zaf)::)

5Tt is also the same, in this case, as using integer division on the argument types:
T ~price2 Y= — abs(z div 10 — y div 10)

This suffers the same weakness that we explain above.



T ~price2 Y = — abs(z —y) div 10

The problem with these (equivalent) formulations is that they still have
points where small differences in the degrees of similarity are decisive, while
at other points a larger difference proves not to be. For example, similarity
degrees of —9 and —10 would be mapped to distinct values (0 and —1), whereas
similarity degrees of —10 and —19 are both mapped to —1.

More reasonable is an e-equality, similar to that used for comparing floating
point numbers, i.e. we are indifferent between two degrees of similarity, s; and
so, iff abs(s; — s2) < e. For our price metric, ¢ would be 10. Now, we would
be indifferent between similarity degrees of —9 and —10, and of —10 and —19,
but not of —9 and —19.

We note that this relation is reflexive and symmetric, but not transitive.
Instead, it satisfies the generally weaker property of convexity. Define a relation
R to be P-convex, over any partial order P, iff:

Ve,y,z€e P:2 CpyCpz, s Rz=zRy,yRz

That is, given three ordered ‘points’, if the top and the bottom points are
related by R, then the middle point must also be related to both.

To generalise then, what we require of an indifference relation on degrees of
similarity, ~p, is that it satisfy reflexivity, symmetry, and convexity. It need
not satisfy transitivity.

Now we can redefine the best function with respect to a unary metric of
type a—(S,C), incorporating the notion of degrees of indifference between
degrees of similarity:

best, CB =
{c:c€eCB,Im e M : (uc) =) m}

where (as before)
M =max(gc){uc: c € CB}

In words, if M is the set of maximal metric values, the best cases are the cases
whose metric values are sufficiently close to a value in M (as determined by
the indifference function, ~p).

Users have quite some control over the way they use this idea by deciding
just how much indifference between degrees of similarity they will exercise.
The more they are indifferent between quite distant degrees of similarity, the
more cases they will see. At one extreme, if they are indifferent between all
different degrees of similarity, they will see all cases in the case base. At the
other extreme, they can choose to exercise no indifference at all. In this case
~p is = (i.e. users are indifferent between two degrees of similarity only if they
are equal). When ~p is =, the revised definition of best computes the same
answer set as our original definition of best.

For example, suppose the user is looking at the cases in Figure 1a, computed

using w2, o If abs(sy — s3) < 2 is the indifference function, then the new



definition of best will retrieve cases with maximal similarity to the probe (—4)
and cases whose similarity to the probe is within one of the maximal value. The
effect will be to retrieve the cases shown in Figure 5a. Using abs(s; — s2) < 10
would compute the larger result set in Figure 5b.

(b) bestugiicez with
indifferencpe function
abs(s; — s2) < 10
C || 102 | {d,m,s,w}
(a) bestuziice2 with E || 100 {d}
indifference function J || 104 {}
abs(s1 — s2) < 2 K || 104 | {d,m,w}
E || 100 {d} L 88 {d,m,w}
M |[ 99 {d,w} M [ 99 {d,w}
T 99 | {d,f,m,w} || N | 8 {d,m}
U || o1 O Q [ 88 {d,m}
S 88 {d,m}
T 99 | {d, f,m,w}
U |l 91 {}
Z || 104 {f, m,s}

Figure 5: Query results

More interesting is an example that uses ~gmen2, Whose result type is
not a total order. Figure 1b shows the result computed by the original def-
inition of best. The set of maximal degrees of similarity to the probe was
{d, f,m,s},{d,m,s,w}, {d, f,m,w},{d, f,s,w}}. Suppose users are indiffer-
ent between two degrees of similarity if they include wheelchair access: w € s1 A
w € so. This is a quite ‘loose’ definition of indifference; it means users are indif-
ferent between degrees of similarity such as {d,m, s, w}, {d,m,w}, {f, w}, {w}
and others. The result we compute using the new definition of best and this
indifference function, shown in Figure 6, is quite different from anything we
could compute using O}}.

6.7 Combining the options

We have described six ways a user can proceed in an interaction with an ICRS.
But they are not mutually exclusive and there may be great value in combining
them.

For example, the user might reasonably desire the following combinations:
taking the different ranks and using an indifference relation to change the values
that are considered to be in each rank; choosing a new probe and changing the
method of computing similarity; and also picking favoured elements from the
current rank, together with fetching more elements into the case base. However,
we have not yet investigated these in any detail.



best {4, f,m,s,w} With
amen?2

indifference function
wE S ANw € 83

72 | {d,f,m,s}
158 {da fa m, w}
99 | {d, f,m,w}
115 {da f7 ) w}

A || 158 | {d, f,m,s}
B || 80 | {d,f,m,s}
C || 102 | {d,m,s,w}
D 67 | {d,f,m,s}
F || 112 | {d,m,s,w}
G || 139 | {d,m,s,w}
K || 104 | {d,m,w}
L 88 {d, m,w}
M | 99 {d,w}
(0] 67 {m,w}
P

R

T

|4

Figure 6: Query results

7 Conclusions

We have considered various ways in which an interaction with an ICRS may
proceed. Some of these ways are new; they exploit the main aspect of our
similarity metric framework, viz that the result types of similarity metrics can
be any partial order, rather than a total order.

Although we have not described it here, we have implemented a system
that can search a case base using similarity metrics. It offers all the different
interaction options that we have described in this paper. However, it has only
a command-line user-interface.

Future work will include proper consideration of the user-interface, with
reference to work such as [3], [5] and [1]. In a direct manipulation user-interface,
we will consider which of the interaction options that we have discussed are
useful and natural.

References

[1] Aha,D.W., Maney,T. & Breslow,L.A.: Supporting Dialogue Inferencing in Con-
versational Case-Based Reasoning, in B.Smyth & P.Cunningham (eds.), Advances
in Case-Based Reasoning (Procs. of 4th European Workshop on Case-Based Rea-
soning), LNAI-1488, pp.262-273, Springer, 1998

[2] Bridge, D.G.: Defining and Combining Symmetric and Asymmetric Similarity
Measures, in B.Smyth & P.Cunningham (eds.), Advances in Case-Based Reason-



ing (Procs. of Jth European Workshop on Case-Based Reasoning), LNAI-1488,
pp-52-63, Springer, 1998

[3] Dearden, A.M.. Improving the Interface to Interactive Case Memories, in
IL.D.Watson (ed.), Progress in Case-Based Reasoning (Procs. of 1st U.K. Work-
shop on Case-Based Reasoning), LNAI-1020, pp.73-84, Springer, 1995

[4] Ferguson, A. & Bridge, D.G.: Generalised Prioritisation: A New Way of Combin-
ing Similarity Metrics, in Derek Bridge et al. (eds.) Procs. of 10th Irish Conference
on Artificial Intelligence & Cognitive Science (AICS’99), pp.137-142, 1999

[65] Hammond,K.J., Burke,R. & Schmitt,K.: A Case-Based Approach to Knowledge
Navigation, in D.B.Leake, Case-Based Reasoning: Ezperiences, Lessons, € Future
Directions, pp.125-136, MIT Press, 1996

[6] Matuschek, D. & Jantke, K.P.: Axiomatic Characterization of Structural Similar-
ity for Case-Based Reasoning, in D.D.Dankel (ed.), Procs. of Florida AI Research
Symposium, Florida AI Research Society, pp.432-436, 1997

[7] Osborne,H.R. & Bridge,D.G.: Similarity Metrics: A Formal Unification of Cardi-
nal and Non-Cardinal Similarity Measures, in D.B.Leake & E.Plaza (eds.), Case-
Based Reasoning Research and Development (Procs. of 2nd International Confer-
ence on Case-Based Reasoning), LNAI-1266, pp.235-244, Springer, 1997

[8] Osborne, H. & Bridge, D.G.: We're All Going on a Summer Holiday: An Exercise
in Non-Cardinal Case Base Retrieval, in G.Grahne (ed.), Frontiers in Artificial
Intelligence and Applications (Procs. of 6th Scandinavian Conference on Artificial
Intelligence), pp.209-219, IOS Press, 1997

[9] OsborneH.R. & Bridge,D.G.: Models of Similarity for Case-Based Reasoning,
in Procs. of the Interdisciplinary Workshop on Similarity and Categorisation,
pp.173-179, Edinburgh, 1997

[10] Plaza, E.: Cases as terms: A feature term approach to the structured represen-
tation of cases, in M.Veloso & A.Aamodt (eds.), Case-Based Reasoning Research
and Development (Procs. of 1st International Conference on Case-Based Reason-
ing), LNAI-1010, pp.265-276, Springer, 1995

Hotel case base

We use a very small case base to illustrate this paper. It has few cases, and
each case has few attributes. Our implementation can comfortably handle much
larger case bases; but the purposes of this paper are better served by using a
manageable example case base.

We extracted information pertaining to 26 hotels in the Manchester region
from Yahoo’s hotel shopping service (http://travel.yahoo.com/
destinations/travelocity hotel/yfinal hotel.html). We identify the ho-
tels by unique letters, rather than by names and addresses, and, in this paper,
we consider only their lowest nightly room prices and their amenities. The
room prices are in U.S. dollars. The amenities are shown on the Yahoo web
site as up to 10 highlighted icons representing different amenities (dining room,



swimming pool, etc.). To keep the examples small, we considered only 4 of the
10 amenities, and we have represented them as sets of letters: d designates a
dining room, f a fitness room, m meeting rooms, s a swimming pool and w
wheelchair access.

| Identifier || Lowest price | Amenities

A 158 {d, f,m, s}
B 80 {d, f,m,s}
C 102 {d, m, s, w}
D 67 {d, f,m, s}
E 100 {a

F 112 {d, m, s, w}
G 139 {d,m, s, w}
H 80 {}

T 150 {d,m}

J 104 {}

K 104 {d, m,w}
L 88 {d, m,w}
M 99 {d, w}
N 85 {d,m}
0 67 {m,w}
P 72 {d, f,m, s}
Q 88 {d,m}
R 158 {d, f,m,w}
S 88 {d,m}
T 99 {d, f,m,w}
U 91 {}

v 115 {d, f,s,w}
W 120 O

X 131 {d, s}

Y 77 O

Z 104 {f,m,s}




