
A Linked Data Browser with Recommendations
Frederico Araújo Durão
Instituto de Matemática

Universidade Federal da Bahia
Salvador - Bahia, Brazil
freddurao@dcc.ufba.br

Derek Bridge
Insight Centre for Data Analytics
Department of Computer Science
University College Cork, Ireland
derek.bridge@insight-centre.org

Abstract—It is becoming more common to publish data in a
way that accords with the Linked Data principles. In an effort
to improve the human exploitation of this data, we propose a
Linked Data browser that is enhanced with recommendation
functionality. Based on a user profile, also represented as Linked
Data, we propose a technique that we call LDRec that chooses in a
personalized way which of the resources that lie within a certain
neighbourhood in a Linked Data graph to recommend to the
user. The recommendation technique, which is novel, is inspired
by a collective classifier known as the Iterative Classification
Algorithm. We evaluate LDRec using both an off-line experiment
and a user trial. In the off-line experiment, we obtain higher hit
rates than we obtain using a simpler classifier. In the user trial,
comparing against the same simpler classifier, participants report
significantly higher levels of overall satisfaction for LDRec.

Index Terms—linked data, browsing, recommending, collective
classification, iterative classification

I. INTRODUCTION

The Linked Data principles and associated technologies1

offer a way to format and publish ever-growing volumes of
inter-linked, heterogeneous, distributed data. Published under
an open license, the datasets of the Linked Open Data project2

are an example, comprising billions of Rich Description
Framework (RDF) triples that relate one entity to another.
Technical-users and lay-users would benefit from tools, such as
Linked Data browsers, that allow intuitive navigation through
the data, thus supporting exploratory knowledge discovery
[1]. However, the volume of data and its degree of inter-
connectedness bring problems of information overload: there
is too much data to display at a time and, even if it could be
displayed intelligibly, there is too much data for a user to sift
through to find the paths that she wants to explore next.

Recommender systems are one solution to the problem of
information overload. From large volumes of items (products,
services, news items, etc.), a recommender system surfaces
just a few that it thinks are relevant to the user’s interests.

We propose a Linked Data browser that incorporates recom-
mender systems functionality. A user will have a user profile
of items that she likes (also represented as Linked Data);
as the user browses the Linked Data graph, the profile can
grow through the addition of new items that the user likes; for
any particular item that the user is focusing on, the browser
displays just the part of the item’s neighborhood that the

1https://www.w3.org/standards/semanticweb/data
2https://lod-cloud.net/

recommender system predicts will be of interest to the user
(based on the user profile). We refer to our enhanced browser
as LDRec.

Linked Data browsers are not new. But we do not know of
any that incorporate recommender systems functionality. There
are, however, several recommender systems that use Linked
Data. So we highlight here the ways in which a Linked Data
browser like LDRec that uses a recommender system differs
from a recommender system that uses linked data.

• Recommender systems typically recommend items for
the user to consume (e.g. movies to watch, news items
to read, restaurants to eat in, etc.). LDRec recommends
Linked Data resources (entities). In some cases, these
resources will correspond to items that the user can
consume (movies, songs, etc.). But in other cases, they
will correspond to real-world things that we would not
normally ‘consume’ (an actor in a movie, the city in
which the actor was born, and so on); they might even
refer to abstract concepts (the period in which a work of
art was produced, or the artistic movement to which it
belongs). Consumption in a system like LDRec means
learning about the resource by looking at its properties,
which we assemble from the Linked Data graph into
what we call an InfoBox. Of course, it may be that, after
looking at a resource’s InfoBox, the user does consume
the corresponding real-world item, where this is possible.

• Recommender systems are most often single-domain in
the sense that they recommend items that are all of the
same type (e.g. songs). The research literature does have
examples of cross-domain recommenders that operate
across a small number of domains (e.g. where a per-
son’s movie preferences condition the recommendation
of books); and there are notable examples of commercial
multi-domain recommenders that operate across a wider
product space (e.g. the recommender behind the Amazon
web site). LDRec and systems like it are inevitably multi-
domain: as the user browses, she receives recommenda-
tions for resources of many different type (songs, movies,
books, actors, time periods, artistic movements, etc.).

• Because recommender systems typically confine recom-
mendations to items of a single type (or one of a small
number of types), recommender systems that use Linked
Data can limit their attention to a subgraph of the Linked

Data graph. For example, they might index just a set of
movie-related properties (e.g. stars in, directed by) for
use by a recommendation algorithm. As the Linked Data
graph changes, such a system will need to periodically
rebuild this model. By contrast, LDRec cannot anticipate
the resource types or property types that it will encounter.
It needs to be open-ended [2], preferably capable of
operating continuously as the Linked Data graph changes,
including when new datasets are linked in.

LDRec treats recommendation as one-class classification.
User profiles record resources that the user likes. During
browsing, the recommender must classify candidate resources,
i.e. it must predict whether the user will like each candidate.

In traditional classification, unseen objects are classified in
isolation using just the features of that object (the observed
non-relational features). The assumption is that class labels
are independent of each other. However, if objects are inter-
related, classification accuracy can often be improved by
taking into account properties of the related objects. For
example, the web pages of the faculty of a university might
link to the web pages of postgraduate students, so if a page is
classified as a faculty page then the ones it links to are more
likely to be student pages. In this case, when classifying an
unseen object, the classifier can also use the features and even
labels (if known) of the related objects (the observed relational
features) but might also use the predicted labels of the related
objects (the unobserved relational features). For classifiers
that use all three (observed non-relational features, observed
relational features and unobserved relational features), the term
collective classification is used [3].

LDRec recommendation is an instance of collective clas-
sification. As explained in detail later, it classifies candidate
resources using the properties of the candidate resource,
properties of resources that are in the neighbourhood of the
candidate, and its predictions of the labels of the resources in
the neighbourhood (i.e. whether it predicts the user will like
the resources in the neighbourhood). All of this is seamless
however because predicted labels are just additional RDF
triples, temporarily inserted into the Linked Data graph.

There are many ways of building collective classifiers [4],
[5]. LDRec is inspired by the Iterative Classification Algo-
rithm (ICA) [6]. ICA uses what it calls a local classifier to
classify all objects using just their observed features. Then, it
repeatedly reclassifies the objects, this time using all three
kinds of features, i.e. including the labels that it has just
predicted, until predictions stabilize. This is well-suited to the
open-ended nature of the task that we explained above.

In Section II, we describe other Linked Data browsers and
recommenders that used Linked Data. Section III gives some
definitions used in later parts of the paper. Section IV describes
a non-iterative classifier that serves two purposes: (a) it is the
local classifier used within LDRec’s version of ICA, and (b)
it is the system against which we compare LDRec, which
is described in Section V. The comparison is reported in
Section VI in the case of off-line experiments and Section VII
in the case of a user trial.

II. RELATED WORK

There have been many RDF browsers and visualizers, in-
cluding e.g. Tabulator [7], LODlive [8], LODExplorer [9], Ex-
plorator [10], RelFinder [11], LODmilla [12] and LD Viewer
[13]. These and others are surveyed in, e.g. [1], [14], [15].
Most of them, like LODlive, LODmilla and our own browser,
visualize the graph by drawing circle-and-pointer diagrams;
others, like Tabulator, convert to a more tabular format. There
are no RDF browsers, to the best of our knowledge, that
incorporate recommendation functionality to filter resources
based on user tastes.

While we have no examples of Linked Data browsers that
incorporate recommender functionality, recommender tech-
niques have been incorporated into agents that support web
browsing. One of the earliest was Letizia, which scans the
neighbourhood of the page that the user is currently viewing
and uses heuristics (e.g. word co-occurrence with the user’s
browsing history) to evaluate which neighbouring pages would
be of interest to the user [16], [17]. Numerous systems
have followed, e.g. [18]–[21]. For the most part, they either
recommend pages that share document content with pages in
the user’s profile (e.g. [18], [21]) or they mine clickstreams to
predict and recommend the pages that users tend to visit next
(e.g. [19]); some do both (e.g. [20]). None of them takes the
collective classification approach that we use in LDRec.

There are also many examples of content-based recom-
mender systems where the items that are to be recom-
mended are described using Linked Data. For example, non-
personalized recommenders have been built, illustrating the
use of the LDSD distance measure (see Section IV-B) and
variants of that measure, that simply recommend resources
that are similar to other resources [22], [23]. Members of
the SISINF Lab at the Politecnico di Bari have developed a
number of content-based recommender systems. In the first,
which uses a vector space model, they represent RDF triples by
a 3-dimensional tensor [24]–[26]. Cells in the tensor contain
an analog of the TF-IDF values used in Information Retrieval.
Similarity of two resources, such as one that the user likes
(in her profile) and a candidate that could be recommended,
is computed by cosine similarity for each RDF property (link
type) and then aggregated. In their second system, similarity
between two items involves a weighted count of entities that
are common to the neighbourhoods of those two items; and
this is used as a kernel in an SVM regression model learned
from a user profile that comprises items and item ratings [27].
In their third system [28], they use an item-based nearest-
neighbours recommender with similarity scores computed
using either SimRank [29] or Personalized PageRank [30].

Collaborative recommenders that use Linked Data are rarer.
In [31], it is proposed to extract from a Linked Data graph
that includes user profile information a user-item matrix that is
the conventional input to collaborative recommender systems.
On the other hand, there are some collaborative/content-based
hybrids. For example, in [32], a Factorization Machine is
used where the features encode a traditional ratings matrix

plus features that record the existence of properties in a
Linked Data graph. The SISINF Lab has proposed a hybrid
in which they model user profiles as a bipartite user-item
graph and merge it with a graph that represents items and
their properties (as we also do, Section III-C); they then find
all paths that connect a user to a candidate item; and they
score the item based on the quality of the paths. This scoring
is done by a model that they have learned in supervised
fashion from a dataset of such paths [33]. The SWAP Group
at the University of Bari also model user profiles as a bipartite
graph to construct a recommender that uses PageRank [34].
They explore the issue of feature selection: how to choose
the most useful Linked Data properties to include in the
PageRank calculation [35]. Separately, they also consider how
Linked Data can be used for model-agnostic explanations of
recommendations [36]. Finally, Zhang et al. and Khrouf &
Troncy both use Linked Data to build collaborative/content-
based hybrid recommender systems [37], [38].

There have been two ‘challenges’ in the area of Linked
Open Data-enabled Recommender Systems, in which datasets
are made available on which participants compare the per-
formance of their recommender systems.3 The participants in
the 2014 challenge are described in [39]. One of the more
successful participants used an ensemble of vector space,
PageRank and other techniques [40].

A non-personalised recommender is described in [2]. It has
separate mechanisms to recommend resources of the same
type as a given input resource, to recommend people based
on social network data, and to recommend resources based on
textual descriptions. It is notable here because, like LDRec, it
claims to be open-ended.

Finally, it is worth mentioning that Linked Open Data
facilitates research in cross-domain recommendation, since it
makes available descriptions of entities from more than one
domain [41]–[43]. We see our own work as multi-domain
recommendation, rather than cross-domain recommendation.

None of these recommender systems is targeted for use
within a browser (although several can be adapted to be used
in this way) and none of them uses collective classification.
Notable too is that none of the papers that we cite except [2]
includes an evaluation of the recommender with real users.

III. BASIC CONCEPTS

A. The Linked Data Graph

Following Passant [22], we can model a dataset that follows
the Linked Data principles as a directed graph G = 〈R,L,E〉,
where R is a set of resources; L is a set of link types; and E is
a set of edges, i.e. instances of the link types between pairs of
resources. A tuple 〈r, l, r′〉 ∈ E means that there is an instance
of link type l ∈ L from resource r ∈ R to r′ ∈ R. A tuple
〈r, l, r′〉 such as 〈dbr:Oceans_Eleven,dbo:starring,
dbr:Julia_Roberts〉 corresponds to a Rich Description
Framework (RDF) triple.

3https://2014.eswc-conferences.org/important-dates/call-RecSys.html, http:
//www.wikicfp.com/cfp/servlet/event.showcfp?eventid=44774

B. Neighbourhoods

In our work, we require a notion of the neighbourhood of a
resource r: the resources that are within a certain number of
edges of a given resource. In defining neighbourhood, similarly
to [27], we ignore the directedness of the edges.

Hence, we define an undirected path in a directed
graph G = 〈R,L,E〉 as a sequence of distinct resources
〈r0, r1, . . . , rn〉 where each ri ∈ R and there is a correspond-
ing sequence of distinct edges 〈e1, e2, . . . , en〉 where each
ei ∈ E and ei = 〈ri−1, l, ri〉 or ei = 〈ri, l, ri−1〉. The length
of the path is n, the number of edges.

We define the neighbourhood of a resource r in a graph G,
NbrHd(n, r,G), to be the resources r′ for which there is an
undirected path between r and r′ whose length is less than or
equal to n:

NbrHd(n, r,G)

= {r′ ∈ R|〈r0, r1, . . . , rm〉 is an undirected path in G

∧ r0 = r ∧ rm = r′ ∧m ≤ n}
(1)

We emphasize that neighbourhood is based on paths in the
graph. It is distinct from the notion of a nearest neighbour,
which also appears in our work (Section IV-A), but which
defines neighbours in terms of a semantic distance measure.

C. Representing user preferences

Any personalized recommender system must represent its
users and their tastes in the form of user profiles. In LDRec,
we assume that user profiles are represented as Linked Data.
Specifically, we assume a set of users U who are themselves
represented by resources in a Linked Data graph, U ⊂ R, each
user being an instance of User. To represent user profiles,
we assume the existence of a link type, likes ∈ L. An edge
〈u,likes, r〉 means that user u ∈ U likes resource r ∈ R.

This means, in recommender system terminology, we only
allow explicit, unary ratings. In other words, we link the user
only to resources she has liked, and we know nothing about all
other resources (whether they are disliked or simply unrated).
Moreover, we do not assume that the user likes the resources
that she visits during a browsing session — only the ones to
which she gives an explicit ‘thumbs up’. For example, if a user
browses through all the actors who starred in Ocean’s Eleven
but gives a ‘thumbs up’ only to Andy Garcia, then we only
add 〈u,likes,dbr:Andy_Garcia〉 to the graph.

Assume we have a resource r ∈ R and an active user u ∈ U .
Suppose r is a candidate for being recommended to u (e.g.
it is not in the user’s profile, 〈u,likes, r〉 6∈ E). We wish
to predict whether u will like r. This is classification and,
more specifically, since we have only positive examples (unary
ratings), this is one-class classification.

D. Browsing with recommendation

In our work, we are interested in augmenting a Linked
Data browser with recommendations. We assume the user has
browsed to a particular resource in the graph. Candidates for

ALGORITHM 1: LDBrowser
Input: G = 〈R,L,E〉, a Linked Data graph

u ∈ R, the active user
seed ∈ R, a seed resource chosen by the user
n, the max. path length in neighbourhoods
Recommender , a recommender that predicts which

candidates the user will like
Taboo ← {};
current ← seed ;
Candidates ←

NbrHd(n, current , G) \ {r|〈u,likes, r〉 ∈ E};
while Candidates 6= {} do

Recs ← Recommender(G, u,Candidates);
current ← user choice from Recs;
Taboo ← Taboo ∪ Recs;
Candidates ← NbrHd(n, current , G)\

({r|〈u,likes, r〉 ∈ E} ∪ Taboo);
end

recommendation are other resources in the neighbourhood of
that resource. We show a version of this as Algorithm 1.
We only show the case where the user selects one of the
recommended resources and the browser makes new recom-
mendations based on that selection. To keep the pseudocode
simple, we have deliberately omitted from Algorithm 1 the full
range of user actions that our browser allows. For example,
the user might signal that she likes one or more of the rec-
ommendations (‘thumbs up’), resulting in the addition of new
edges to the Linked Data graph; the user can consult history
lists to resume browsing from a previously seen resource; she
can enter a query term to search for resources; she can start a
new browsing session by selecting a fresh seed; and, of course,
she can abandon the browser session when she wishes.

In Sections IV and V, we present two recommendation
algorithms that can be used within this browser.

IV. RECOMMENDING USING A NON-ITERATIVE
CLASSIFIER

Among its parameters, the browser that we presented
as Algorithm 1 takes in a recommendation algorithm,
Recommender . Our main contribution, in Section V, is a
collective classifier (LDRec) that uses an iterative algorithm
that we believe is well-suited to this purpose. But, for two
reasons, we present a simpler classifier first: (a) LDRec makes
use of this simple classifier, and (b) we will compare LDRec
against this simpler classifier in our experiments.

A. One-class nearest-neighbour classifier

As explained earlier, we need a one-class classifier. The
algorithm we choose is called One-Class Nearest-Neighbour
Classifier (OC-NN), e.g. [44], [45]. It is simple and cheap to
run, which is important when it gets used within LDRec. Its
training set TrainSet is a set of positive examples (in our
case, these are drawn from the items that the user likes).
Consider resource r; let’s designate its nearest-neighbour in
TrainSet by r′; and let’s designate the nearest-neighbour of
r′ in TrainSet (excluding r) by r′′. OC-NN predicts that u

ALGORITHM 2: OC-NN
Input: G = 〈R,L,E〉, a Linked Data graph

u ∈ U , the active user
r ∈ R, the candidate resource to be classified
TrainSet ⊆ {r′|〈u,likes, r′〉 ∈ E}, positive training

examples for active user u
Output: Boolean: true iff we predict that u will like r using u’s

training set, TrainSet
/* Predict false if the training set is too

small */
if |TrainSet |< 2 then

return false;
end
/* Find the distance between r and its

nearest-neighbour */
nn ← null;
dist to nn ←∞;
foreach r′ ∈ TrainSet do

d′ ← dist(r, r′);
if d′ < dist to nn then

nn ← r′;
dist to nn ← d′;

end
end
/* Find the distance between the nearest-

neighbour and its nearest-neighbour */
dist to nn of nn ←∞;
foreach r′ ∈ TrainSet do

if r′ 6= nn then
d′ ← dist(nn, r′);
if d′ < dist to nn of nn then

dist to nn of nn ← d′;
end

end
end
return dist to nn ≤ dist to nnofnn;

ALGORITHM 3: LDRec-non-iterative
Input: G = 〈R,L,E〉, a Linked Data graph

u ∈ U , the active user
Candidates ⊂ R, candidate resources to be classified
LocalClassifier , a one-class classifier such as OC-NN

Output: A subset of Candidates: those that it predicts the user
will like

Recs ← {}
foreach r ∈ Candidates do

TrainSetr ←
{r′ ∈ NbrHd(n′, r, G)|〈u,likes, r′〉 ∈ E};

if LocalClassifier(G, u, r,TrainSetr) then
/* local classifier predicts user will

like r */
insert r into Recs;

end
end
return Recs;

will like r if the distance between r and r′ is less than or
equal to the distance between r′ and r′′; see Algorithm 2.

Algorithm 2 classifies a single candidate resource. Then, as
Algorithm 3, we show how this classifier is used to recommend
from a set of candidates. Quite simply, it calls the classifier on
each candidate and returns the ones it predicts will be liked.

This may seem obvious but we emphasize it because our other
recommender (LDRec-iterative, Section V) takes in a set of
candidates and classifies them ‘simultaneously’.

B. Semantic distance measures for Linked Data

The OC-NN algorithm requires a [0, 1]-valued distance
measure: dist : R×R→ [0, 1]. This is a semantic measure; it
is not defined in terms of path lengths (unlike NbrHd above),
although it is computed from the Linked Data graph.

There are many ways to define this measure. A well-known
example is Linked Data Semantic Distance (LDSD). The
definition can be found in [22]. In overview, the distance
between r and r′ is an aggregate of the number of times r
and r′ both link to the same third resource r′′ and the number
of times that a third resource r′′ links to both r and r′.

In the offline experiment and user trial reported later in this
paper, we use dist = LDSD in the OC-NN algorithm. One of
its strengths is that it works directly on the Linked Data graph.
Unlike distance measures defined on a vector space, as in [24]–
[26], LDSD does not require extraction of data for a given set
of link types. LDSD does, however, have some weaknesses.
One weakness is that it treats all link types equally. This can
be ‘fixed’ by the use of weights for link types, and this has
been experimented with by Piao & Breslin, where the weights
were set by a Genetic Algorithm [23]. Another weakness is
that it is quite ‘local’ in its operation. By contrast, SimRank
by Jeh & Widom takes a more global view [29] but SimRank
is correspondingly more costly to compute.

V. RECOMMENDING WITH AN ITERATIVE CLASSIFIER

As we said in Section I, the algorithm we use in LDRec
is inspired by the Iterative Classification Algorithm (ICA).
To classify candidate resources, it first classifies them with a
local classifier (OC-NN). When it predicts a candidate will be
liked, it temporarily inserts a new RDF triple into the Linked
Data graph. It then reclassifies the candidates, but this allows
the predicted class labels that were inserted into the graph
to be used by the local classifier. Then it updates the graph
again with these latest predictions: it may remove some of the
triples that it previously inserted and it may insert new triples.
In principle, this continues until classifications stabilize. In
practice, we repeat for a fixed number of iterations.

Our algorithm is given as Algorithm 4. As the pseudocode
shows, it ‘simultaneously’ classifies a set of candidate re-
sources (designated Candidates). In fact, as with ICA, it also
classifies resources in the union of the neighbourhoods of these
candidates (designated ExtendedCandidates). It repeatedly
classifies these extended candidates using the local classifier.
We do not modify their training sets (TrainSetr), which might
make it appear that the local classifier will give the same result
each time it is invoked on a given resource.4 But this ignores
the fact that the graph is updated with the predictions of the
local classifier (the edges in pos and neg). This affects the

4We could recompute the training sets by moving the for-loop into the
repeat-loop. In preliminary experiments, we found that this slowed the
algorithm down considerably without much change to accuracy.

ALGORITHM 4: LDRec-iterative
Input: G = 〈R,L,E〉, a Linked Data graph

u ∈ U , the active user
Candidates ⊂ R, candidate resources to be classified
n, the max. path length in neighbourhoods (for

ExtendedCandidates)
n′, the max. path length in neighbourhoods (for

TrainSet)
LocalClassifier , a one-class classifier such as OC-NN

Output: A subset of Candidates: those that LDRec predicts
the user will like

save u’s profile;
ExtendedCandidates ← Candidates ∪⋃

r∈Candidates{r
′ ∈ NbrHd(n, r,G)|〈u,likes, r′〉 6∈ E};

foreach r ∈ ExtendedCandidates do
TrainSetr ←

{r′ ∈ NbrHd(n′, r, G)|〈u,likes, r′〉 ∈ E};
end
repeat

pos ← [];
neg ← [];
foreach r ∈ ExtendedCandidates do

if LocalClassifier(G, u, r,TrainSetr) then
/* local classifier predicts user

will like r */
append r onto pos;

end
else

append r onto neg ;
end

end
foreach r ∈ pos do

if 〈u,likes, r〉 6∈ E then
insert 〈u,likes, r〉 into E;

end
end
foreach r ∈ neg do

if 〈u,likes, r〉 ∈ E then
remove 〈u,likes, r〉 from E;

end
end

until classifications stabilize;

restore u’s profile;
return {r ∈ Candidates ∩ pos};

LDSD, which in turn means that the local classifier can obtain
different predictions each time.

We assume that predicted ‘likes’ should not be permanent,
which is why we save and restore the user’s profile at the start
and end of the algorithm, respectively.

We refer to Algorithm 4, which uses iterative classification,
as LDRec-iterative; and we refer to Algorithm 3, which is not
a collective classifier, as LDRec-non-iterative. However, for
brevity, most sections of this paper refer to LDRec-iterative
as simply LDRec.

VI. OFF-LINE EXPERIMENTS

We evaluate the recommenders using off-line experiments
(to measure precision) and a user trial (to measure ‘satis-
faction’). In both cases, our main goal is to evaluate the

TABLE I
DATASET OVERVIEW

59083 users with a total of 1743719 ‘likes’
num. resources mean (st.dev.) ‘likes’ per user

movies 5389 19.8 (5.7)
books 3225 8.3 (1.9)
music artists 6372 21.0 (6.2)

usefulness of the LDRec-iterative algorithm, which repeatedly
re-classifies the extended candidates, by comparing it with
LDRec-non-iterative. In principle, LDRec-iterative runs until
classifications stabilize, i.e. they stop changing; see Algo-
rithm 4. In practice, the number of iterations needed before
classifications stabilize is unpredictable, which is not suitable
for a Linked Data browser because of the way it would
make response times quite variable. Therefore, we limit the
number of iterations to 3. We chose 3 because preliminary
experiments showed that classifications often did stabilize
within 3 iterations and also because it is a small enough
number of iterations to keep run-times low. In computing
neighbourhoods, we used n = 1 for ExtendedCandidates and
n′ = 2 for TrainSet .

For these experiments, we used Linked Data that was orig-
inally made available for the 2015 Linked Open Data-enabled
Recommender Systems Challenge, mentioned in Section II.
The original data was Facebook ‘likes’ for movies, books
and music artists; see Table I. The competition organizers
anonymized the users and reconciled the Facebook movies,
books and music artists with their corresponding Linked Data
resources from DBPedia.5

This dataset does not provide any information about the
resources (movies, books and music artists). Hence, when
constructing neighbourhoods, we query live data at DBPedia
to obtain their properties, the other resources that they are
linked to, the properties of these other resources, and so on,
sufficient for the needs of the recommender algorithm.

The methodology that we use in the off-line experiments
is based on the one plus random method described by Koren
[46]. For each of 100 randomly-selected users, we randomly
select a test resource from their profile, i.e. a resource that
we know that they like. We remove the corresponding edge
from the Linked Data graph, in order to withhold the fact that
this user likes this resource. We create a set of candidates
(Candidates) that contains the test resource and 49 other
candidates that are chosen at random from resources that
are not in the user’s profile. We pass the candidates to the
recommender algorithms. For each candidate, the algorithms
predict whether the user will like the candidate or not. We
take the top-N of these (for different values of N) and we
measure the hit rate: the proportion of users for whom the test
resource is a member of the top-N .

We need to explain how we select the top-N given that our
recommenders are classifiers: they predict whether a user will
like a candidate or not; they do not predict numeric ratings. For

5http://dbpedia.org

TABLE II
HIT RATES FOR 100 RANDOMLY-CHOSEN USERS

top-N hit rate
LDRec N = 1 N = 3 N = 5 N = 10

non-iterative 11 17 25 34
iterative 14 31 43 57

the purposes of this off-line experiment and the user trial, we
modify the algorithms to return scores, enabling us to select
a top-N . For both LDRec-non-iterative and LDRec-iterative,
for a resource r that the classifier predicts the user will like,
the score is the distance between r and its nearest-neighbour
r′ minus the distance between r′ and its nearest-neighbour r′′.

The results for N = 1, 3, 5 and 10 are shown in Table II.
We see that LDRec-iterative always has a higher hit rate

than LDRec-non-iterative, which suggests that collective clas-
sification gives a more accurate recommender.

VII. USER TRIAL

We conducted a user trial to compare LDRec-non-iterative
and LDRec-iterative. We recruited 100 volunteers to partici-
pate in the trial. Each was a student or researcher from Brazil.
For half of them the browser used the LDRec-non-iterative
recommender; for the other half, it used the LDRec-iterative
recommender. We used the same dataset of movies, books and
music artists that we used in the offline experiment.

The first step was for each participant to create her user
profile, comprising a minimum of 20 items that she liked.
The next step was for the participant to select one resource
from her on-screen profile to act as a seed r. The candidates
for recommendation are NbrHd(1, r,G), i.e. all the resources
r′ that link to, or are linked to, the seed r. The recommender
then classifies these candidates and selects the top-3 to show
to the user.

The user was then required to click on each recommenda-
tion in turn to bring up an InfoBox, describing the recom-
mended resource. For example, if the resource were a movie,
the box would include data from the Linked Data graph about
the director, the actors and so on. She was then required to
answer four questions about the recommendation:
• Accuracy: How accurate is this recommendation based

on your profile?
• Understanding: How well does the recommendation re-

flect your preferences?
• Novelty: How familiar are you with the object that is

being recommended?
• Satisfaction: How much do you like this recommenda-

tion?
Each of these questions could be answered on a rating scale:
“Not at all”, “A little”, “Neutral, “Much”, or “Very much”.
A final question asked: Do you like this recommendation
enough to add it to your profile? If the user chose “Yes”,
the recommended item was inserted into the on-screen profile
and a new edge was added into the Linked Data graph.

The user had to then repeat this step two more times,
i.e. she had to choose a seed from her profile or from the

TABLE III
RATINGS FROM THE USER TRIAL

LDRec
non-iterative iterative

mean (std.dev.) mean (std.dev.)
Accuracy 2.5 (0.9) 3.4 (0.8)
Understanding 2.7 (0.9) 3.4 (1.0)
Novelty 2.5 (0.8) 3.2 (1.0)
Satisfaction 2.6 (1.0) 3.5 (0.9)

Fig. 1. Box-plots of user ratings

three recommendations already on the screen. She would then
receive three new recommendations and evaluate them in the
same way. The trial was only over when we had evaluations
for all nine recommendations.

In order to quantify the results, we converted the answers
to the questions to a 1 to 5 scale, where 1 = “Not at all’ and
5 = “Very much”. Table III shows mean ratings and standard
deviations. Figure 1 gives an alternative visualization of the
ratings. As can be seen from both the Table and the Figure,
for all four questions LDRec-iterative was rated more highly
than LDRec-non-iterative, which again suggests that collective
classification gives a better recommender (although it may not
be desirable that LDRec-iterative makes recommendations that
are less novel, and this may require further investigation). The
differences in the results are statistically significant at the 95%
level using a two-tailed Student’s t-test.

Finally, Table IV shows us two other aspects of user
behaviour. As mentioned, users are asked whether they want
to add a recommended resource to their profile. Given that
for each system there were 50 participants each receiving nine
recommendations, there were 450 times this could happen. The
table shows that it happened in 30% of LDRec-non-iterative
recommendations and 52% of LDRec-iterative recommenda-
tions: an increase relative to LDRec-non-iterative of 76%. We
also mentioned that the user must choose the next seed and
this might be one of the resources that had been recommended.
Given that for each system there were 50 participants and this
applies to the second and third seeds that the user selects,
there were 100 times the user could choose a seed from the
recommendations. The table shows that it happened in 52% of
the time with LDRec-non-iterative and 70% of the time with

TABLE IV
HOW PARTICIPANTS IN THE TRIAL USED THE RECOMMENDATIONS

LDRec
non-iterative iterative

total num. recs. added to profiles 133 234
total num. recs. chosen as next seeds 52 70

LDRec-iterative: an increase relative to LDRec-non-iterative
of 35%. These results confirm the results that we obtained
from the survey questions.

VIII. CONCLUSIONS

In this paper, we have presented a Linked Data browser that
incorporates recommender system functionality. It treats the
resources that it can recommend as open-ended, allowing new
datasets to be linked in dynamically. To achieve this, we take
a novel approach to recommendation, treating it as collective
classification and using an algorithm that is inspired by the
Iterative Classification Algorithm (ICA) [6].

We report the results of an offline experiment and a user
trial. In the offline experiment, hit rates are consistently higher
if we use the iterative algorithm than if we use a non-iterative
variant. Similarly, in the user trial, users gave higher mean
ratings to recommendations from the iterative algorithm and
were much more likely to add them to their profiles and to
use them as seeds for subsequent rounds of recommendations.

There are many possible avenues for future work. We
could vary the semantic distance measure used in the OC-NN
classifier; we could even replace the OC-NN classifier by
some other one-class classifier. Similarly, we could replace
the ICA algorithm with one that is inspired by other ways
of doing collective classification. These include methods that
define and optimize a set of weights in a global objective
function [4] and so-called ‘cautious’ variants of ICA [3], [47].

Our work focuses on the recommendation algorithm. We
would like to improve the browser’s user interface so as to
incorporate more of the functionality found in other Linked
Data browsers and to engineer a more deployable system.

Finally, we have shown how to use LDRec within a Linked
Data browser. But the algorithm could be used as a more
conventional recommender. Then it would be interesting to
compare it with other recommenders that use Linked Data
(e.g. [24]–[26]).

ACKNOWLEDGMENTS

This paper emanates from research supported by a grant
from Science Foundation Ireland (SFI) under Grant Number
SFI/12/RC/2289 which is co-funded under the European Re-
gional Development Fund.

REFERENCES

[1] A.-S. Dadzie and M. Rowe, “Approaches to Visualising Linked Data:
A Survey,” Semant. web, vol. 2, no. 2, pp. 89–124, 2011.

[2] J. Oliveira, C. Delgado, and A. C. Assaife, “A recommendation approach
for consuming linked open data,” Expert Systems with Applications,
vol. 72, pp. 407 – 420, 2017.

[3] L. McDowell, K. M. Gupta, and D. W. Aha, “Cautious Collective
Classification,” Journal of Machine Learning Research, vol. 10, pp.
2777–2836, 2009.

[4] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-
Rad, “Collective Classification in Network Data,” AI Magazine, vol. 29,
no. 3, pp. 93–106, 2008.

[5] L. McDowell, K. M. Gupta, and D. W. Aha, “Case-Based Collective
Classification,” in Procs. of the 20th Intl. Florida Artificial Intelligence
Research Society Conf., 2007, pp. 399–404.

[6] Q. Lu and L. Getoor, “Link-based Classification,” in Procs. of the 20th
Intl. Conf. on Machine Learning, 2003, pp. 496–503.

[7] T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly, R. Dhanaraj, J. Hol-
lenbach, A. Lerer, and D. Sheets, “Tabulator: Exploring and Analyzing
linked data on the Semantic Web,” in Procs. of the 3rd Intl. Semantic
Web User Interaction Workshop, 2006.

[8] D. V. Camarda, S. Mazzini, and A. Antonuccio, “LodLive, Exploring
the Web of Data,” in Procs. of the 8th Intl. Conf. on Semantic Systems,
2012, pp. 197–200.

[9] K. Jacksi, S. R. Zeebaree, and N. Dimililer, “LOD Explorer: Presenting
the Web of Data,” Intl. Journal of Advanced Computer Science and
Applications, vol. 9, no. 1, pp. 45–51, 2018.

[10] S. F. C. D. Araújo, D. Schwabe, and S. D. J. Barbosa, “Experimenting
with explorator: a direct manipulation generic rdf browser and querying
tool,” in CEUR Workshop Proceedings, vol. 443, 2009.

[11] S. Lohmann, P. Heim, T. Stegemann, and J. Ziegler, “The RelFinder User
Interface: Interactive Exploration of Relationships Between Objects of
Interest,” in Procs. of the 15th Intl. Conf. on Intelligent User Interfaces,
2010, pp. 421–422.

[12] A. M. A, Z. Tóth, and S. Turbucz, “LODmilla: Shared Visualization
of Linked Open Data,” in Theory and Practice of Digital Libraries –
TPDL 2013 Selected Workshops, 2014.

[13] D. Lukovnikov, C. Stadler, and J. Lehmann, “LD Viewer - Linked Data
Presentation Framework,” in Procs. of the 10th Intl. Conf. on Semantic
Systems, 2014, pp. 124–131.

[14] K. Jacksi, N. Dimililer, and S. R. Zeebaree, “State of the Art Exploration
Systems for Linked Data: A Review,” Int. J. Adv. Comput. Sci. Appl.,
vol. 7, pp. 155–164, 2016.

[15] N. Marie and F. Gandon, “Survey of Linked Data Based Exploration
Systems,” in Procs. of the 3rd International Conf. on Intelligent Explo-
ration of Semantic Data, 2014, pp. 66–77.

[16] H. Lieberman, “Letizia: An agent that assists web browsing,” in Procs.
of the 14th Intl. Joint Conf. on Artificial Intelligence, 1995, pp. 924–929.

[17] H. Lieberman, C. Fry, and L. Weitzman, “Exploring the Web with
Reconnaissance Agents,” Comm. ACM, vol. 44, no. 8, pp. 69–75, 2001.

[18] M. Balabanovic and Y. Shoham, “Learning Information Retrieval
Agents: Experiments with Automated Web Browsing,” in Procs. of the
AAAI Spring Symposium on Information Gathering, 1995.

[19] E. Gams, T. Berka, and S. Reich, “The TrailTRECer Framework - A
Platform for Trail-Enabled Recommender Applications,” in Procs. of the
13th Intl. Conf. on Database and Expert Systems Applications, 2002, pp.
638–647.

[20] S. Stober and A. Nürnberger, “Context-based Navigational Support in
Hypermedia,” in Procs. of the 4th Intl. Conf. on Adaptive Hypermedia
and Adaptive Web-Based Systems, 2006, pp. 328–332.

[21] T. Zhu, R. Greiner, G. Häubl, K. Jewell, and B. Price, “Using learned
browsing behavior models to recommend relevant web pages,” in Procs.
of the 19th Intl. Joint Conf. on Artificial Intelligence, 2005, pp. 1589–
1591.

[22] A. Passant, “Measuring Semantic Distance on Linking Data and Using
it for Resources Recommendations,” in AAAI Spring Symposium Series,
2010.

[23] G. Piao and J. G. Breslin, “Measuring Semantic Distance for Linked
Open Data-enabled Recommender Systems,” in Procs. of the 31st
Annual ACM Symposium on Applied Computing, 2016, pp. 315–320.

[24] R. Mirizzi, T. Di Noia, E. Di Sciascio, and A. Ragone, “Web 3.0 in
Action: Vector Space Model for Semantic (Movie) Recommendations,”
in Procs. of the 27th Annual ACM Symposium on Applied Computing,
2012, pp. 403–405.

[25] T. Di Noia, R. Mirizzi, V. C. Ostuni, D. Romito, and M. Zanker, “Linked
Open Data to Support Content-based Recommender Systems,” in Procs.
of the 8th Intl. Conf. on Semantic Systems, 2012, pp. 1–8.

[26] T. Di Noia, R. Mirizzi, V. C. Ostuni, and D. Romito, “Exploiting the
Web of Data in Model-based Recommender Systems,” in Procs. of the
6th ACM Conf. on Recommender Systems, 2012, pp. 253–256.

[27] V. C. Ostuni, T. D. Noia, R. Mirizzi, and E. D. Sciascio, “A Linked Data
Recommender System Using a Neighborhood-Based Graph Kernel,” in
Procs. of E-Commerce and Web Technologies, 2014, pp. 89–100.

[28] P. Nguyen, P. Tomeo, T. Di Noia, and E. Di Sciascio, “An Evaluation of
SimRank and Personalized PageRank to Build a Recommender System
for the Web of Data,” in Procs. of the 24th Intl. Conf. on World Wide
Web, 2015, pp. 1477–1482.

[29] G. Jeh and J. Widom, “SimRank: A Measure of Structural-context
Similarity,” in Procs. of the 8th ACM SIGKDD Intl. Conf. on Knowledge
Discovery and Data Mining, 2002, pp. 538–543.

[30] E. Agirre and A. Soroa, “Personalizing PageRank for Word Sense
Disambiguation,” in Procs. of the 12th Conf. of the European Chapter
of the Association for Computational Linguistics, 2009, pp. 33–41.

[31] B. Heitmann and C. Hayes, “Using Linked Data to Build Open, Col-
laborative Recommender Systems,” in AAAI Spring Symposium Series,
2010.

[32] G. Piao and J. G. Breslin, “Factorization Machines Leveraging
Lightweight Linked Open Data-enabled Features for Top-N Recommen-
dations,” CoRR, vol. abs/1707.05651, 2017.

[33] V. C. Ostuni, T. Di Noia, E. Di Sciascio, and R. Mirizzi, “Top-N
Recommendations from Implicit Feedback Leveraging Linked Open
Data,” in Procs. of the 7th ACM Conf. on Recommender Systems, 2013,
pp. 85–92.

[34] C. Musto, P. Lops, P. Basile, M. de Gemmis, and G. Semer-
aro, “Semantics-aware Graph-based Recommender Systems Exploiting
Linked Open Data,” in Procs. of the 2016 Conf. on User Modeling
Adaptation and Personalization, 2016, pp. 229–237.

[35] C. Musto, P. Basile, P. Lops, M. de Gemmis, and G. Semeraro, “Intro-
ducing Linked Open Data in Graph-based Recommender Systems,” Inf.
Process. Manage., vol. 53, no. 2, pp. 405–435, 2017.

[36] C. Musto, F. Narducci, P. Lops, M. De Gemmis, and G. Semeraro,
“ExpLOD: A Framework for Explaining Recommendations Based on
the Linked Open Data Cloud,” in Procs. of the 10th ACM Conf. on
Recommender Systems, 2016, pp. 151–154.

[37] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W.-Y. Ma, “Collaborative
Knowledge Base Embedding for Recommender Systems,” in Procs. of
the 22nd ACM SIGKDD International Conf. on Knowledge Discovery
and Data Mining, 2016, pp. 353–362.

[38] H. Khrouf and R. Troncy, “Hybrid Event Recommendation Using
Linked Data and User Diversity,” in Procs. of the 7th ACM Conf. on
Recommender Systems, 2013, pp. 185–192.

[39] T. D. Noia, I. Cantador, and V. C. Ostuni, “Linked Open Data-Enabled
Recommender Systems: ESWC 2014 Challenge on Book Recommen-
dation,” in Semantic Web Evaluation Challenge, 2014, pp. 129–143.

[40] P. Basile, C. Musto, M. de Gemmis, P. Lops, F. Narducci, and G. Semer-
aro, “Aggregation strategies for linked open data-enabled recommender
systems,” in Procs. of the European Semantic Web Conf., 2014.

[41] I. Fernández-Tobı́as, P. Tomeo, I. Cantador, T. Di Noia, and E. Di Sci-
ascio, “Accuracy and Diversity in Cross-domain Recommendations for
Cold-start Users with Positive-only Feedback,” in Procs. of the 10th
ACM Conf. on Recommender Systems, 2016, pp. 119–122.

[42] B. Heitmann, “An Open Framework for Multi-source, Cross-domain
Personalisation with Semantic Interest Graphs,” in Procs. of the 6th
ACM Conf. on Recommender Systems, 2012, pp. 313–316.

[43] B. Heitmann, M. Dabrowski, A. Passant, C. Hayes, and K. Griffin, “Per-
sonalisation of Social Web Services in the Enterprise Using Spreading
Activation for Multi-Source, Cross-Domain Recommendations,” in AAAI
Spring Symposium Series, 2012.

[44] D. de Ridder, D. Tax, and R. Duin, “An experimental comparison of
one-class classification methods,” in Procs. of the 4th Annual Conf. of
the Advanced School for Computing and Imaging, 1998.

[45] M. Yousef, N. Najami, and W. Khalifav, “A comparison study between
one-class and two-class machine learning for MicroRNA target detec-
tion,” Journal of Biomedical Science and Engineering, vol. 3, pp. 247–
252, 2010.

[46] Y. Koren, “Factorization meets the neighborhood: A multifaceted col-
laborative filtering model,” in Procs. of the 14th ACM SIGKDD Intl.
Conf. on Knowledge Discovery and Data Mining, 2008, pp. 426–434.

[47] L. McDowell, K. M. Gupta, and D. W. Aha, “Cautious inference in
collective classification,” in Procs. of the 22nd AAAI Conf. on Artificial
Intelligence, 2007, pp. 596–601.

