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Introduction
In Case-Based Reasoning and in Machine Learning, an important concept is the
similarity metric (or measure), a function which rates how similar two objects are,
according to some criteria. We concentrate here on case-base queries – finding a case
in a case-base which most resembles some probe case. Selecting what metrics are
most appropriate is a key part of both designing, and using, a case-base.

It is possible to think of devising similarity metrics as a two-step process: first,
selecting a number of basis metrics, which compute the similarities for each case
attribute; and then picking a combinator, which forms an overall judgement of case
similarity by combining the individual attribute similarities. The customary means of
combining metrics is to use a weighted average. However, in earlier work [FB99a,
FB00] we have presented a number of distinct alternatives to this approach – product,
strict prioritisation, and generalised prioritisation – which we argue in a number of
respects are often more desirable than weighting.

In this paper, we formulate a general combinator which subsumes both our previous
work, and numerical weighting. Thus we are able to use both the methodology of
prioritisation, where that is indeed more appropriate for the reasons we claim, and
also a weighting-like effect where that is required instead. Furthermore, the new
combinator allows us to extend the weighting method to non-numeric types. We will
also show that our generalisation admits new ways of combining metrics, by
exemplifying an instance of our new combinator distinct from prioritisation and
weighting.

Metrics vs. measures
Traditionally, similarity measures return numeric values, which denote degrees of
similarity. Our generalisation, which we term in contradistinction similarity metrics,
is simply to allow in principle any type to denote degrees of similarity, provided only
that it can be ordered in some way. To be precise, our requirement is that there exist a
partial order on the desired result type. We discuss the detailed definitions of
operators for combining metrics, and for finding the ‘most’ similar cases to a given
probe within such a framework in earlier work [OB97, FB99b].

There are a number of reasons for wishing a more general representation than a single
number; these relate both to the types of basis metrics, which as per our earlier work,
and after Plaza [Pl95] may be non-numeric, and as we focus on more particularly



here, to the types obtained when metrics are combined. First though, we look at a
simple example of a non-numeric basis metric.

For example, suppose we have a case attribute that is represented by a set. Let us
consider a very simple example, of hotel amenities. These might include en suite
bathrooms, and television in the room: let us call these EnSuite, and TV. The type
of the attribute is, therefore, subsets of {EnSuite, TV}. One means of measuring
similarity on cases in this respect, then, is simply to take the set intersection: that is,
we are saying that two cases are similar to the degree that they share amenities. Thus
not only are we representing amenities by sets, but their degrees of similarity are also
represented by sets. This is a perfectly good result type for a metric in our framework,
provided only that we can define an order on these similarity value sets. The intuitive
means of doing this is to order by set inclusion: one degree of similarity is greater
than another, if it includes everything the other does, and more. We illustrate this
order in the figure below:

Or in the usual notation: {}  {EnSuite}  {EnSuite}, and {}  {TV} 
{EnSuite}. Note that this is indeed a partial, and not total, order. Suppose we have
a probe case, with amenities desired being both EnSuite and TV, and now consider
comparing that to two extracted from the case base, one with EnSuite (only), and
one with TV (only). Their respective degrees of similarity to the probe are, then,
{EnSuite} and {TV}. Since these are not equal, and neither includes the other,
then they are incomparable – the points are entirely unrelated to each other, according
to the partial order. We therefore have a more complex structure to consider in
dealing with such examples. The advantage of this is that we are not forced to make a
predetermined choice to force this into a total order, which might well distort the
intent of the user of a case base query system.

As we have noted, we require only that the result type have a partial order put on it.
That is, we allow incomparable points in the set of degrees of similarity, which are
neither equal, nor is one made less than the other. We require no ordering on the
cases, or case attributes themselves – only on the results of whatever metrics we wish
to define on them. The nature of this order has significance in terms of how the results
of a case query are presented to, and interact with, the user, which we explore in
earlier work [FB99b], but is motivated largely by wishing to allow the greatest
amount of flexibility possible in constructing metrics appropriate to the desired effect.

Having selected basis metrics for every case attribute we are interested in, we then
desire to combine them in some way. For example, we may wish to construct a



similarity value by combining the results of an amenities metric, and a price metric.
This might seem problematic in our framework, where such different metric result
types are allowed, e.g., the amenities metric may return sets (as above), and the price
metric might be a conventional numeric-valued function. But there is an obvious
choice for the result type of the combined metric: a pair. The degree of similarity of
two hotel rooms might be, e.g., ({TV} , 0.7), where {TV} is the similarity on the
amenities metric, and 0.7 is the similarity on the price metric. In general, given two
cases c1 and c2, to compute their overall similarity m c1 c2, we form a pair from their
similarities according to two basis metrics m1 and m2:

m c1 c2 = (m1 c1 c2,  m2 c1 c2)

But of course, it is not enough to simply say that the overall similarity is a pair. The
pairs must be partially ordered so that we can tell which denote the higher degrees of
similarity. A number of different orders might be chosen: one choice is to use a
lexicographical order based on the orders of the components – that is, ordering first by
the result of m1, and then using m2 as a ‘tiebreaker’. Other choices will be described in
detail later in this paper.

Generalising weights
We now review the conventional weighted-sum combinator for similarity measures,
and then proceed to develop an analogous treatment for handling weighting-like
combinators for similarity metrics. Since the types returned by a metric need not be in
any sense numeric, conventional weighting requires at the least some extra work.
Most simply, we can add a conversion function from any give type to numerals, and
then proceed with the weighted-sum calculation as usual. Where the type is a totally-
ordered non-numeric, this is fairly straightforward. A less straightforward case is
where the result is indeed a true partial order. Where this is so, not only is how to do
the conversion less clear in itself, but the results obtained, as we will see later in this
section, may be less than satisfactory.

For clarity, we consider throughout combining only two metrics; in practice we may
require many more, but the combinators we discuss compose, or where necessary
scale up, without difficulty. Suppose we have a probe case and we are comparing it to
two cases in the case base. According to the first metric (e.g., comparing listed hotel
amenities), the similarities of the two cases to the probe case are x1 and y1. According
to the second metric (e.g. comparing prices), the similarities are x2 and y2. The usual
definition of a weighted comparison using two weights, w1 and w2, is as follows. First
we apply a weighted sum function, ws, to each pair of the similarity values (si):

ws(s1,s2) = w1.s1 + w2.s2

These are then compared in the usual arithmetic fashion, and we can view this as
defining an order <w on pairs of numeric similarity values:

(x1,x2) <w (y1,y2)    ws(x1,x2) < ws(y1,y2)  =  w1 . x1 + w2 . x2 < w1 . y1 + w2 . y2

In order to generalise this definition to non-numeric types, it would be necessary to
first devise analogues in the appropriate type to the individual weights, then perform



an operation playing the same role as the sum, and lastly carry out a comparison in the
resultant type. The ‘sum’ here is especially problematic: given arbitrary partial orders,
what sort of operator should be used to combine two elements, to produce a third,
capturing a similar sort of behaviour to the weighted sum? Since there is no clear
answer to this in general, and because in practice it would often require specially
devising a new sum type, we wish to avoid having to perform the comparison of pairs
in such a manner, in the non-numeric case.

By a simple algebraic rearrangement of the formula above, we can also regard
weighting in a slightly different manner:

(x1,x2) <w (y1,y2) = w1 . (x1 – y1) < w2 . (y2 – x2)

That is, we compare each component initially separately, in this case by a subtraction,
and then we combine these computations, to see which is decisive. Essentially, we are
determining whether our two criteria agree, and where they do not, are then using the
weights to skew the comparison to the one which is the more important. This can be
seen more clearly if we define a single relative weight, as follows:

w = w1/w2

Then the above is equivalent to:

 (x1,x2) <w (y1,y2) = w . (x1-y1) < y2 - x2

That is, a single parameter sufficiently determines the relative importance of each
component (provided w2 = 0).

This simple reformulation provides the basis of our generalisation: we replace
subtraction by a generalised difference function on each component, and each
multiplication that uses a weight, wi, by the application of a weighting function, i.
The difference functions may yield a numeric or a non-numeric type, and these types
may not necessarily be the same for each of the pair; the weighting functions must
each return the same partially-ordered result. Lastly, we replace the numeric
comparison, <, by whatever partial comparison,  is appropriate to the chosen order.

Accordingly, we define the generalised weighting of A and B, with respect to weights
i and difference functions di as A d B, where the elements are pairs of A and of

B, and the partial order is as follows:

(x1,x2) < d (y1,y2) = 1 (d1(y1, x1))  2 (d2(x2,y2))

As with the numeric case, it is sufficient to perform weighting only once, on a relative
basis. That is, 2 can simply be omitted from the above, and a relativised 1 used
instead. However, in some cases, it may be more convenient to retain two separate
weighting functions, as above. Since weighting functions here accomplish both the
intuitive weighting functionality, and often will also involve a change of type, this
definition may be more natural and convenient, as it avoids constraining the second
difference function and the single weighting function to return the same type.



It is straightforward to see that generalised weighting is indeed a generalisation of
numeric weighting: we simply put di(x1,x2) = x2 – x1, and i (d) = wi.d. Since the
result type is numeric, then  is simply the usual < operation.

The purpose of using difference functions can be seen from the following example: let
us extend the previous hotel amenities example, to also include the point MiniBar.
Now, suppose we wish to measure the difference between the degrees of similarity
{MiniBar}, and {EnSuite, TV}. We can do this fairly naturally by
(asymmetric) set difference d(x,y) = y – x, giving us in this case the set {EnSuite,
TV} as the difference between the first and the second. This is quite distinct from, for
example, the points {EnSuite} and {EnSuite, TV}, where the difference
would have been the set {TV} – the first two degrees of similarity are, intuitively,
more different than are the latter pair, and the differences we calculate accurately
capture this. This distinction which would have been lost had we first converted each
set to a number – say, its cardinality – as we would have mapped the former set in
each case to 1, and the latter to 2. So the numeric differences obtained from
subsequent subtraction would have been identical, in contrast, implying, incorrectly or
at least very misleadingly, that the two pairs of similarity values were equally
different.

Product
One means of combining metrics is to make no determination as to their relative
importance; this may because they are genuinely of ‘equal’ importance, or it may be
that for purposes of facilitating interaction with the user, elicitation of relative degree
of importance has been deferred. Using identical numerical weights is the obvious
approach, but it often does not, in fact give satisfactory results – this is typically
because of what we have termed ‘spurious precision’ [FB00]. Weighting gives the
effect of pro-rating one metric against the other: a little better in one compensates for
being a little worse in the other, a lot worse balances out a lot better. This introduces
potentially very fine distinctions between these ‘trade-offs’, on which to decide which
cases are strictly the most similar to the probe.

We have previously defined an alternative. In essence the approach is to allow no
trade-offs between disparities in the two metrics: the method will consider even a
marginal improvement in one to compensate for a large degradation in the other, and
include all such cases in the result set. Thus the ‘best’ matches are those which are
‘best in any one of a number of conflicting respects’. We term this combining form
product.

We now define the product of two similarity values. Suppose m1 returns a values x1,
of type A, and m2 returns x2, of type B. Then we construct as a composite similarity
results value, the product of A and B, using pairs (x1, x2), ordered according to the
relation  AxB, which we now define, in terms of the (partial) orders on A, and on B.

(x1,x2)  AxB (y1,y2) = x1 A y1  &  x2 B y2



Intuitively, one point is less than or equal to another only if both components of the
first are less than or equal to those of the second. If for two points, one is less on one
component, and one is less on the other, then the paired points will be incomparable.

At first sight, this seems very different from a weighting-style combining form: there
is no overt weighting, or summing at work in the definition. However, an essential
similarity exists in that it works by componentwise comparisons, which are then
themselves compared and combined. And indeed, we can utilise this to define product
as a generalised weighting combinator. To see this, we begin by defining some
difference functions. Note first of all that the degree of difference is not significant
here: there is no distinction made between components which are only marginally
comparable, as opposed to those which are greatly so. Accordingly, we define
difference functions which have only four distinct results, according to whether the
first argument is less than, equal to, greater than, or incomparable with the second.

di (x,y) = [<], if x  y
di (x,y) = [=], if x = y
di (x,y) = [>], if x y
di (x,y) = [<>], otherwise

No weighting is necessary (or indeed meaningful) here, so the weighting functions are
each simply the identity:

i d = d

The final matter is the ordering to be put on the difference function’s result type. As
might have been intuitively expected, we put [<]  [=]  [>]; this gives the effect that
if at least one component is less than its counterpart, and the other is either less than
or equal to the corresponding one, then the differences will similarly be comparable,
hence so will the points being compared. Note that if either component is
incomparable, then so are the pairs; accordingly, the difference point [<>] is not put
comparable to any other points, so that this effect is indeed achieved. Thus the
resulting partial order has a chain of three points, and a single isolated point, as shown
below:

This order is somewhat unusual in having neither a unique top nor bottom element.
This does not present any difficulty for our technique, however. It might best be
regarded as a technical device for providing a weighting combinator with behaviour
corresponding to that of the desired form, product.



Prioritisation
Another combining form from our earlier work is generalised prioritisation, which has
as a special case, strict prioritisation. We demonstrate that these too can be regarded
as instances of generalised weighting. We first of all describe strict prioritisation: the
idea is simple that one criterion is certainly more important than the other, but the
second is not to be discarded entirely. Accordingly, we rank according to the result of
the first metric, unless that gives a dead heat, whereupon we use the second. This is
the same as the lexicographical order mentioned earlier, except that we explicitly
consider the possibility that either component order be partial, resulting in a final
order that is also partial. We define the strict prioritisation of A over B, A B, by
pairs of A and B, as with product, but with the following partial order:

(x1,x2)  A B (y1,y2) = x1 A y1    (x1 = y1  &  x2 B y2)

Although it is well-defined on partial orders, it introduces no partiality itself; given
two total orders, it yields a third total order. If, however, the first components are
incomparable, or the first are equal and the second incomparable, then the compounds
are incomparable also.

Conceptually, this is similar to weighting with an arbitrarily large weight. However,
the two are not precisely the same in the general case, as choosing a precise weight to
give this effect is tricky, and error-prone. Infinite weights have the effect of
completely negating the effects of the second metric, even when there is a first-metric
tie; choosing a finite, but sufficiently large weight can only be done by knowing
something about the sensitivity and granularity of the metrics’ result types.

Generalised prioritisation extends the idea of strict prioritisation as follows: the less
important metric will be taken into account not simply when the first is exactly equal,
but when it is within a specified degree. We specify this degree by an indifference
relation, so-called as it characterises the region in which we do not wish to
prioritise on the first component. We define the generalised prioritisation of A over B,
with indifference as A > B. Again the result type consists of pairs of A and B,
ordered as follows:

(x1,x2)  A> B (y1,y2) = x1 A y1    (x1 A y1  x2 B y2)

That is, in order for two composite points to be comparable, then the first component
must be in any case comparable, and if that component is within the specified degree
of indifference, then the second components must be comparable too.

We discuss this in detail in [FB99a]; it is motivated by considerations of using
combining forms which interact well with user notions of how metrics might be
combined, though here it is sufficient to note that is a possible means of combination,
which is distinct from weighting, both in being quite naturally defined on more
general data types, and in giving variant results even on numeric data.

To cast prioritisation as a generalised weighting combinator, we take a very similar
approach to that taken with product. We must make additional allowance for an extra



case, specifically for where prioritisation is to take place. If we are not indifferent on
the first component, then the behaviour may differ, hence, we extend the first
difference function (only) to identify that as a distinct case:

d1 (x,y) = [<<], if  x  y & x  y

with the remaining cases of d1 and all cases of d2 being as per the product definitions.
The same trivial weighting functions are used, as before. The partial order on the
result type is the also the same on the original four points, and is extended as follows:
[<<]  [<], [<<]  [<>]. That is, [<<] is added as a new bottommost point.

Returning to strict prioritisation, we note that it can simply be seen as a special case of
generalised prioritisation, by putting ( )  (=): that is, we are ‘indifferent’ between
two elements only if they are exactly the same. Hence it too is a special case of
generalised weighting.

Non-numeric weighting
The examples we have looked at so far are all known techniques, either which are
standard practice, or from our own previous work. Beyond the application of
weighting to non-numeric types by numeric conversion functions discussed in the
second section, we have introduced no new combining form: rather we have
constructed an ‘umbrella’ description for those techniques. We believe, however, that
there exist a considerable number of possible means of combining metrics described
by our formulation, which can be tailored for particular purposes with a greater degree
of suitability and flexibility than generic techniques such as weighted sum. In this
section, we suggest one particular novel combinator, with a view both to proposing it
for its own utility, and to illustrate the power of our generalisation.

Our example is suggested by the work of Vollrath [Vo00]; he proposes the case where
two requirements such as price and quality are in conflict. On one level this might be
interpreted as being as simple as strict prioritisation, or perhaps product. A common
feature of such examples, however, is that while there is a trade-off between these
aspects, it is neither a linear one, nor is it a crisp prioritisation. Often, there is a certain
threshold value on, say, quality, corresponding to a degree of quality which is strongly
desired; until this level of quality is attained, price is less important. But beyond this
threshold, ‘bonus’ quality is regarded as less crucial, and price consequently more so.
In other words, there is a sort of  bipartite behaviour, where the metric acts differently
above and below the specified threshold.

For ease of presentation, we consider here a very simple case, where each of the basis
metrics returns a numeric type. However the technique is by no means specific to
numeric results, or indeed to total orders – that would, however, lead to a more
complex example. Considering our earlier example of a hotel case base, suppose we
have metrics on two more attributes – price, and star rating. A particular user may
consider a certain number of stars – 2, say – to be crucial, and more important than
price, but star rating above that to be less important, while not irrelevant. That is,
beyond 2 stars, there exists a certain trade-off between numbers of stars, and price. In
principle, this trade-off could itself be captured by one of several distinct combining
forms, such as the ones previously discussed, but, again for ease of presentation, we



will assume a conventional weighted-sum treatment here. For example, a relative
weight of 30 would mean that each ‘extra’ star was effectively equivalent to a room-
rate higher by thirty pounds.

We define the thesholded weighting of A and B, with threshold  on the first
parameter, and weights wi, by A B in terms of our generalised combinator. We
begin by defining the required distance functions, first on the component with
threshold:

d1  (x)

where  is a thesholding function. Its role is to split a value into those parts above the
given theshold, and those below. We define:

and where the subtraction in the above is defined in the following, pairwise, fashion:

(x1,x2) - (y1,y2) = (x1-y1, x2-y2)

Difference on the second component is straightforward.

d2 (x,y) = y-x

Now we need to devise weighting functions. These must perform two roles: firstly, an
actual numerical weighting; and secondly, we need to ensure that both return the same
type. In this case, we seek to retain the strict prioritisation of the first component, so
we chose that type to return from both weighting functions. Accordingly, we define:

1 (d1, d2) = (d1, w1 . d2)

and:

2 d = (0, w2 . d)

That is, in both cases, the second components are traditionally weighted; for the first
components, we retain the part to be prioritised, where present, and where not, we
create a ‘dummy’ value, to ensure type compatibility. By choosing the value 0, we
ensure that the second components are only significant where the first component
from the first difference function is also 0, that is, the original case attributes were
equal on the most important part of the range, as desired.

To complete the example, we need only define the constituent metrics: we pick a
simple numeric similarity for the price, negated absolute difference:

m2 x y = - (abs (x-y))

For the second, the probe plays no significant role, so we define:

m1 x y = y



This completes the definition of the required metric, m: we now look at an example of
applying it. Suppose we put a threshold of  = 2, and select weights w1 = 1, w2 = 30,
then we obtain the effect described above: the quality threshold is two stars, and
beyond that, a star is ‘worth’ the same as £30 extra cost. Consider a probe case:  p =
(2 stars, £30). (For conciseness, we present cases as if they were pairs, though in
practice they will of course also contain many other attributes.) Now suppose that our
case base contains the following cases: a = (1 star, £30), b = (2 stars, £70), c = (3
stars, £60) and d = (4 stars, £80).

Comparing each case to the probe in turn, we obtain the following similarity values:
sa = m p a = (1 star, £0), sb = m p b = (2 stars, £40), sc = m p c = (3 stars, £30) and sd =
m p d = (4 stars, £50). To find out which of these are the best matches, we compare
these in turn using the partial order . First of all, applying the thresholding
function to the first component of each in turn, we obtain 2 sa = (1, 2), 2 sb  = (2,2),

2 sc = (2,3), and 2 sd = (2,4). From this, we can immediately tell that a is he least
similar case, as it has the lowest value on that portion which we are to prioritise. This
is despite it being only one star less than case b, and £40 cheaper, which would make
it better by a weighting-only method. The other points, being equal on the below-the-
theshold, are then ordered by the remaining attributes, appropriately weighted. So
case b is worse than case c: it is worse on both components. Case d is in turn better
than case c; it is one star better, above the threshold, and only £20 more expensive,
less than the weighting factor.

Conclusions
We have presented a generalised characterisation of different means of combining
distinct case base metrics. We have demonstrated that this is broad enough to
encompass both the standard weighted-sum technique, and our own proposed
methods of combining non-standard metrics, product and prioritisation. Furthermore,
we have seen that this methodology is still particularised enough to be suggestive of
other instantiations, combining metrics in distinct ways to achieve a given effect with
regard to user expectations.

Implementation work is underway on a case-base system utilising our framework and
the combining forms discussed herein. This will facilitate subsequent empirical
investigation, in which we propose to elict actual user queries, and compare their
expression with more conventional methods. We hope that this will provide both
verification and application of the ideas presented.
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