Partial Orders and Indifference Relations: Being
Purposefully Vague in Case-Based Retrieval

Alex Ferguson Derek Bridge

Department of Computer Science,
University College, Cork
a.ferguson@cs.ucc.ie d.bridge@cs.ucc.ie

Abstract. In this paper, we look at case retrieval systems for prod-
uct selection. Such systems are interactive. This places demands on the
technology: customers must be able to specify their requirements in ways
that are meaningful to them; and, the cases that are retrieved must be
comprehensible in terms of the customer requirements. To meet these
demands, we introduce to case retrieval the notions of similarity metrics
with partially-ordered return types and of relations that express indiffer-
ence between degrees of similarity. *

1 Product Selection

Product selection applications are increasingly being built using case retrieval
technology [1]. Products are regarded as the cases. Customers specify preferred
values for case attributes, and these values are assembled into a probe case. Cases
in the case base (products) are compared, using a similarity metric, to the probe
and the most similar are retrieved and presented to the customer.

Such systems are interactive, and this places the following demands:

The Requirements Criterion: Customers must be able to specify their re-
quirements in ways that are meaningful to them; and

The Results Criterion: Customers must be able to understand, in terms of
their requirements, why cases have been included in, or excluded from, the
result set.

In this paper, we argue that current case retrieval technology in general does
not satisfy either of these criteria particularly well. The problem stems in part
from a kind of ‘spurious precision’ arising from the way that numerically-valued
similarity metrics are used in these systems.

Our alternative approach recognises that vagueness and imprecision in cus-
tomer requirements is a fact of life. They arise from a number of sources, in-
cluding: the inconvenience to the customer of formulating complete and precise
requirements; the customers’ lack of knowledge of the product space; and their

! This research was funded by Enterprise Ireland (grant number ST/98/024), with the
support of Interactive Multimedia Systems, Dublin.



genuine indifference between different portions of the product space. Whatever
the source, we feel it is important to model and use this vagueness explicitly.
Our solution is two-fold. First, by use of similarity metrics with partially-
ordered return types, we avoid unnecessarily equating quite different notions of
similarity. Second, by use of relations that specify indifference between degrees
of similarity, we can avoid needlessly distinguishing between different degrees of
similarity, when the differences are an artefact of the precision of the similarity
metric but are not supported by the customer’s own notions of what makes cases
similar enough to be meaningfully included together in the same result set.

2 Similarity Metrics

In our framework, similarity metrics, ~, are functions of the following type:
~ta—s>a—P

where P is a partially-ordered set, i.e. P = (S,C). In words, a similarity metric
takes one value of type a and another value of type a and computes their degree
of similarity, which will be represented by a value from some set S that has a
partial order C defined on it. The ordering on S is needed so that we can, e.g.,
determine when one degree of similarity is higher than another.?

In most current case retrieval systems, similarity metrics are actually of type:

~: a—a—([0,1], <)

i.e. degrees of similarity are denoted by numbers between 0 and 1 inclusive. This
is subsumed by our framework.

It is useful to use the more general form when doing research into similarity.
Then, outcomes of the research apply not only to conventional numeric-valued
similarity metrics but also to other ways of measuring similarity. For example,
Plaza proposes that first-order feature structures can denote degrees of similarity
[5]. Plaza’s feature-structure-valued functions are subsumed by our framework
and so our research applies to his similarity metrics as well as to more conven-
tional similarity metrics.

Our past papers more fully explore the advantages of working in this more
general framework, e.g. [4], [2], [3]. In this paper, we will mostly use the more
familiar numeric-valued similarity metrics where possible. But we will exploit
the power of the more general framework when we come to combine component
(attribute-specific) similarity metrics into composite (overall) similarity metrics
for whole cases (section 7).

3 Choosing the Result Set: ‘best-n’

Consider a case base of products, one of whose attributes is the price of the
product. Assume the knowledge engineer believes that prices will not exceed

2 Note that, in our framework, it is the result type that is a partially-ordered set, and
not the cases.



£1000, MAX = 1000. If we take p to be the customer’s probe value and ¢ to be
the value of a case’s price attribute, then one possible similarity metric is the
‘less is better’ similarity metric from [1], e.g.:

. 1, if ¢ <p;
e~pP= 0.8x%ﬁ1§—:z, if ¢ > p.

Suppose the customer decides to retrieve cases based only on their price
similarity. (Subsequent sections of the paper will deal with the situation where
customers specify preferred values for more than one case attribute.)

The ‘less is better’ similarity metric, like most numerically-valued metrics,
has a high degree of numeric precision. Quite small differences in the computed
degrees of similarity may arise. For example, if the customer’s probe price is
£600, then cases whose prices are £650 and £651 are similar to the probe to
degrees of 0.7 and 0.698 respectively. If one of these two cases is in the result
set, then the other probably ought to be as well: it is unlikely that such a small
numerical distinction would be regarded as decisive by the customer; to exclude
only one of them from the result set would probably not reflect the customer’s
intent. This is well-recognised in the CBR community. But the methods used to
overcome this ‘spurious precision’ merely finesse the problem.

Perhaps most commonly, case retrieval systems mitigate the problem by pre-
senting to the customer a number, n, of the highest-scoring cases. This is con-
venient but not entirely satisfactory.

Suppose n is 10: the top 10 cases (according to the price similarity metric) will
be displayed to the customer. The problem with this approach is that the cases
that the customer sees are determined arbitrarily by the choice of n. For example,
the top-ranked case and the second-ranked case might have similarities to the
probe that are quite close, e.g. 0.7 and 0.698. They are not decisively different
cases, so it feels right that both are in the result set. But the cases ranked 10th
and 11th might have equally close degrees of similarity, say 0.2 and 0.198. These
are not decisively different cases, and yet, for n = 10, the 11th-ranked case would
not be not included in the result set.

It is also possible that there are large discontinuities in the degrees of simi-
larity to the probe of the cases in the result set. For example, the 1st, 2nd and
3rd-ranked cases might all have very close degrees of similarity, e.g. 0.7, 0.698
and 0.696. But suppose the similarity to the probe of the 4th-ranked case is
0.3. This is quite different from that of the 3rd-ranked case. The requirement to
include n = 10 cases in the result set dictates that cases such as these, which,
from the customer’s point of view, are decisively less similar to the probe than
the top 3 cases, should nevertheless appear in the result set.

We feel that ‘best-n’ is an approach that fails to meet the Requirements
and Results Criteria. As part of specifying their requirements, customers or
knowledge engineers will have to guess a value for n. What they want is an n
that will retrieve cases that share a high degree of similarity to the probe. But
there is no informed way of choosing this value. Instead, in CBR,, we typically use
a value that gives a ‘screenful’ of cases. But this gives the problems described in



the previous paragraph. In interpreting result sets, customers must therefore keep
in mind that, because the value for n is arbitrary, the result set may include cases
that are decisively different or exclude cases that are not decisively different.

(Of course, this is not a decisive condemnation of ‘best-n’. Customers may
be comfortable with the idea that the system will always display a screenful of
cases; and, the problems with the arbitrariness of what is included and excluded
are lessened by making provision for iterative query revision.)

An alternative solution to the problem of ‘spurious precision’ is to use integer
division on the prices before computing their similarities.® Integer division ‘pre-
processes’ the case data so that cases with quite similar attribute values are
placed into equivalence classes. For example, suppose we use integer division by
10 on the example prices from earlier. After integer division by 10, the two prices
£650 and £651 are both ‘reduced’ to 65, so their degrees of similarity to the
probe (originally £600 but also ‘reduced’ to 60) are both 0.7.

At first glance, this appears to be doing the right kind of thing. Cases that
are not decisively different are receiving the same degrees of similarity to the
probe. But this is illusory.

Consider the following four prices £649, £650, £651 and £659. Using the
integer division approach, the similarities are 0.72, 0.7, 0.7 and 0.7 respectively.
Some cases with quite similar prices (e.g. the cases whose prices are £649 and
£650) receive different degrees of similarity (0.72 and 0.7) at the same time that
cases that differ more in their prices (the cases whose prices are £650 and £659)
receive the same degrees of similarity (0.7).

In the next section, we present indifference relations as an alternative to
‘best-n’ and to the use of integer division. When we define ‘indifference’ below,
we choose not to require transitivity, precisely so that we avoid the problems
mentioned in the previous paragraph.

4 Choosing the Result Set: indifference relations

We propose the idea of indifference relations an an alternative approach that
better achieves the Requirements and Results Criteria. Using indifference rela-
tions, we can ensure that the cases in the result set are ones that the customer
perceives as related. The (i + 1)th-ranked case will only appear in the result
set if its similarity to the probe is, according to the customer, indistinguishable
from the similarity to the probe of the ith-ranked case. On occasion, the result
set may be smaller than n = 10; on other occasions it may be larger. But, in all
cases, inclusion or exclusion will be meaningful and not arbitrary.

Indifference then will be a relation between degrees of similarity. In the price
example, it does not compare prices; it compares their similarities. We will de-
note an indifference relation by ~. Given two degrees of similarity, s; and ss,
s1 ~ so returns True iff s; and sy are not decisively different degrees of similar-
ity. The customer or knowledge engineer will need to define this relation for each

% The criticisms we make of integer division on prices apply equally well to truncating
or ‘rounding-off’ similarity values.



attribute. Their task is to define under what circumstances a customer would be
indifferent between two degrees of similarity for an attribute.

The result set that will be displayed to a customer will no longer be the
‘best-n’. Suppose the cases that are most similar to the probe are similar to the
probe to degree m. The result set will include all cases whose similarity to the
probe is m or ‘close enough’ to m. The indifference relation tells you whether a
degree of similarity is ‘close enough’ to m.

The formal definition is written in a way that can handle similarity metrics
having any partial-order as their return type:

Retrieve(CB, p, ~, ~)={c:c€ CB,Aam e M : ¢~ p ~m}

where M = max{c~p:c € CB}

In words, for case base CB, probe p, similarity metric ~ and indifference relation
~ if M is the set of maximal degrees of similarity to p, the cases to retrieve
are those whose degrees of similarity are sufficiently close to a value in M (as
determined by ~).

A good example of an indifference relation is e-equality, i.e. we are indifferent
between two degrees of similarity, s; and so, iff abs(s; —s2) < €. (As we explain in
section 5, e-equality is not an equivalence relation. It thereby avoids the problems
we encountered with integer division in section 3.)

Suppose there are cases whose prices are £649, £650, £651 and £659. Their
similarities to a probe of £600 are 0.702, 0.7, 0.698 and 0.682 respectively. The
case whose price is £649 is the most similar to the probe, so this case is in the
result set. If we take € to be 0.003, the result set will also include the case whose
price is £650. This is in the result set because we are indifferent between the
degrees of similarity 0.702 and 0.7 (they are less than 0.003 different). The other
cases are not in the result set: their degrees of similarity are not close enough
to that of the best case. Of course, if we take € to be 0.005, then the case whose
price is £651 will also be in the result set.

We believe that using indifference in this way better satisfies the Require-
ments and Results Criteria. Specifying an indifference relation is meaningful,
and it has a meaningful effect on the result set: non-maximally similar cases are
included in the result set only if their similarity falls short of the similarity of a
maximally similar case by an amount about which the customer is indifferent.

In fact, this whole scenario can be made even more meaningful by using
similarity metrics with more meaningful return types, for example:

c~p= —abs(c—p)

— the negation of the absolute difference. When the case value equals the probe
value, the degree of similarity is at its highest, i.e. zero. The more dissimilar the
case value is from the probe, the lower the similarity, as denoted by negative
numbers of larger magnitude. The similarity of £650 to £600 is —50, which is
higher than the similarity of £651 to £600, which is —51.



In this metric, the return type is not normalised to [0, 1]. This exploits a
little of the power of our similarity metric framework, which allows any partially-
ordered set as the return type. But, furthermore, the degrees of similarity are
themselves now more meaningful to customers. They are sums of money (negated
so that the distance function becomes a similarity function).

Specifying an indifference relation now becomes more meaningful too. A cus-
tomer who takes € to be 5 is saying that s/he wants to see the best cases, but s/he
would not wish to exclude a case from the result set for the sake of a difference in
price of £5. With only a little domain knowledge, meaningful contezt-sensitive
choices for € can be made: when looking to purchase a house, € might be £2000;
when looking to purchase cars, e might be £400 for one customer or it might be
£800 for another customer; when looking at monthly rents, e might be £20 on
one occasion and £30 on another occasion. The decision can be made meaning-
fully by the customer in a customer- and goal-specific way.

The next section makes more precise what we mean by indifference by con-
sidering its axiomatisation.

5 Axiomatisation of Indifference

In general, if we are to avoid the kinds of problems we encountered when using
integer division in section 3, we do not want indifference relations to construct
equivalence classes of similarity values. Indifference relations will generally be
weaker than equivalence relations. It is reasonable to require that they be reflex-
ive and symmetric, but they will not in general be transitive.? Instead, we define
a weaker property that plays a similar role to transitivity, and which we refer to
as convezity. We define a relation R to be P-convex over any partial order P iff:

Ve,y,z€ P:xCpyLCpz, st Rz=zRy,yRz

Given three ordered ‘points’, if the top and bottom points are related by R, then
the middle point must also be related to both. We require this property to ensure
that there are no ‘discontinuities’ in the behaviour of indifference relations.

e-equality is reflexive and symmetric. It is not transitive: with € = 2, we are
indifferent between values 3 and 4, and between 4 and 5, but not between 3 and
5. It is not, therefore, an equivalence relation. But, it does satisfy convexity: if
x <y <z and if z and z are within € of each other, then z and y are within €
of each other, and y and z are within € of each other.

6 Combining Similarity Metrics: weighted averages
For the rest of this paper, we consider the situation where the customer sup-
plies preferred values for several attributes, although, for ease of exposition, we

* The question of whether indifference is, e.g., symmetric is orthogonal to the question
of whether similarity is symmetric.



consider the case of two attributes. We need to combine the two individual judge-
ments into an overall judgement. The two component similarity metrics need to
be combined into a single composite metric.

The conventional approach is to take a (weighted) average of the two (nu-
meric) degrees of similarity. Using an unweighted average is supposed to allow
the two component metrics to contribute equally to the composite similarity
judgement; using weighted metrics with unequal weights is supposed to allow
relative importances of the attributes to be taken into account.

Taking an arithmetic average is an attractively simple solution. But it imme-
diately raises the question of whether this produces a composite metric which
reflects the intuitively desired properties (such as allowing component metrics
to contribute equally or allowing one to be more important than the other),
or indeed whether the composite is meaningful in any strong sense at all. In
particular, one might be seen to be ‘comparing apples and oranges’; the more
differently each metric measures the similarity of its respective attribute, the
less clear it is to see whether a particular degree of similarity computed by one
metric really equates to a degree of similarity computed by the other metric.

Suppose, for example, that the case base contains hotel descriptions. Our
probe price is £60 and our probe comfort-level is ‘3-stars’. Suppose there is a case
in the case base describing a ‘1-star’ hotel offering rooms for £58. Using negated
absolute difference, its similarity to the probe on price is —2; its similarity to the
probe on comfort is also —2. But few customers would regard these two degrees
of similarity as directly comparable, and even fewer would regard the matches
on the two attributes to have been successful to the same degree.

Of course, such problems are well-recognised. The usual solution is to perform
some sort of normalisation; each component metric is post-processed, so as to
conform to some similar pattern. But we are going to claim that this finesses
the problem and the real solution is to find out from the customer how different
degrees of similarity for different attributes can be ‘traded’ against each other.

The simplest approach to normalisation is to range-normalise, typically to
the interval [0, 1]. The return type of the metric is re-scaled so that its minimum
possible value is mapped to 0, and its maximum to 1, and the remainder is a
linear interpolation between these points. (This is built into the ‘less is better’
metric given in section 3, for example.) One difficulty is immediate: if no clear
bounds exist on the return type of the original metric (due to a lack of such
bounds on the case data), then some guesswork is required. Price attributes
are a common example of this: knowledge engineers have to pick an arbitrary
maximum price (and perhaps even revise it in the light of price inflation!).

Somewhat more subtly, the metric that results from range-normalisation de-
pends very much on the range chosen. Specifically, the magnitudes of the degrees
of similarity will depend on the range. A knowledge engineer might feel obliged
to use a wide range if ‘rogue’ values (extremely high or low values) appear in one
or other of the case attributes; other knowledge engineers might remove rogue
values from consideration when normalising [7]. In the absence of clear bounds,
a cautious knowledge engineer who over-estimates a maximum value will ob-



tain a different metric from a less cautious knowledge engineer. In one metric, a
narrow normalisation range may have given coarse degrees of similarity; in the
other metric, a wider normalisation range may have given fine-grained degrees
of similarity; in such circumstances, it is not reasonable to assume that the ways
these metrics measure similarity have been made ‘equivalent’. This means that
there can be just as much of a problem in comparing degrees of similarity for
different metrics, even after range-normalisation.

An alternative to range-normalisation, which may take these difficulties into
account, is to re-scale according to statistical properties of a metric, if these
are known or can at least be approximated. This approach will typically con-
vert a function with a given mean and standard deviation to a function with a
predetermined mean and standard deviation. This is more ‘stable’ than range-
normalisation, but to deploy it also requires somewhat better-quality information
than does range-normalisation. But, for product selection applications in partic-
ular, there remains a fundamental problem, as discussed in the next paragraph.

An assumption underlying these different methods of normalisation is that
‘equivalence’ of degrees of similarity from different similarity metrics is at bot-
tom a matter of pro-rating one consideration against another. This is seen as a
technical problem: how to determine what this pro-rating factor might actually
be (e.g. based on range, based on range but ignoring rogue values, based on
statistical measures, etc.). But there is a more fundamental problem: in product
selection applications in particular, finding this pro-rating is not just a mathe-
matical exercise; it is also a cognitive exercise. The assumption that a technical,
mathematical ‘fix’ will tell us how a customer would be prepared to ‘trade-
off’ differences in similarity values in different metrics is at least questionable.
In product selection applications, where we are concerned with subjective user
preferences, the assumption is likely to be wrong.

Suppose we could elicit some notion of metric sensitivity: how strongly the
customer feels about a change in one metric’s similarity value, as compared with
a change in another metric’s similarity value. If we could determine this, we
could normalise by the same factor. Then, normalisation would not be treating
the metrics simply as mathematical objects, but would be taking into account
customer perceptions. But, such an approach could involve considerable up-front
elicitation groundwork. (And, this burden is made all the greater because, in
general, the normalisation factor would be customer- and goal-specific.) For these
reasons, in CBR, we tend to take the mathematical approach to normalisation,
rather than the cognitive approach described in this paragraph.

Finding the right normalisation is only part of the problem. Averaging brings
problems too. A first problem is that combining two numbers into a single num-
ber loses information that the customer might have found useful. If the customer
could see the judgements of the component metrics, s/he could make more in-
formed product selection decisions or query revision decisions.

A second, related problem is that averaging cannot be agnostic in the way

it combines even conflicting judgements: the degrees of similarity it obtains are
always totally-ordered. If case 1 is more similar to the probe on one attribute



than is case 2 but, at the same time, it is less similar to the probe on the other
attribute, then in the absence of any other information from the customer (and
in the light of the problems of ‘equating’ degrees of similarity in normalisation),
agnosticism about the ranking of these two cases would be more appropriate
than forcing an ordering onto them.

Finally, if we accept that component metrics exhibit ‘spurious precision’, then
a composite metric, formed using averaging, will also exhibit ‘spurious precision’:
the precision in the component metrics may not reflect customer perceptions, so
the precision of the composite metric is also unjustified (especially if it is even
more precise than that of the components).

The weights used in averaging are another problem. Contrary to popular
belief, weights are hard to interpret. Setting the weight of one similarity metric
to 1 and another to 2 does not, in general, give the second attribute twice the
weight of the first. One reason for this is the failure to start from ‘a level playing
field’. If normalisation has not adequately equated similarity values from the
different similarity metrics, then one or other of the metrics may count for less at
the outset, and weighting may simply increase or decrease this initial imbalance.

On top of this, weights have no real meaning in terms of the original similarity
metrics. Customers who are asked to choose weights (or indicate attribute im-
portances in some way) can only do so in an uninformed way. They have no clear
idea of the effect their weights will have. For example, if a customer is viewing
a result set and decides to re-issue the original query but with new weights, the
customer has no way of knowing in advance whether the new result set will be
identical to the original, a re-ranked version of the original, completely different
from the original, or partly the same as the original.

In conclusion, conventional approaches to combining similarity metrics com-
pound at least four levels of arbitrariness and ‘spurious precision’. First, the
original metrics are often spuriously precise (as argued earlier in this paper).
Second, the normalisation is often arbitrary and aims to satisfy mathemati-
cal objectives instead of cognitive ones. Third, the use of averaging compounds
the precision of the original metrics, loses information and cannot be agnostic.
Fourth, weights cannot, in general, be used to achieve definite effects.

In the next section, we present a different way of combining similarity metrics.
By using return types that are partially-ordered sets of pairs, it requires no
normalisation, and it does not lose any information. And, by using indifference
relations, it allows customers to specify trade-offs between degrees of similarity.

7 Combining Similarity Metrics: generalised prioritisation

Our similarity metric framework allows similarity metrics to have as their return
types any partially-ordered sets. In particular, we can use pairs of values to
denote degrees of similarity, i.e. the return type of a similarity metric could just
as well be a partially-ordered set of pairs as it could be a set of numbers or
Plaza’s first-order feature structures.



This proves especially useful when combining component similarity metrics
into composite similarity metrics. For example, suppose cases contain a price
attribute and a size attribute. Suppose the probe specifies a price of £600 and
a size of 100. Consider case 1 that has a price of £550 and a size of 80. Using
negated absolute difference, the similarity of case 1 to the probe on price is
—50 and on size is —20. By the conventional approach, to form the composite
degree of similarity, the two similarity values would be normalised, and the
values would be averaged. But, in our approach, where we exploit the ability
to have any partially-ordered set as the return type of a similarity metric, the
composite metric returns pairs of values. In this approach, the similarity of case
1 to the probe is (—50, —20): the pair is the degree of similarity. There is no
normalisation; there is no combining into a single numeric value; so there is no
loss of information.® If case 2 has a price of £640 and a size of 130, its similarity
to the probe is the pair (—40, —30).

Of course, this is not enough. Had we averaged the similarity values we would
be able to see which of case 1 and case 2 was the more similar to the probe. If we
use pairs to denote degrees of similarity, we similarly need to be able to compare
the pairs. This is why the return type of a similarity metric has an ordering. This
ordering on the pairs can be any ordering you wish to define, but most usually it
will be defined from the orderings of the original component similarity metrics.

In the next few subsections, we show three general ways in which customers
can form this ordering. Each is meaningful. We will take the return type of the
first composite similarity metric to be the partially-ordered set (4, C4) and we
will take the return type of the other metric to be (B,Cg).

7.1 Product

Suppose the customer wishes the first metric to contribute neither more nor less
than the second. To achieve this, the customer would define an ordering on the
pairs using an operator that we call product:

(®1,22) Caxe W, y2) =21 Cayi Az2 Cp o

i.e. for one pair to be lower in the ordering than another, both its components
must be lower in their respective orderings.

It is possible, of course, for a case to be better on one component and worse
on the other. The definition of product says that these pairs are incomparable,
and they are thus, in some sense, ‘as good as’ each other. In the absence of any
information about how we might ‘trade-off’ A against B, exploiting the potential
in a partial order for incomparability seems the right thing to do. The numerical
averaging approach can never be agnostic in this way.

® Our earlier papers have pointed out that another advantage of this approach is that
we can combine similarity metrics that have quite different return types (see, e.g.,
[4]). For example, a similarity metric whose return type is numeric could be combined
with one of Plaza’s feature-structure-valued metrics without inter-conversion. This
is something the averaging approach cannot do.



7.2 Strict Prioritisation

Consider now the case of a customer who regards one of the attributes as primary
and the other as secondary. Specifically, the secondary requirement is to be met
as much as possible but only after the primary requirement has been met as
much as possible [6]. (The case where the primary attribute is more important
but not absolutely more important will be dealt with in the next subsection.)

All that the customer needs here is a new ordering on the similarity pairs.
We call the operator that forms this ordering strict prioritisation:

(®1,22) Casp (Y1,¥2) =21 Cayr V (t1 =y1 A 22 Cp y2)

The overall ordering is based on the primary ordering (C4) but the secondary
ordering (C ) may resolve ties in the first ordering.

Weighted averages can make one attribute more important than another,
but they cannot so easily make one attribute absolutely more important than
another. Consider, for example, combining three metrics, where the first is ab-
solutely more important than the second and the second is absolutely more
important than the third. Choosing a weight for the second metric is hard: it
has to be large enough to guarantee that the second metric will be absolutely
more important than the third metric, but small enough to guarantee that it will
be absolutely less important than the first metric. Particular weighting schemes
can be crafted for particular metrics. But there is no general approach using
weighting, and this is the value of strict prioritisation.

7.3 Generalised Prioritisation

Customers have another way of combining partial-orders, which we call gener-
alised prioritisation:

(1, 22) CaseB W1,81) =21 Cayr A (21 a1 = 22 Cp Y2)

As you can see, this definition offers another use for indifference relations, ~. It
gives us an ordering which, to some extent, favours its first argument, but not
necessarily to the extent of strict prioritisation. We order the pairs according to
the first value in the pair, unless we are indifferent between the first values, in
which case we take both components of the pair into account.

This is the second distinct use of indifference in this paper. As before, we
claim that it satisfies the Requirements and Results Criteria quite well. We hope
that customers will find indifference meaningful during specification of require-
ments. And, they should be able to interpret the results they see in terms of their
indifference relation: there can be worse matches on the first metric (worse, but
only up to the customer’s level of indifference) if they are compensated for by
better matches on the second metric.

In passing, we should point out that generalised prioritisation has the nice
property that it has product and strict prioritisation as special cases. If we
prioritise order A over order B but we define © ~4 y = True, then we obtain



an ordering identical to C4xp, the product of the two orders. If we prioritise
order A over order B but we use equality for ~4, then, after simplification, the
definition reduces to our previous definition for strict prioritisation, Cas.p.

8 Conclusion

We have argued that conventional case retrieval technology exhibits a level of
unjustified precision which can complicate specification of customer requirements
and interpretation of retrieval results in terms of those requirements.

We have proposed an approach that uses meaningful, partially-ordered return
types for similarity metrics (especially for composite metrics) and a notion of
‘indifference’ between degrees of similarity. By accommodating partial-orders,
customers are not obliged to use over-specified metrics. And by using indifference
relations, we give explicit control over the precision of metric return types.

We have built a case retrieval system that works in the way described in
this paper. To the user, the system looks much like conventional case-retrieval
systems. The knowledge engineer will have supplied the individual similarity
metrics. A choice of combining operators (section 7) must be made and def-
initions of indifference must be given (which can sometimes be as simple as
specifying a value for €). The results of a query again look much as they do in
other systems. The difference is that the result set need not be of some arbitrary
predetermined size (although, since our framework subsumes conventional ap-
proaches, customers can issue ‘best-n’ queries if they really wish to). The system
offers a rich set of options for query revision [3].

References

1. Bergmann, R., Breen, S., Géker, M., Manago, M. & Wess, S.: Developing Industrial
CBR Applications, LNAI-1612, Springer, 1999

2. Bridge, D.G.: Defining and Combining Symmetric and Asymmetric Similarity Mea-
sures, in B.Smyth & P.Cunningham (eds.), Advances in CBR (Procs. of 4th Euro-
pean Workshop on CBR), LNAI-1488, pp.52-63, Springer, 1998

3. Ferguson, A. & Bridge, D.: Options for Query Revision when Interacting with Case
Retrieval Systems, in I.Watson (ed.), Procs. of the Fourth UK CBR Workshop,
University of Salford, 1999

4. Osborne, H. & Bridge, D.: Similarity Metrics: A Formal Unification of Cardinal and
Non-Cardinal Similarity Measures, in D.B.Leake and E.Plaza (eds.), CBR Research
and Development (Procs. of Second International Conference on CBR), LNAI-1266,
pp-235-244, Springer, 1997

5. Plaza, E.: Cases as terms: A feature term approach to the structured representation
of cases, in M.Veloso & A.Aamodt (eds.), CBR Research and Development (Procs.
of First International Conference on CBR), LNAI-1010, pp.265-276, Springer, 1995

6. Vollrath, I.: Handling Vague and Qualitative Criteria in Case-Based Reasoning Ap-
plications, in the on-line pre-proceedings of the Eighth German Workshop on CBR,
2000 (http://wwwagr.informatik.uni-k1.de/~gwcbr2k/program.html)

7. Wilson, D.R. & Martinez, T.R.: Improved Heterogeneous Distance Functions, Jour-
nal of Artificial Intelligence Research, vol.6, pp.1-34, 1997



