Generalised Prioritisation:
A New Way of Combining Similarity Metrics

Alex Ferguson

Derek Bridge

Department of Computer Science
University College, Cork
(a.ferguson@cs.ucc.ie) (d.bridge@cs.ucc.ie)

Abstract

We describe similarity metrics, which are a generalisa-
tion of similarity measures having any partial order as
their result type. We then present the main result of
this paper by describing generalised prioritisation, a new
way of combining similarity metrics. Generalised priori-
tisation uses an indifference relation on the degrees of
similarity. We show that the use of the indifference re-
lation gives a (very rough) analogue of the use of weights
in more traditional, numeric-valued similarity measures.

Similarity Metrics

Similarity measures are used, e.g., in the re-
trieval phase of case-based reasoning systems
and in forming ‘clusters’ of objects in machine
learning systems. More recently, they have
been used in searching product catalogues in e-
commerce systems.

In the main, similarity measures have been bi-
nary operators that, when applied to two objects
of type «a, return a number, usually a real from
[0, 1], denoting their degree of similarity. That
is, their type is most usually a« — o —[0, 1], for
any data type a.

We have elsewhere described similarity met-
rics, our generalisation of similarity measures,
e.g. [3, 1]. A similarity metric is a binary oper-
ator that, when applied to two objects of type
«, returns some value indicating the degree to
which the two objects are similar. That is, if ~
is a similarity metric, then

~tT a—a—P

for any data type «, and some suitable P.

All that we require of P is that it impose a
relative degree of similarity, e.g. so that we can
say whether objects a and b are more similar

to each other than are objects ¢ and d. We
require, therefore, that P be a partial order,’
P = (Sp,Cp).

Of course, not every function of this type is a
reasonable similarity metric. To be a similarity
metric, a function must also satisfy a number
of similarity metric axioms. These axioms have
been discussed in [1].

Examples of Similarity Metrics

Assume an estate agent has computer represen-
tations of houses for sale. And assume we can
‘project out’ of these representations the value
of certain attributes of the houses. The number
of bedrooms, bdrms, for example, is a value of
type N; the price, price, is also of type N; the
amenities of the locale, amen, might be a value
of type P{p, s,t}, the powerset of {p, s, t}, i.e.
a subset of {p,s,t} that indicates whether the
house has a parking space (p), nearby shops (s)
and transport connections ().

On occasion, we might want a boolean-valued
similarity measure, i.e. one which simply says
whether two values are similar or not. To for-
mulate these as similarity metrics, we construct
a suitable partial order Bool as the result type
of the function: the partial order is False C
True?. The similarity metrics will then be of
type a — o — Bool.

An example Bool-valued similarity metric is:

T ~bdrms Y = abs(x - y) <2

'In our earlier work, we required P to be a complete lattice
(see, e.g. [3, 1]), which is a more restrictive requirement. We
thought this to be a natural restriction. However, in this
paper we lift this restriction since we show similarity metrics
where the result type is a partial order but not a lattice.

2And of course False C False, True C True.

Note that this is not transitive. A 2-bedroom
and 3-bedroom house are similar (the absolute
difference in the number of bedrooms is less than
2); a 3-bedroom and 4-bedroom house are also
similar; but a 2-bedroom and 4-bedroom house
are not similar (the absolute difference in the
number of bedrooms is not less than 2).
Bool-valued similarity metrics fail to capture
the intuitive notion of different degrees of simi-
larity. This motivates numeric-valued similarity
functions. These too are special cases of our
framework. Any numeric set ordered by < or >
gives the partial order we need as a result type.
A simple numeric metric is to measure the dis-
tance between the two values. For example,

~price 2 N =N —=(Z, <)

T ~price Y = — abs(x - y)

By this function on house prices, an IRP80,000
house and an TRP85,000 house are similar to
degree —5000 (negated absolute difference) and
this is a higher degree of similarity than the sim-
ilarity of an IRP80,000 and an IRP90,000 house,
which are similar to degree —10, 000.

An example numeric-valued similarity metric
for amenities is given by the cardinality of the
intersection of the sets of amenities:

~ament i2 P{p,s,t} = P{p, s, t} =N, <)

T ~amenl yﬁ |$ﬂy|

which designates a house that has parking and
nearby schools ({p, s}) to be similar to degree 1
to a house that has nearby schools and transport
({s,1}).

More conventional [0,1]-valued similarity met-
rics can also be defined. For example, we could
normalise to [0,1] the results of any of the above
numeric-valued metrics.

As a final example, we show that set-valued
metrics are also possible. We use intersection
again, but this time we let the intersections
themselves denote the degrees of similarity:

~amen2 -+ P{pa S, t} _>P{pa S, t} _>(P{pa S, t}a g)

T ~amen2 Yy =T NY

Now the similarity of a house with amenities
{p, s} and one with amenities {s,t} is {s}. If
we have two other houses with amenities {p, s, ¢}
and {s,t}, then these two houses are similar to
degree {s,t}. When we compare the degrees of
similarity, we see that our second pair of houses
are more similar to each other than our first pair
of houses are to each other: {s} C {s,}.

The advantages of our framework are ex-
plained in [1]. We state them very briefly
here. The first advantage is that the framework
subsumes many ways of measuring similarity,
e.g. boolean-valued, numeric-valued, set-valued
2], feature structure-valued [4], and linguistic-
hedge-valued [1]. In subsuming so many ap-
proaches, we know that results we obtain in
this framework (theorems, implementation tech-
niques, etc.) will apply quite broadly. The sec-
ond advantage is the ‘naturalness’ of the simi-
larity measures that we can define: result types
can be chosen to best suit the application. The
third advantage is the ease with which we can
combine similarity metrics. We discuss this is-
sue more fully in the remaining sections of this
paper, where we also present the main result of
this paper: a new way of combining similarity
metrics.

Combining Metrics

We would not usually want to compute the sim-
ilarities of objects according to a single ‘pro-
jected out’ attribute of those objects. More usu-
ally, we will consider more than one attribute,
e.g. price and local amenities. We will have a
similarity measure for each attribute, and we
will want to compute an overall degree of simi-
larity by combining the results of these individ-
ual similarity measures.

It is here that there is an apparent advan-
tage in using traditional numeric-valued simi-
larity measures: the results of applying the indi-
vidual similarity measures are easily combined,
using (possibly weighted) sums, products or av-
erages. In our similarity metric framework, it
is, of course, just as easy for us to combine

two numeric-valued similarity metrics. Indeed,
whenever the result types of the two individ-
ual metrics are the same (both numeric, both
boolean, both set-valued, etc.), then computing
an overall degree of similarity might be straight-
forward.

But we have to address the possibility that
the two individual metrics have different result
types. For example, we might wish to com-
bine the results of ~,;.. (numeric-valued) and
~amene (set-valued). It would be regrettable
at this point to have to convert ~g,ene into
a numeric-valued function, simply in order to
allow its combination with ~... Were this
to be necessary, we might just as well have
used ~gmen1 (numeric-valued) all along, and we
would be losing the advantages of our frame-
work. Inter-conversions of this kind are the main
solution used in the literature, e.g. [5]. But,
inter-conversion is not necessary.

The key insight is that our framework allows
metrics to have any partially ordered set as a
result type. There is no reason, then, why the
result type should not be a partially ordered set
of pairs. When combining numeric-valued ~ce
and set-valued ~ g peno, degrees of similarity will
be denoted by pairs from Z x P{p,s,t}. For
example, an IRP80,000 house near shops and
transport is similar to an IRP85,000 house with
parking and near shops to degree (—5000, {s}):
this pair (comprising values from the two indi-
vidual similarity metrics) denotes their degree
of similarity. An IRP80,000 house with no local
amenities and an IRP90,000 house near shops
are similar to degree (—10,000, {}).

This approach has the advantages of giving
more structure and hence more explanatory
power to the degrees of similarity, and of work-
ing in all possible cases, without needing inter-
CONVETSLONS.

But, of course, it is not good enough to simply
say that this set of pairs is the result type of
the combined metric. The result type must be
partially ordered so that we can tell whether,
e.g., (—5000, {s}) is a higher degree of similarity
than (—10, 000, {}).

The normal route to defining the ordering on
the set of pairs will be to construct it from the
orderings on the result types of the individual
metrics. For this, we need operators that con-
struct new partial orders from existing partial
orders.

Combining Partial Orders

Let A = (S4,C4) and B = (Sg,Cp) be two
arbitrary partial orders.

Product
Define the product of A and B, A x B as follows:

AxB=({(z,y) |z € Sa,y € Sp}, Caxn)

where

(x1,29) Caxp (Y1,%2) =1 Ca i A 22 Cp 4o

Here, both individual functions contribute
equally to the overall degree of similarity.
For example, houses that are similar to de-
gree (—5000, {s}) are not as similar as houses
that are similar to degree (—2000, {s,t}) (be-
cause —5000 < —2000 and {s} C {s,t}),
whereas houses that are similar to degree
(—5000, {p, s,t}) are neither more nor less
similar to houses that are similar to degree
(—2000, {s,t}) (because they are less similar on
one attribute, —5000 < —2000, but more similar
on the other, {p, s, t} D {s,t}).

Strict prioritisation

Define the strict prioritisation of A over B, A >
B as follows:

A>B={(z,y) |z € Sa,y € Sp},Casp)
where

(1, 29) Casp (Y1, Y2) =
T1Cayr V (x1=y1 A 22 Cp yo)

Here, the first individual function counts more
to the overall degree of similarity than the sec-
ond. Indeed, this is a lexicographic ordering:
the ordering is based on the first ordering, but
the second ordering may resolve ties in the first

ordering. For example, houses that are simi-
lar to degree (—5000, {s}) are not as similar as
houses that are similar to degree (—2000, {}):
—5000 < —2000 and so the second element of
the pair is irrelevant. However, houses that
are similar to degree (—5000,{s}) are not as
similar as houses that are similar to degree
(—5000, {s,t}): they tie on the first element of
the pair but the tie is resolved by the second
element, {s} C {s,t}.

Indifference Between Different Degrees
of Similarity

Product and strict prioritisation represent ex-
tremes in the way we combine two partial orders:
the partial orders either both count equally, or
one takes precedence over the other.

To have available only these extremes is unde-
sirable. More traditional numeric-valued sim-
ilarity measures offer the possibility of using
weighted combinations: by choosing different
amounts by which one is weighted more highly
than the other, we can influence the extent to
which that similarity measure contributes more
highly to the overall measure than the others.
Were we to adopt the use of weights, however,
we would have again to resort to conversion of
all metrics to ones with numeric result types,
and we regard this as undesirable.

The solution turns out to be to introduce the
idea of a ‘level of indifference’ to the result type
of a metric. Then, in a prioritisation, the second
metric will take effect not when the first metric
reports equal degrees of similarity but when it
reports degrees of similarity about which we are
indifferent. The details of this new prioritisation
definition are given in the next section. Before
that, we say what we mean by indifference be-
tween degrees of similarity.

Consider the similarity metric ~pc, from
above. Even if the price metric is nominally the
most important criterion, a prospective buyer
is unlikely to regard small differences in the de-
grees of similarity of two houses according to this
metric as being decisive in the choice of which
match is ‘best’, if other criteria also apply. For

example, it would probably be unwise to regard
an IRP80,000 house and an IRP80,001 house
(similar to degree —1) to be decisively more sim-
ilar than an IRP80,000 house and an IRP80,002
house (similar to a strictly lower degree, —2).
Yet, by our definition, strict prioritisation of this
price metric over other criteria would make such
small differences decisive. Better in the case of
small differences (where ‘small differences’ for a
house price metric might be differences as large
as, say, 2500) would be to let the other similarity
criteria contribute to the ranking.

In order to do this, we must change the sig-
natures of similarity metrics. We augment the
result type with a boolean-valued binary func-
tion that will be used to indicate whether we are
indifferent between two degrees of similarity:

~ioa—a—(P,~p)

We need to formalise this notion of indiffer-
ence between degrees of similarity (~p). The
relations that formalise this notion will generally
not be equivalence relations. To use an equiv-
alence relation would have the same effect as
simply using a less discriminating result type in
the similarity metric; there would still be cases
of small differences in the similarity metric that
were having decisive effects.

For example, suppose we wished to declare,
for the price metric, similarities within 2500 to
be equivalent:

~price -+ N—>N—>((Z, S)aRprice)
T ~price Y = — abs(x - y)
s1 div 2500 = s, div 2500

Here Ry is indeed an equivalence relation.
But this is, in essence, the same as simply using
= as the indifference relation with prior integer
division by 2500:3

~price 2 N =N —=((Z,<),=)

31t is also the same, in this case, as using integer division
on the argument types:

SlRpriceSQ -

T ~price Yy = — abs(x div 2500 — y div 2500)

This was the approach we used in [3], but it suffers the same
weakness that we explain above.

T ~price Y = — abs(x — y) div 2500

The problem with these (equivalent) formula-
tions is that they still have points where small
differences in the degrees of similarity are deci-
sive. For example, similarity degrees of —2499
and —2500 would be mapped to distinct values
(0 and —1), whereas similarity degrees of —2500
and —4999 are both mapped to —1.

More reasonable is an e-equality, similar to
that used for comparing floating point numbers,
i.e. we are indifferent between two degrees of
similarity, s; and so, iff abs(s; — s3) < e. For
our price metric, € could be —2500. Now, we
would be indifferent between similarity degrees
of —2499 and —2500, and of —2500 and —4999,
but not of —2499 and —4999.

We note that this relation is reflexive and sym-
metric, but not transitive. Instead, it satisfies
the generally weaker property of convexity. De-
fine a relation R to be P-convex, over any partial
order P, iff:

Ve,y,z€ P:xCpyCpz,c Rz=2xRy,yRz

To generalise then, what we require of an in-
difference relation on degrees of similarity, ~p,
is that it satisfy reflexivity, symmetry, and con-
vexity. It need not satisfy transitivity.

Generalised Prioritisation

As argued earlier, an operator is desired which,
to some extent, favours its first argument, but
not necessarily to the extent of strictly lexico-
graphical preference. Our idea for a more flexi-
ble scheme of prioritisation is to use the indiffer-
ence relation: essentially, given degrees of simi-
larity that are pairs of values, we wish to order
those degrees of similarity according to the first
value in the pair, unless we are indifferent be-
tween the first values, in which case we wish to
take both components of the pair into account.

Our definition of generalised prioritisation is:

~

(x1,72) Caso (Y1, 11) =

1 Eyr A (21 24y = 22 Ep y)
Suppose, using this definition, we prioritise
the price metric over the amenities metric, us-

ing e-equality with ¢ = 2500 as our indiffer-
ence relation. An IRP80,000 house and an
IRP85,000 house have a higher degree of similar-
ity than that which exists between an IRP80,000
house and an IRP90,000 house, irrespective of
the amenities they offer: the price metric takes
precedence and is decisive. An IRP80,000 house
and an IRP81,000 house are strictly more simi-
lar than an IRP80,000 house and an IRP82,000
house, but we are indifferent between these two
degrees of similarity. Hence, for the first pair of
houses to be more similar overall to each other
than the second pair are to each other, we re-
quire the first pair to be more similar on their
amenities as well.

To further explore the new definition, we will
turn to a more abstract example. It has the ad-
vantage of using small, finite sets and is there-
fore amenable to a diagrammatic treatment.

Consider the partially ordered set 3, equal to
0 C1C 2C 3. Remember, this set would be
the result type of a metric: very similar objects
would be similar to degree 3; dissimilar objects
would be similar to degree 0. We will consider
prioritising 3 over itself. We will use different
indifference relations, and show the different ef-
fects that we get.

Note first of all that if we prioritise order A
over order B but we put ~4 equal to =4 in our
definition, after simplification, the definition re-
duces to our previous definition for strict priori-
tisation. So, prioritising 3 over 3, using equality
as the indifference relation, gives the ordering on
pairs depicted in Figure 1a, in which you can see
that the second ordering is used only to resolve
strict ties.

Furthermore, if we prioritise order A over or-
der B but we define x ~4 y = True, then we
instead obtain an ordering identical to that on
Ax B, the product of the two orders. The order-
ing obtained by prioritising 3 over 3 using this
indifference relation is depicted in Figure 1b.

These are the ‘extreme’ situations, as we dis-
cussed them in the earlier section: strict priori-
tisation and product. They are special cases of
the generalised form of prioritisation, where we

(3.3) (3’3)

(32)

[EA))

| (3.2)

3.0
| /
2,3)

|

2 3.

|

@n

| \
2.0)

| 3.0) @n
(1.3)

| \ / \
(1.2)

|

an (2.0) [ERY) 0.2)

NUZN

©3)

| (1,0) 0,1)
02)

|
on

| 0.0)

©.0)

/
N
/

Figure 1: (a) Strict prioritisation (b) Product

use indifference relations that are minimally and
maximally indifferent, respectively.

But, we can use other indifference relations to
get orders which are (at least in some sense)
intermediate between strict prioritisation and
product.

Consider a non-trivial indifference relation on
3, an e-equality with ¢ = 2:

$1 g So = abs(x —y) < 2

That is, we now have, e.g., that 1 ~3 2, and
2 ~3 3 (but 1 %3 3). If we prioritise 3 over 3
but use ~3 as the indifference relation, we get
the new partial order shown in Figure 2. Certain
pairs which were ordered in strict prioritisation
(Figure 1la) are now incomparable and thus, in
this sense, ‘equally good’, in the generalised pri-
oritisation. Certain pairs that were unordered in
product (Figure 1b) are now ordered and thus
reflect the dominance of the first ordering.
This figure also illustrates an interesting tech-
nical point. If we consider pairs (2,0) and (1, 1)
in Figure 2, we can see these are bounded above
by (3,0) and by (2,1). As these two upper
bounds are themselves incomparable ((3,0) Z
(2,1), and (2,1) IZ (3,0)), then (2,0) and (1, 1)
have no [east upper bound. Hence, this partial
order is not a lattice. This is a key part of our

(3.3)

N

(3.2 23)
/ N
3. @.2) (13)
S NTHANTHN
3.0) 1,2) 0,3)
AN /S
(1,1 0,2)

2,1 (1,
2,0

(1,0) 0,1)

0.0)

Figure 2: Prioritisation using ~g

motivation for choosing partial orders as the ba-
sis of our framework.*

References
[1] Bridge, D.G.: Defining and Combining Symmetric
and Asymmetric Similarity Measures, in B.Smyth &
P.Cunningham (eds.), Advances in Case-Based Reason-

ing (Procs. of 4th European Workshop on Case-Based
Reasoning), LNAI-1488, pp.52-63, Springer, 1998

[2] Matuschek,D. & Jantke K.P.: Axiomatic Characteriza-
tion of Structural Similarity for Case-Based Reasoning,
in D.D.Dankel (ed.), Procs. of Florida AI Research Sym-
posium, Florida AI Research Society, pp.432-436, 1997

[3] Osborne, H. & Bridge, D.G.: We’re All Going on a Sum-
mer Holiday: An Exercise in Non-Cardinal Case Base
Retrieval, in G.Grahne (ed.), Frontiers in Artificial In-
telligence and Applications (Procs. of Sizth Scandinavian
Conference on Artificial Intelligence), pp.209-219, 10S
Press, 1997

[4] Plaza, E.: Cases as terms: A feature term approach
to the structured representation of cases, in M.Veloso
& A.Aamodt (eds.), Case-Based Reasoning Research
and Development (Procs. of First International Confer-
ence on Case-Based Reasoning), LNAI-1010, pp.265-276,
Springer, 1995

[6] Wilson, D.R. & Martinez, T.R.: Improved Heteroge-

neous Distance Functions, Journal of Artificial Intelli-
gence Research, vol.6, pp.1-34, 1997

*Contra our earlier work [3, 1].

