
7

Estimating and Evaluating the Uncertainty of Rating

Predictions and Top-n Recommendations in

Recommender Systems

VICTOR COSCRATO and DEREK BRIDGE, University College Cork, Ireland

Uncertainty is a characteristic of every data-driven application, including recommender systems. The
quantification of uncertainty can be key to increasing user trust in recommendations or choosing which
recommendations should be accompanied by an explanation; uncertainty estimates can be used to ac-
complish recommender tasks such as active learning and co-training. Many uncertainty estimators are
available, but to date, the literature has lacked a comprehensive survey and a detailed comparison. In this
article, we fulfill these needs. We review the existing methods for uncertainty estimation and metrics for
evaluating uncertainty estimates, while also proposing some estimation methods and evaluation metrics of
our own. Using two datasets, we compare the methods using the evaluation metrics that we describe, and
we discuss their strengths and potential issues. The goal of this work is to provide a foundation to the field
of uncertainty estimation in recommender systems, on which further research can be built.

CCS Concepts: • Information systems→ Recommender systems; Uncertainty; • Computing method-

ologies→Uncertainty quantification; • General and reference→ Empirical studies; Evaluation; Estima-

tion; • Mathematics of computing→ Probability and statistics;

Additional Key Words and Phrases: Uncertainty, recommender systems

ACM Reference format:

Victor Coscrato and Derek Bridge. 2023. Estimating and Evaluating the Uncertainty of Rating Predictions and
Top-n Recommendations in Recommender Systems. ACM Trans. Recomm. Syst. 1, 2, Article 7 (April 2023),
34 pages.
https://doi.org/10.1145/3584021

1 INTRODUCTION

Uncertainty is common to every machine learning (ML) task [19, 22]. In particular, model pre-
dictions carry a degree of uncertainty. This uncertainty is often neglected, but it can be beneficial if
uncertainty is quantified and even exploited. The quantification of prediction uncertainty has dif-
ferent motivations in different domains. For example, in medical decision making, estimating the
uncertainty of predictions is key to the management of risk [4]. In weather forecasting, estimating
uncertainty and presenting the estimates to users can increase credibility [39].

This publication has emanated from research conducted with the financial support of Science Foundation Ireland under
Grant No. 18/CRT/6223, which is co-funded under the European Regional Development Fund.
Authors’ address: V. Coscrato and D. Bridge, University College Cork, College Road, Cork, County Cork, T12 K8AF, Ireland;
email: {victor.coscrato, d.bridge}@cs.ucc.ie.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2770-6699/2023/04-ART7 $15.00
https://doi.org/10.1145/3584021

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

https://orcid.org/0000-0003-2779-3082
https://orcid.org/0000-0002-8720-3876
https://doi.org/10.1145/3584021
mailto:permissions@acm.org
https://doi.org/10.1145/3584021
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3584021&domain=pdf&date_stamp=2023-04-24

7:2 V. Coscrato and D. Bridge

The literature in the area often categorizes uncertainty into two types: aleatoric and epis-

temic [22]. The first refers to the randomness of the data itself, which cannot be reduced by
additional knowledge. The second type, which is the focus of this article, instead refers to the
uncertainty caused by lack of knowledge. Therefore, epistemic uncertainty reduces our ability to
know which of several prediction models is the correct one, which ultimately leads to uncertainty
around the chosen model’s predictions. For this reason, we define uncertainty as the expected im-
precision of a prediction. Some related work in the area uses terminology such as reliability [9] or
confidence [13, 41], which, in the context of our work, we take to be the opposite of uncertainty,
that is, the expected precision of a prediction.

We study uncertainty in Recommender Systems (RSs). An RS exposes items (such as products,
services, news articles, or even people) to its users [36]. RSs help their users to discover items that
they might not have found for themselves, and they help users manage the choice of which items
to consume. RSs can be found in many different application domains, often employed at scale: for
example, we find them in online shopping sites, in music and movie streaming services, in social
media platforms, and in news story aggregators.

An RS may filter and rank candidate items in order to recommend a list of the top-n candidate
items. Often, the filtering and ranking are personalized: the top-n on any occasion depends on the
user and the context in which the items are to be consumed. An RS will often use a model that has
been learned from knowledge about the users, knowledge about the items, and records of interac-
tions between users and items (such as purchases, downloads, clicks, and ratings). While there are
many different types of models, content-based and collaborative filtering (CF) recommenders
are two major categories. The first uses descriptions of the items in the catalog allied with records
of the active user’s item consumption history. On the other hand, CF recommenders learn from
historical user-item interactions; in this case, the recommendations to a user are affected by the
preferences of other users in the system.

There can be high uncertainty in the recommendations that an RS makes to its users. In
practical RS applications, the number of items is very large, meaning that users will have
interacted with only a tiny fraction of them. This is known as sparsity. It means the system must
infer a user’s preferences from a relatively small amount of information, leading sometimes to the
generation of unsuccessful but also uncertain recommendations. Moreover, there are challenges
in collecting reliable user-item interaction data. This is particularly true in the case of explicit
ratings, where a user supplies an opinion using, e.g., a 5-point rating scale. Ratings data may be
unreliable due to its high degree of subjectivity [42], which can be explained by variations in user
behavior, personality, and mood; change of preferences over time; and different interpretations of
the rating scales by the users [2, 8]. Furthermore, ratings are usually collected from open systems,
being subject to natural noise (e.g., typing errors) and even malicious noise (e.g., from shilling
attacks) [32].

Quantifying the uncertainty of an RS’s predictions and recommendations is important [13, 28,
29]. Ideally, an uncertainty estimate should help detect which predictions and recommendations
are more or less likely to be wrong [9, 44]. Estimates of uncertainty can improve the operation of
the RS in at least the following three ways.

First, estimates of uncertainty can enhance the presentation of recommendations to users. This
may make the RS more credible, increasing the user’s trust and satisfaction. In the simplest case,
we can present the degree of uncertainty alongside each recommendation [13, 29]. But there are
other ways that uncertainty estimates could affect the presentation of a set of recommendations.
For example, consider an RS that can offer explanations for its recommendations. The user is most
likely to need explanations for recommendations where it is least clear why the item is being
recommended. These are likely to be the recommendations about which the RS is least certain.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

Uncertainty in Recommender Systems 7:3

The RS could use high uncertainty to trigger the offer of an explanation. This may avert the loss
of credibility that can come from showing recommendations that do not make sense to the user.

Second, uncertainty measures offer new strategies for selecting the top-n [28, 33]. Conven-
tionally, the recommended items are those that the model predicts to have highest relevance
to the user. But, equipped with estimates of uncertainty, an RS might discard highly uncertain
recommendations, even when their predicted relevance is high: the user is shown items that
the RS is certain are relevant. On the other hand, an RS might deliberately include some items
that it predicts are relevant but where the relevance is uncertain: from a user point of view, this
coincides with the idea that RSs are tools for item discovery; from a system point of view, this
helps the RS explore user tastes by seeking feedback on uncertain recommendations. An RS might
even combine these strategies: playing it safe by selecting some recommendations that are certain
even though they may be obvious to the user, but taking a risk by also recommending some of
the less certain ones. This is reminiscent of the exploration/exploitation tradeoff that is widely
recognized and studied in Reinforcement Learning and even in the RS literature, e.g., [3, 10].

Third, these estimates may be useful internally to an RS. A concrete example is found in the
CoRec system, which uses co-training [15]. CoRec comprises more than one model, and the most
certain predictions of one model are added to the training set of the other model. More generally,
uncertainty measures might help a hybrid RS decide which of several models to use in a particular
circumstance [11]. There are also examples of Active Learning in Recommender System in which
users are prompted to rate items about which the RS is uncertain, e.g., [25].

In this article, we examine several ways of estimating uncertainty in RSs. In terms of scope, we
confine our attention to RSs where user-item interactions take the form of explicit, numeric ratings,
such as opinions on a 5-point scale. We review, extend, and evaluate the work done in this setting.
Of course, the case where interactions are implicit (purchases, downloads, clicks, and so on) is
important, but it has been largely unexplored from the point of view of uncertainty quantification.
We expect this article, with its focus on explicit ratings, to be a solid foundation that we and others
can build on when progressing to future work in the implicit feedback setting.

The contributions of this article are:

• We present an extensive review of methods for estimating the uncertainty of rating predic-
tions. These methods include information based, stability based, error based, distribution
based, and multinomial based.
• We propose new techniques for estimating the uncertainty of rating predictions. In particu-

lar, we propose a new stability-based method, and also a new error-based method.
• We present an extensive review of the existing work on evaluating estimates of uncertainty

for rating prediction and for top-n recommendation.
• We extend and improve the techniques and metrics for evaluating uncertainty estimates

in RS. In particular, we analyze how uncertainty correlates with dataset statistics, we fix
possible issues with existing metrics, and we propose a new metric to evaluate uncertainty
in the top-n recommendation task.
• We introduce the idea of uncertainty-aware ranking, drawing in part on a recommendation

strategy proposed in [33]. In particular, we distinguish uncertainty-based filtering (UBF)

and probability-of-relevance ranking (PRR). We give methods for evaluating these rec-
ommendation strategies.
• We conduct a reproducible empirical study on two large datasets and report results of the

most extensive comparison of approaches to uncertainty estimation that we are aware of.

In the next section, we will introduce the basic concepts of rating prediction and top-n rec-
ommendation and the role of uncertainty in each. We will also set up the notation used for the

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

7:4 V. Coscrato and D. Bridge

remainder of the article. In Section 3, we will describe several methods for estimating uncertainty
in RS. After that, Section 4 will present metrics for uncertainty evaluation. The remainder of the ar-
ticle evaluates the uncertainty estimates from Section 3 using the evaluation metrics from Section 4.
In particular, Section 5 describes the experiments, while Section 6 shows the results. Section 7 dis-
cusses the uncertainty estimation methods in the light of the experiments. Section 8 concludes the
article.

2 PREDICTION AND RECOMMENDATION

As already mentioned, in this work, we deal with explicit feedback data—specifically, numerical
ratings. We will designate the ordered set of possible ratings by S = {s1, . . . , sm }, where m is the
number of different possible rating values. For example, in the MovieLens dataset and the Netflix
dataset that we use in Section 5, S = {1, 1.5, . . . , 5} and S = {1, 2, . . . , 5}, respectively.

We will assume that our data consists of a set of users U , a set of items I , and a set R of user-
item-rating triples, where triple 〈u, i, rui 〉 ∈ R means that user u’s rating of item i is rui ∈ S . A
user’s profile Ru · is the set of that user’s ratings, Ru · = {rui : 〈u, i, rui 〉 ∈ R}. Similarly, an item’s
support set R ·i is the set of that item’s ratings, R ·i = {rui : 〈u, i, rui 〉 ∈ R}.

2.1 Rating Prediction

Given a user u ∈ U and item i ∈ I , the rating prediction task consists in designing or learning a
function Φ : U × I −→ R that predicts user-item ratings. We will write r̂ui for a particular prediction,
i.e., r̂ui = Φ(u, i).

In this work, we want to not only predict ratings but also the uncertainty level, ρui , present in a
prediction. We will refer to a pair 〈r̂ui , ρui 〉 as an uncertain prediction. In all the work that we report
in this article, uncertainty levels are real-valued, ρui ∈ R. In some cases, they are probabilistic,
which bounds them in [0, 1], but this is not always the case. The higher the uncertainty level, the
more uncertain the prediction.

Many of the methods for estimating uncertainty that we present in this article assume a rating
prediction model, Φ. Wherever this is the case, we will employ Matrix Factorization (MF) for
this underlying model. Specifically, we will use the form of MF known as FunkSVD [18]. This is
known to be a fairly accurate predictor, and by using it in all cases where we need a separate
predictor, we bring a degree of fairness to the comparisons. The idea is to represent users and
items in a low-dimension latent space. If the number of latent factors is denoted by d , then each
user u is represented by a vector pu and each item i by a vector qi , both of dimension d . Then, we
can compute a predicted rating r̂ui by taking a dot product:

r̂ui = p
T
uqi . (1)

One way to learn the user and item embeddings, pu and qi , is through gradient descent: the
vectors are initialized with randomly chosen values; the algorithm proceeds by sampling instances
from the training set, calculating the error between the predicted rating (Equation (1)) and the
actual rating for these instances; and pu and qi are updated through gradient descent to minimize
these errors. In practice, the loss function to be minimized for each sampled instance is

(rui − r̂ui)2 + λU | |pu | | + λI | |qi | |, (2)

where λU and λI are regularization hyperparameters and | |·| | denotes the Frobenius norm. To speed
up the training process, batches of instances can be sampled instead. In this case, the parameters
are updated according to the average loss of the batch.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

Uncertainty in Recommender Systems 7:5

2.2 Top-n Recommendation

Of more importance than rating prediction is top-n recommendation [21]. Given a user u ∈ U and
a set of candidate items Cu ⊆ I , the top-n recommendation task consists of retrieving Zn

u ⊆ Cu ,
which is the set of n items fromCu that are predicted to be most appealing to u. There are several
ways that this can be done.

The conventional way of selecting the top-n is to use the predicted ratings alone (see rating-

based ranking, below). But, given that we are considering models that can estimate prediction
uncertainty, there is an opportunity to consider other ways of selecting the top-n. These use what
we can collectively refer to as uncertainty-aware ranking. If the estimates of uncertainty are good
enough, we may achieve better (or, at least, usefully different) recommendation performance by
recommendation strategies that rank the candidates using some combination of the predicted rat-
ings and their estimated uncertainties. We propose two such strategies: uncertainty-based filtering

and probability-of-relevance ranking.

2.2.1 Rating-based Ranking. When feedback data takes the form of explicit, numeric ratings,
the top-n recommendation task is conventionally performed by ranking the candidate itemsCu in
descending order of their predicted ratings and then forming Zn

u by selecting the top-n items from
this ordering. We will refer to this way of doing top-n recommendation as rating-based ranking

(RBR).
RBR makes no use of the uncertainty levels associated with the predictions. Next, we present

two kinds of uncertainty-aware ranking.

2.2.2 Uncertainty-based Filtering. In some domains, we may not want to recommend candidate
items if we are uncertain that the user will find them to be appealing. In this case, we can use UBF.
In UBF, we filter the candidate items, discarding those whose uncertainty is above some threshold
τ . After this filtering step, we rank the remaining candidates in descending order of their predicted
ratings and form Zn

u by selecting the top-n items from this ordering.
If τ is small, it is likely that several of a user’s candidate items items will be filtered out, which

leads to less uncertain items being recommended. Some of these items may, however, be ones with
smaller predicted ratings. Furthermore, some users might have a very small candidate set after
filtering. For this reason, there might be cases in which the desired amount of recommendations
cannot be provided to some users. On the other hand, larger τ values may mean that, for some
users, few or even no items are filtered out.

There are, of course, variations of these ideas. For example, we could consider ranking the can-
didate items by a linear combination of their predicted ratings and their uncertainty estimates.

2.2.3 Probability-of-relevance Ranking. Both RBR and UBF rank the candidates item based on
their predicted ratings. But, if predictions are accompanied by uncertainty levels, there may, in
certain cases, be an opportunity to rank candidates based on uncertainty. We call this probability-
of-relevance ranking and we will present the exact details in later sections. But, in overview, the
approach requires the use of a relevance threshold, θ ∈ S . When a rating is greater than or equal
to this threshold, then the item is deemed to be relevant to the user. In the datasets we use in
Section 5, which use a five-star rating scale, θ might be 4, for example. In PRR, we must estimate
the probability that rui ≥ θ , P(rui ≥ θ)—how certain we are that the item is relevant. Then,
we rank the candidates in descending order of the relevance probabilities, so that those whose
relevance is most certain are highest in the ranking. Finally, PRR recommends the top-n from this
ranking.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

7:6 V. Coscrato and D. Bridge

Table 1. General Notation

U set of all users
I set of all items
rui user u’s rating for item i
S ordered set ofm possible rating values, S = {s1, . . . , sm }
R set of all user-item-rating-triples
Ru · user u’s profile, i.e., Ru · = {rui : 〈u, i, rui 〉 ∈ R}
R ·i item i’s support set, i.e., R ·i = {rui : 〈u, i, rui 〉 ∈ R}
r̂ui prediction of user u’s rating of item i
Φ a prediction model, i.e., r̂ui = Φ(u, i)
ρui estimated uncertainty of the prediction of user u’s rating of item i
〈r̂ui , ρui 〉 an uncertain prediction
Cu candidate items, Cu ⊆ I , that might be recommended to user u
Zn

u list of n items that are recommended to user u
τ uncertainty threshold; in UBF, candidates for which ρui > τ cannot be recommended to u
θ relevance threshold; item i is considered relevant to user u if rui ≥ θ

PRR was first proposed in [33], specifically for their BeMF method, which we will review in
Section 3.5. Nevertheless, it also applies to many other models, as long as they are able to estimate
P(rui ≥ θ). Some of the other methods that we review in Section 3 will be able to compute such
probabilities by default, while we show that some others can also be extended to do so.

Notice that, with PRR, P(rui ≥ θ) is used to rank the items. If one also wishes to associate each
recommended item with a numeric uncertainty estimate (e.g., for display to the user), then the
complementary probability 1 − P(rui ≥ θ) can be used.

2.3 Notation

Table 1 summarizes the notation that we have introduced in this section. Other notation, which
is specific to particular models, will be introduced on an as-needed basis in the remainder of the
article.

3 ESTIMATING UNCERTAINTY

There are many ways of estimating the level of uncertainty of a predicted rating in a Recommender
System. Different sources of uncertainty can motivate different ways of estimating the uncertainty.
For the purposes of surveying the approaches, we classify them into five broad types, as follows:

Information based: Uncertainty is estimated from the amount of information that is known
about users or items, or the dispersion of the ratings.

Stability based: Uncertainty is estimated from the stability of the predictions across pertur-
bations of the conditions under which we train the prediction model.

Error based: Uncertainty is estimated from the expected prediction errors of an underlying
rating prediction model.

Distribution based: The ratings are assumed to follow a statistical distribution, whose dis-
persion is used to estimate uncertainty.

Multinomial based: Multinomial methods also estimate uncertainty from the dispersion of
the predicted ratings, but they use models that make discrete predictions for each rating
value.

In the following sections, we describe each of these classes in more detail, review work from the
literature that falls into each class, and even propose new stability-based and error-based methods.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

Uncertainty in Recommender Systems 7:7

3.1 Information-based Uncertainty

The foremost source of uncertainty in a Recommender System comes from the lack of user-item
interaction data. In practice, item catalogs are often large and therefore users will interact with
only a small proportion of the items in the catalog. In our setting, this means that users will have
rated only a small proportion of the items: in the majority of cases, 〈u, i, rui 〉 � R. Models learned
from this sparse data may be unreliable. For this reason, simple statistics such as item support (the
number of ratings an item has) can be used to measure the reliability of the predictions [28]. Hence,
its negative can be used as an estimate of uncertainty:

NEG-ITEM-SUPPORT: ρui = −#R ·i

Although item support is indicative of the information available about an item, it might also
be misleading. For instance, two items might have the same number of ratings, but one of them
might be rated similarly by different users, whereas the other might have received more divergent
ratings. We expect a higher degree of uncertainty when predicting the ratings of items that have
divergent ratings. For this reason, the variance of an item’s ratings can also be used as an estimate
of uncertainty [1, 28]:

ITEM-VARIANCE: ρui = Var (R ·i)

In a similar vein, we can estimate uncertainty from user profile length (the number of ratings a
user has) or the variance of a user’s ratings:

NEG-USER-SUPPORT: ρui = −#Ru ·
USER-VARIANCE: ρui = Var (Ru ·)

Information-based measures of uncertainty can be insightful. Nevertheless, they are quite sim-
ple. One weakness is that they are model independent, because they are computed strictly from the
data, independently of the rating prediction model. In other words, changing from one prediction
model to another does not result in any change to the estimates of uncertainty. This is counter-
intuitive, because different models utilize the data differently, and we would expect uncertainty
estimates to reflect this behavior. This will not be the case for information-based measures.

A second weakness is that NEG-ITEM-SUPPORT and ITEM-VARIANCE quantify uncertainty
item-wise and not interaction-wise. That is, their estimated uncertainty for an item i is not person-
alized: ρui = ρvi ∀ (u,v) ∈ U 2. Similarly, NEG-USER-SUPPORT and USER-VARIANCE are strictly
user-wise measures: ρui = ρuj ∀ (i, j) ∈ I 2.

Used in isolation, item-wise and user-wise measures lack the granularity that Recommender
Systems typically need. This is especially the case for user-wise measures. A user-wise uncertainty
estimate cannot help a system decide which of a set of recommendations need explanations, for
example, since all of a user’s recommendations will have the same uncertainty level. Similarly,
user-wise uncertainty estimates cannot be used in top-n recommendations that are uncertainty
aware, such as UBF and PRR, again because the estimated uncertainty associated with each of that
user’s predicted ratings will be the same. In fact, since top-n recommendation is a more important
task than rating prediction and since top-n recommendation is a user-based task, user-wise
uncertainty estimates are largely useless. For that reason, the literature on information-based
uncertainty is focused on item-wise metrics [28]. In our experiments (Section 5), we do not
include user-wise uncertainty estimates.

Nevertheless, user-wise and item-wise estimates of uncertainty can provide insights into Rec-
ommender System performance. For example, Bernardis et al. [7] show both theoretically and
empirically how eigenvalues obtained from an item-item similarity matrix are strongly related to
the model recommendation accuracy. The negatives of these eigenvalues can also be interpreted
as user-wise uncertainty metrics.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

7:8 V. Coscrato and D. Bridge

Finally, we note that, instead of using these estimates in isolation, some authors have proposed
heuristic combinations of NEG-USER-SUPPORT and NEG-ITEM-SUPPORT (e.g., based on their
product) to give interaction-wise measures (e.g., [15, 43]).

3.2 Stability-based Uncertainty

Prediction uncertainty is related to the level of arbitrariness present in the predictions. Hence, a
prediction is uncertain the more it exhibits high variance across small perturbations to the condi-
tions under which the prediction model is learned.

Mazurowski [28] explores this idea in a multi-modeling strategy. Consider that a model Φ is used
to predict ratings. Then, model stability can be measured by learning several different models from
perturbations of the training dataset. A stochastic perturbation function, P, is used to create N
different versions of the original ratings training data, i.e.,R (k) = P (R), for k ∈ 1, . . . ,N . A ratings
prediction model Φ(k) is learned from each of the versions of the dataset. Considering the predicted
ratings as random variables, their standard deviation is an estimate of that rating’s uncertainty.

In a strategy called RESAMPLE, Mazurowski [28] uses random sampling as the perturbation
function. In this case, each individual model is trained using a random subset of the ratings avail-
able for training. The predicted rating r̂ui is given by a model Φ trained on the entire training set;
the estimated uncertainty of that prediction is given by the standard deviation of the predictions
from the models Φ(k) that are trained on the different samplings of the training set:

r̂ui = Φ(u, i) (3)

ρui =
1

N

√√√
N∑

k=1

(Φ(k) (u, i) − r̂ui)2. (4)

Mazurowski [28] proposes another such strategy, called INJECT. In this strategy, the perturbed
datasets are obtained by adding noise to the original ratings; i.e., new ratings, r ′ui , are obtained as
rui +ϵ , where ϵ is random Gaussian noise. The empirical results in [28] show that RESAMPLE gen-
erates better estimates of uncertainty compared with INJECT, which is why, in our own empirical
work (Section 5), we include RESAMPLE and not INJECT.

Unlike the information-based uncertainty measures, which are model independent, the stability-
based measures do depend on the prediction algorithm itself. Furthermore, the stability-based
measures are interaction-wise measures. On the other hand, in order to obtain good estimates
for the predicted rating variance, several different models have to be learned; hence, computing
these measures can be slow. In [28], this problem motivates FAST-RESAMPLE, which approximates
RESAMPLE by using in each Φ(k) some model parameters that have been computed once on the
original ratings.

In this article, we introduce a perturbation strategy that has not previously been evaluated in
the context of uncertainty estimation. It is model specific and, indeed, depends on using models
whose parameters require random initialisation. The strategy, which we designate ENSEMBLE,
consists in multi-modeling for different initialization points. The predicted rating is the mean of
the predicted ratings of the individual models, and the estimated uncertainty is their standard
deviation as before:

r̂ui =
1

N

N∑
k=1

Φ(k) (u, i) (5)

ρui =
1

N

√√√
N∑

k=1

(Φ(k) (u, i) − r̂ui)2. (6)

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

Uncertainty in Recommender Systems 7:9

Using different initialization points for the perturbations in multi-modeling is interesting since
it means that all of the training ratings are used to learn each model Φ(k) ; by contrast, RESAMPLE
uses only a subset of the training data for each model. This might lead to better rating estimation,
and we see some evidence of this in the results of our experiments.

For our empirical work (Section 5), the models in the ensemble use MF (Section 2). MF is known
to suffer from strong instability, depending on the initialization of the vectors. This has been shown
by [16] in a recommendation context and also by [5] and [35] for topic modeling. Ensembles of
MF models that have been initialized differently can result in lower error and greater stability but
also enable us to estimate uncertainty.

3.3 Error-based Uncertainty

Uncertainty in rating predictions can be estimated through the expected error in those predictions.
The more certain a prediction is, the more accurate the prediction should be. Zhu et al. [44] give a
method for estimating prediction error and then use this as the measure of uncertainty.

Zhu et al. [44] use a cross-validation procedure to obtain a set of prediction errors E. First, they
partition the training ratings R into K folds. It follows that each known rating rui ∈ R will appear
in exactly one test fold. Then, they learn K models, Φ(k) for k ∈ 1, . . . ,K , where Φ(k) is learned
from all the training ratings except those in the kth fold. Now, they can make a prediction r̂ui that
corresponds to each known rating rui ∈ R. Specifically, if rui is in thekth fold, then Φ(k) predicts r̂ui .
This allows a calculation of training error, eui = rui − r̂ui . At the end of this cross-validation phase,
they have a set of prediction errors eui ∈ E for each rui ∈ R. Finally, they learn two models. One is
a ratings prediction model Φ, learned from the entire ratings training set R. The second is an error
prediction model, E : U × I → R+, that can predict the rating prediction errors, which is learned
from E.

At prediction time, we want to compute uncertain predictions, 〈r̂ui , ρui 〉. The predicted rating,
r̂ui , is given by the final rating prediction model, Φ; the uncertainty level, ρui , is the estimated
prediction error, given by model E.

In Zhu et al. [44], FunkSVD was chosen as both Φ and E. That is, one FunkSVD model Φ is
responsible for the rating predictions, while another FunkSVD model E estimates uncertainty (i.e.,
errors). In Section 5, we designate this strategy by EB-FunkSVD. More precisely, in EB-FunkSVD,
we have

r̂ui = p
T
uqi (7)

ρui = p
′
u

Tq′i , (8)

where pu and qi are embeddings learned from R, and p ′u and q′i are embeddings learned from E.
Nevertheless, FunkSVD is only one of many possible uncertainty estimators E. During our

empirical study, we found EB-FunkSVD to perform below our expectations. For some of our eval-
uation metrics, much simpler estimates, such as NEG-ITEM-SUPPORT, had better performance.
These results raised a concern about possible over-complexity of FunkSVD for the uncertainty
estimator. For this reason, we also experimented with a much simpler choice of E, which we refer
to as EB-Linear.

In EB-Linear, we define linear weights bu ∈ R for u ∈ U and bi ∈ R for i ∈ I for every user
and item. Now, we propose that the uncertainty for a user-item pair (i.e., the predicted error) to
be simply the sum of the user’s and item’s weights. With this formulation, instead of E having a
d-dimensional embedding to model each user and item, there is only a single scalar parameter for
each. More precisely, in EB-Linear, we have

ρui = bu + bi . (9)

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

7:10 V. Coscrato and D. Bridge

The user and item weights, bu and bi , are learned, by gradient descent, to minimize the mean
squared error between the predicted and observed errors.

Finally, we also acknowledge the contribution by Cleger-Tamayo et al. [13], where another
uncertainty estimation approach based on prediction errors was introduced. There, uncertainty
estimation is viewed as a binary classification task, where the goal is to segregate certain from
uncertain predictions. This task is solved by learning a classifier that predicts whether a user-item
interaction is uncertain or not. The classifier is learned based on both the prediction errors
committed by the rating prediction model (in their case, a k-nearest neighbors model) and the
ratings given by similar users to the same item. We will not further explore this approach for two
reasons. First, it is restricted to neighborhood models. Second, the segregation of items into two
types (certain and uncertain) is quite different from the formulation used in our work, where we
seek to estimate the level of uncertainty, ρui (Section 2). In any case, EB-FunkSVD and EB-Linear
are also based on prediction errors and can be applied to a wider class of collaborative filtering
models.

3.4 Distribution-based Uncertainty

The Recommender Systems literature contains several methods that consider each user-item rating
to be a random variable, each having a certain probabilistic distribution F |Θ
〉, where Θ is the set
of distribution parameters. Modeling the ratings with a distribution rather than a point estimate
allows the recommender to produce a much richer output, from which it is possible not only to
obtain point estimates for the ratings but also to infer the uncertainty associated with these point
estimates.

The Gaussian distribution emerges as a natural choice: its mean, μ, and variance, σ 2, are obvious
choices for the rating point estimates and their uncertainties. In this case, rui ∼ N (μui ,σ

2
ui), and

the task of estimating rui is performed by estimating Θui = 〈μui ,σ
2
ui 〉 for every user-item pair.

One notable algorithm to employ a Gaussian model is Probabilistic Matrix Factorization

(PMF) [30]. In PMF, the ratings are assumed to follow a Gaussian distribution, with a fixed variance
parameter σ 2 = 1. As before, letpu and qi be user and item embeddings, both of dimensiond . Then,
the likelihood of the training data can be written as

P(R) =
∏
i ∈I

∏
u ∈U

[
N (rui |pT

uqi , 1)
]δui

, (10)

whereN (·|μ,σ 2) is the probability density function of the Gaussian distribution with mean μ and
variance σ 2, and δui is an indicator function that is equal to 1 if useru rated item i and 0 otherwise.
The latent factors are assumed, in prior, to follow a zero-mean spherical Gaussian distribution. In
this case, maximizing the log-posterior distribution is equivalent to minimizing the sum of squared
errors subject to L2 regularization terms:∑

u ∈U

∑
i ∈I

δui (rui − pT
uqi)2 + λU

∑
u ∈U
| |pu | | + λI

∑
i ∈I

| |qi | |. (11)

Notice that, although having a different motivation, the PMF model optimizes an objective function
that is identical to FunkSVD’s (Equation (2)).

PMF assumes every user-item pair to have the same variance. Not only is this a very strong as-
sumption in general, but also it means that PMF is not suitable for uncertainty estimation, since ev-
ery user-item pair would have the same estimated uncertainty σ 2. For this reason, Wang et al. [41]
extend PMF to Confidence-aware Probabilistic Matrix Factorization (CPMF). There, each
user and item are assumed to have a latent variance parameter, σu and σi , respectively. The vari-
ance of each user-item pair is obtained by some function γ : R×R −→ R+ that composes these two

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

Uncertainty in Recommender Systems 7:11

latent variance parameters. Therefore, the likelihood of the training data is

rui ∼ N (pT
uqi ,γ (σu ,σi)). (12)

The latent factors, pu and qi , and the variance parameters, σu and σi , are estimated through gradi-
ent descent on the negative log-likelihood.

Wang et al. [41] use a simple product for γ . In our experiments (Section 5), we do the same and
this is what we are referring to when we write CPMF in that later section of this article.

Wang et al. [41] also propose a Bayesian version of the algorithm, similar to [37]. The idea of
the Bayesian framework is to automatically control model complexity through prior distributions
in order to alleviate the effects of over-fitting and to improve model generalization.

The next section presents further distribution-based methods for the special case where ratings
are not treated as continuous variables.

3.5 Multinomial-based Uncertainty

Ratings are typically discrete; for example, the ratings in the Netflix Prize dataset are integers from
1 to 5 [6]. But, in rating prediction, ratings are often treated as continuous variables. In other words,
the model predicts real values: Φ : U × I −→ R. Then, as we have seen, there are various ways of
augmenting each predicted rating with an estimated uncertainty level.

Multinomial models treat predicted ratings as discrete variables. For each point on the rating
scale, they predict a probability. Hence, the output of a multinomial prediction model is a vector,
containing one probability for each score s on the rating scale S = {s1, . . . , sm }, where P(rui = s) for
the probability that user u will assign rating s ∈ S to item i , and

∑
s ∈S P(rui = s) = 1. For instance,

in the Netflix case, the model will predict P(rui = s) ∀s ∈ {1, . . . , 5}. This idea has motivated several
recommendation algorithms, including the User Rating Profile Model (URP) [27], Bernoulli

Matrix Factorization (BeMF) [33], and OrdRec [26]. From a statistical standpoint, this way of
formulating rating prediction consists of assuming rui follows a multinomial distribution. Hence,
it is possible to extract not only point estimates for the ratings but also dispersion statistics, which
can be used as estimates of uncertainty.

The BeMF model is one way to estimate the vector of probabilities [33]. BeMF learnsm different
Bernoulli factorization models, one for each point on the rating scale; i.e., it learns a set of models
Φ = {Φ1, . . . ,Φm }. To learn each individual model Φs , it uses a modified version of the training set
Rs = {(u, i, ruis)}, such that

ruis =
⎧⎪⎨⎪⎩

1, rui = s

0, otherwise
∀(u, i, rui) ∈ R. (13)

Each Bernoulli factorization model Φs makes predictions in the same way as the FunkSVD method
(Equation (1)), but with the difference that the predictions are scaled through a logistic function,
which bounds them to the [0, 1] interval. To learn the latent factors, for each individual model, the
cross-entropy loss function is used. The loss for a single training instance is

Φs (u, i)ruis (1 − Φs (u, i))1−ruis . (14)

The parameters of the model are updated by performing gradient descent on this loss function.
Finally, the probabilities are given by

P(rui = s) =
Φs (u, i)∑

s ∈S Φs (u, i)
. (15)

With the probabilities estimated, [33] proposes that the predicted rating will be the most proba-
ble value in the rating scale, and the uncertainty estimate will be the probability mass lying outside

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

7:12 V. Coscrato and D. Bridge

this most probable rating value:

r̂ui = args ∈S maxP(rui = s) (16)

ρui = 1 −max
s ∈S
P(rui = s). (17)

A rather different multinomial approach, OrdRec, is proposed in [26]. While OrdRec has a very
different formulation from BeMF, its ultimate goal is also to predict the vector of probabilities.
OrdRec learns a single rating prediction model, e.g., using FunkSVD, which will be denoted Φ.
Then, for every s ∈ {s1, . . . , sm−1}, the cumulative probability function for the ratings is

P(rui ≤ s) =
1

1 + eΦ(u,i)−tus
, (18)

where tus for each s ∈ S is a user-specific set of threshold parameters. Notice that P(rui ≤ sm) =
1 as this is a cumulative distribution. After estimating the cumulative functions, the individual
probabilities are obtained by

P(rui = si) = P(rui ≤ si) − P(rui ≤ si−1). (19)

Now, for every u ∈ U , let tu0 = 0. Then, the gaps between a user’s thresholds are encoded as a
set of parameters βu1, βu2, . . . , βum−1, such that

tusi
= tusi−1 + e

βusi , ∀i ∈ {1, . . . ,m − 1}. (20)

Therefore, the whole set of parameters to be learned for OrdRec includes the underlying model’s
parameters, as well as {βu1, βu2, . . . , βum−1}∀u ∈ U . The likelihood function for the model is∏

i ∈I

∏
u ∈U

∏
s ∈S

(P(rui = s))δ (rui=s) . (21)

Learning is performing by stochastic gradient descent on the negative log-likelihood function.
With the rating distribution estimated, there are many ways in which rating predictions and

uncertainty estimates can be extracted. Koren and Sill [26] argue that the distribution’s average
and some measure of its dispersion can be used to predict ratings and uncertainty, respectively.
Moreover, any distribution dispersion metric can be employed, such as standard deviation, Gini
impurity, or entropy. Among these, they empirically found that the standard deviation performed
best for uncertainty and, therefore, we will use the same when we estimate uncertainty using
OrdRec in this article:

r̂ui =
∑
s ∈S

s P(rui = s) (22)

ρui =

√
1

m

∑
s ∈S

(s2P(rui = s)) −mr̂ 2
ui . (23)

Moreover, we highlight one concern regarding the uncertainty estimates given by Equation (23):
when r̂ui is either too small or too big, that is, close to s1 or to sm , then the uncertainty ρui will
always be very low. This happens because, in order to predict one of the distribution’s extremes,
the vast majority of the distribution’s probability have to fall on this extreme rating value, leading
to very low standard deviation. Intermediate rating values do not suffer from the same problem
because, in this case, the distribution’s probability can be dispersed symmetrically around that
intermediate rating value.

We have concluded our review of ways of estimating ratings prediction uncertainty. We turn
our attention now to ways of evaluating these estimates.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

Uncertainty in Recommender Systems 7:13

4 EVALUATING UNCERTAINTY ESTIMATES

After training a rating prediction model, it is common to evaluate its performance on a test set,
this being a set of known ratings that was held out during training. The most common rating
prediction evaluation metrics, such as root mean squared error (RMSE), simply compare the
predicted ratings to the known ratings in the test set T , that is:

RMSE =

√∑
rui ∈T (r̂ui − rui)2

#T
. (24)

In this case, the known ratings give us a “ground truth” for the evaluation. Similarly, after es-
timating the uncertainty of predicted ratings, it is desirable to evaluate the quality of the uncer-
tainty estimates. But, evaluation of the uncertainty estimates is not as simple as evaluating the pre-
dicted ratings because there are no ground-truth values that can be compared with the uncertainty
estimates.

Our review of ways of evaluating estimates of rating prediction uncertainty starts with a discus-
sion of expected correlations. Subsequent sections then correspond to the different tasks that we
laid out in Section 2, namely rating prediction and top-n recommendation, the latter being split
into rating-based ranking, uncertainty-based filtering, and probability-of-relevance ranking.

4.1 Expected Correlations

Despite the differences in the uncertainty estimates that we reviewed in Section 3, there are “pat-
terns” that we expect to observe, including the following:

Negative correlation with user profile size: The less we know about a user’s tastes, the
more uncertain we expect that user’s predictions ratings to be.

Negative correlation with item support: Similarly, the less that an item has been interacted
with, the less certain we expect that item’s predicted ratings to be.

Positive correlation with user rating variance: The more a user’s ratings vary from each
other, the less certain we expect that user’s predictions to be.

Positive correlation with item rating variance: The more an item’s ratings vary from each
other, the less certain we expect that item’s predictions to be.

To the best of our knowledge, we are the first to propose checking these correlations. Computing
them can serve as an initial check that a particular way of estimating uncertainty behaves, on the
whole, in the way we might expect. We have chosen to carry out this check using Spearman rank
correlation, because the correlations might not always be linear.

It is important to point out that some of these correlations might not always hold for individual
user-item interactions. For example, in the movie domain, a new movie from a famous director is
usually a very safe and expected recommendation, even though the movie, being newly released,
will have low item support.

We also expect to see some correlations between the uncertainty estimates and prediction error
and top-n recommendations accuracy:

Prediction error: The more wrong a predicted rating is, the less certain we expect the predic-
tion to be.

Recommendation accuracy: Similarly, the more accurate a set of top-n recommendations is,
the more certain we expect the predicted rating for each item in the top-n to be.

The literature offers several metrics that we can compute to confirm these correlations, and we
explore these in more detail in the following subsections.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

7:14 V. Coscrato and D. Bridge

4.2 Rating Prediction

Uncertainty measures are expected to reflect prediction errors. For this reason, the foremost
method for evaluating the quality of estimates of rating prediction uncertainty consists of simply
evaluating the correlation between the prediction errors in a holdout test set and their estimated
uncertainty. Different correlation coefficients can be used. For example, Pearson correlation can
be used to measure the linear correlation, while Spearman correlation can be applied if rank cor-
relation is preferred. Later, we refer to these correlations (between rating prediction errors and
uncertainty estimates) as Pearsonρ and Spearmanρ .

Mazurowski [28] proposes a visualization of the correlation between uncertainty and predic-
tion error. In fact, Mazurowski refers to “reliability estimates” on predicted ratings, rather than
uncertainty estimates. But, as his concept of reliability is the opposite of uncertainty, his visualiza-
tion can be used here, after some adaptations. In what follows, we “translate” his proposals to our
uncertainty framework.

Mazurowski splits the predictions for the test set into B equal-sized bins based on, and ordered
by, their uncertainty levels—that is, bin 1 contains the least uncertain predictions and bin B the
most uncertain ones. For each binb, Mazurowski calculates an error threshold, ϵb . The error thresh-
old for bin b measures how inaccurate the predicted ratings within the bin are. The thresholds are
calculated such that Bayesian confidence intervals of the form [r̂ui − ϵb , r̂ui + ϵb] contain the real
rating rui for at least (1−α)× 100% of the bin’s predictions, where α ∈ [0, 1] is a fixed significance
level. The quality of the confidence intervals is determined by the curve of the error thresholds
against their confidence bin.

One problem with the latter method is that the curves will depend on the choice of α . In fact,
the reliance on α means that each uncertainty estimate will have a family of curves (for each value
of α), which makes it more difficult to compare uncertainty estimates. To solve this issue, and
also to adapt Mazurowski’s confidence intervals to our uncertainty framework, we propose to use
uncertainty bins, rather than confidence bins, and to calculate the average RMSE in each of these
uncertainty bins. In this case, given B equal-sized uncertainty bins, we calculate the following for
each bin b:

RMSEb =

√∑
ρui ∈b (r̂ui − rui)2

#ρui ∈ b
, (25)

where the denominator is the number of test instances falling into bin b. Similarly to before, we
then plot the curve of the RMSEb values against their bin index. We refer to these as RMSE-
uncertainty curves. Now these curves have no reliance on additional parameters other than the
number of reliability bins—in particular, there is no longer the parameter α .

Nevertheless, a problem that remains is how to interpret curves like these. To illustrate, we refer
to Figure 1. The figure shows three example RMSE-uncertainty curves. Notice that all the curves
have very similar RMSE1 and RMSEB values. On the other hand, their behaviors in between these
extremes are different. In this case, there is no clear definition that says which curve is preferred,
and hence which of the underlying uncertainty estimates is better.

To alleviate this problem, some simple metrics can be extracted from the curves. One option,
which has been explored in [28], is to calculate the difference in the values between the first and
last bins. In [28], this metric is called dw . Here, to avoid confusion due to the fact that we are using
RMSE uncertainty curves, we will refer to it as δRMSE:

δRMSE = RMSEB − RMSE1. (26)

Higher values of δRMSE are indicative that prediction error grows as uncertainty grows.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

Uncertainty in Recommender Systems 7:15

Fig. 1. Example RMSE-uncertainty curves.

Table 2. Criteria for a Good Estimate of Rating Prediction Uncertainty

Prediction Error Uncertainty Uncertainty Evaluation Metric
High Low Big penalty
Low High Small penalty
High High Big reward
Low Low Small reward

In a similar vein, Bobadilla et al. [9] argue that an evaluation metric for an uncertainty measure
should penalize predictions where certainty is high but predictive error is also high and should
strongly reward predictions where uncertainty is high and predictive error is high. Table 2 schemat-
ically describes the desired behavior.

Bobadilla et al. [9] propose a metric that matches the criteria in Table 2. Like the work
in [28], Bobadilla et al.’s Reliability Prediction Improvement metric is given in terms of reliabil-
ity. We adapt it from reliability to uncertainty and call it Uncertainty Prediction Improvement

(UPI).
To define UPI, we first compute the absolute errors eui = |r̂ui − rui |,∀(u, i, rui) ∈ T , where T is

a holdout test set. Then, we define the metric criteria, CU P I , as follows:

CU P I
ui = eui (eui − e) (ρ − ρui), (27)

where e and ρ are the means of the absolute errors and the uncertainty estimates for all the test
instances in T . UPI is then defined as

UPI =

1
σe σρ #T

∑
rui ∈T CU P I

ui

e
, (28)

where σe and σρ are the standard deviations of the absolute errors and uncertainty estimates. The
divisor term, σeσρ #T , standardizes the criteria values, while the term e compares the standardized
criteria values to the mean absolute error.

[26] take a rather different approach to the evaluation of uncertainty estimates. Instead of using
metrics, such as δRMSE and UPI, they build and evaluate what they call confidence classifiers. These

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

7:16 V. Coscrato and D. Bridge

are binary classifiers that use the uncertainty estimates as predictors (features) to predict whether
or not the rating error will be greater than 1. In practice, given a set of predicted ratings r̂ui and their
respective observed ratings rui , a confidence classifier is a logistic model, where the uncertainty
estimate is the predictive feature, and the model predicts the probability P(|r̂ui − rui | > 1). Once
trained, the confidence classifier is evaluated using a holdout set. Its accuracy on the holdout set
is an indicator of the effectiveness of the uncertainty estimate. Koren and Sill use the classifier’s
Area Under the Curve (AUC) for this.

Care must be taken to avoid training and evaluating the confidence classifier on the instances
used to train the rating predictor. In our experiments, we train the rating predictor on the training
set, and then we use twofold cross-validation on the test set to train and evaluate the confidence
classifier. In other words, we train the confidence classifier on half of the test instances and evaluate
its AUC on the other half of the test instances. We repeat this, after interchanging the two folds.
The final results that we report are the average AUC across the two folds. In Section 6, we refer to
this approach to evaluation as Error-Uncertainty Classification (EUC).

We highlight that the choice to predict P(|r̂ui − rui | > 1) with this method is arbitrary. The
method is general: we could build confidence classifiers based on thresholds other than 1. In our
experiments, however, we follow [26]’s use of 1.

4.3 Top-n Recommendation

In traditional evaluation of recommender models, it has been common to calculate metrics based
on prediction error, such as RMSE. Nevertheless, at recommendation time, top-n items are shown,
typically those with the highest predicted ratings. Hence, it is also necessary to evaluate the rec-
ommendation accuracy at top-n [38]. Many metrics have been defined for evaluating the top-n
accuracy. In this article, where evaluation of uncertainty estimates is more important than evalu-
ation of top-n accuracy, we use just two top-n accuracy metrics, namely MAP@n and Recall@n.
Let relu be u’s ratings in test set T where rui ≥ θ , where θ is the relevance threshold. Then,

MAP@n =
1

#U

∑
u ∈U

n∑
k=1

Precision@ku × δ
(
Zn

u (k) ∈ relu
)
, (29)

where

Precision@ku =
#{Zk

u ∩ relu }
k

, (30)

and where δ (Zn
u (k) ∈ relu) = 1 if the kth item in Zn

u is in relu and 0 otherwise:

Recall@n =
1

#U

∑
u ∈U

#{Zn
u ∩ relu }
#relu

. (31)

As we said above, we also want to evaluate the quality of the uncertainty estimates at top-n.
Corresponding with Section 2.2, we divide our discussion of ways of doing this into three.

4.3.1 Rating-based Ranking. As previously stated, we expect recommendation accuracy to be
greater in cases where the recommendations are less uncertain. Therefore, one metric to evaluate
the uncertainty estimates is the Spearman correlation between some recommendation accuracy
metric, e.g., MAP@n, and the average uncertainty of the recommended items for the user. We will
refer to this as Uncertainty Accuracy Correlation (UAC). Notice that, for this metric, smaller
values denote better performance.

In a similar vein, Bobadilla et al. [9] propose Reliability Recommendation Improvement, a met-
ric that evaluates reliability estimates in the case of recommendations. Their metric is based on
similar criteria to those in Table 2, this time that hits (top-n recommendations that are correct)

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

Uncertainty in Recommender Systems 7:17

should be associated with lower uncertainty levels than the non-hits. We present Uncertainty

Recommendation Improvement (URI), which is our adaptation from reliability to uncertainty.
Our adaptation starts by defining CU RI as follows:

CU RI
u =

∑
i ∈Z n

u |rui ≥θ

(ρ − ρui). (32)

Notice that there is a strong relation with CU P I . However, URI is focused on relevant items, i.e.,
test set ratings for which rui ≥ θ . Hence, in CU RI

u , the mean uncertainty ρ is calculated only over
test instances where rui ≥ θ .

In this definition of CU RI , based on [9] and similar to CU P I , ρ is a global average—the average
of all the uncertainty values in test set T . In other words, it is not the average of these values just
for user u. We believe that averaging over all T can lead to problems. For example, it is likely that
some users will have high overall uncertainty. In an extreme case, there may even be users u for
which ρui < ρ ∀i ∈ I . For such users, if a recommendation hit occurs, then CU RI

u < 0, even
if the recommended hit is less uncertain than all of the other recommended items for that user.
Given a set of recommendations for a user, it is desirable for recommendation hits to have a lower
estimated uncertainty than non-hits. For this reason, we propose an alternative definition of URI
that is based on Zn

u , the top-n items recommended to u. We redefine it as follows:

CU RI
u =

∑
i ∈Z n

u |rui ≥θ

(ρu − ρui), (33)

where ρu is the mean uncertainty for the items in Zn
u , i.e., the n items that are recommended to

user u.
Now, the URI is defined as

URI =

∑
u C

U RI
u

σρu

∑
u #{i ∈ Zn

u |ru,i ≥ θ } , (34)

where σρu
is the standard deviation of the uncertainty values for Zn

u . The denominator is used to
guarantee that the URI is a valid metric when comparing different uncertainty measures.

4.3.2 Uncertainty-based Filtering. In Section 2.2.2, we argued that, in some circumstances, it can
be useful to constrain the set of items that might be included in a top-n by discarding candidates
whose uncertainty value exceeds some threshold τ . As initially proposed in [33], we can use this as
a way of evaluating uncertainty estimates. In certain cases, the recommendation accuracy (e.g., its
precision) can increase—if the candidate items that are discarded are not only uncertain but also not
relevant. In practice, the recommendation accuracy can be measured for a range of different values
for τ , with the expectation that accuracy will increase as τ increases. Nevertheless, restricting
the candidate set might also decrease the average predicted rating in the recommended items.
For instance, before filtering, a user might have several candidates that receive high predicted
ratings but also high uncertainty. If these are filtered out, not only uncertainty but also the average
predicted rating will be reduced in the filtered recommendation set. For this reason, together with
the accuracy, it is important to monitor the Mean Predicted Rating. To do so, we use

Mean Predicted Rating@n =
1

#U

∑
u ∈U

1

n

∑
i ∈Z n

u

r̂ui . (35)

Finally, since we are preventing the RS from recommending highly uncertain items to the
user, there may be users for whom the RS cannot recommend a full set of n items. Hence, the

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

7:18 V. Coscrato and D. Bridge

recommendation coverage should also be measured. Here we measure coverage as

Coverageu =
#Zu

n
, (36)

where #Zu is the number of recommendations made to useru and n is the desired recommendation
list size. The average coverage is then obtained by averaging the individual coverage of each user.

4.3.3 Probability-of-relevance Ranking. In RBR, uncertainty estimates are not used for ranking
the candidates and selecting the top-n, and therefore uncertainty in the case of RBR has to be
evaluated through specific metrics, such as UPI. In PRR, on the other hand, uncertainty estimates
are used to rank the candidates and select the top-n; specifically, we recommend the candidates for
which P (rui ≥ θ) is highest. This means that, in the case of PRR, the uncertainty estimates can be
evaluated through recommendation accuracy metrics. That is, the quality of the recommendation
set given by the uncertainty estimates serves as an indirect way to evaluate these estimates.

Furthermore, in the cases where the system is expected to provide uncertainty estimates to-
gether with the uncertainty-based recommendations, these uncertainty values also have to be
evaluated. In Section 2.2.3, we propose that 1 − P(rui ≥ θ) can be used as the uncertainty esti-
mate. In this case, the uncertainty estimates will increase as we progress through the item ranking.
That is, the uncertainty of the top-ranked item will be the smallest, followed by the second, and
so on. Under this setup, URI is not a feasible evaluation metric anymore, because the differences
ρ̄u − ρui will always be the largest for the top-ranked items, leading to unrealistically high URI
values. On the other hand, the correlation between the uncertainty estimates and accuracy (UAC)
is still a feasible metric, and we will use it below.

5 EMPIRICAL STUDY

In this section, we report the results of an empirical study that we have conducted. We believe
it is the most extensive study in the field to this date. Compared with previous studies, it covers
more ways of estimating uncertainty and uses more evaluation methods, as well as making use
of two large datasets. Previously, the most comprehensive study was [28], but it compared only
information-based and stability-based uncertainty estimates. The study in [9] proposed and em-
pirically tested some uncertainty quality measures, but, similarly, it did not consider error-based,
distribution-based, or multinomial-based uncertainty estimates. Other studies in the field, e.g.,
[26, 41], use few or no uncertainty evaluation metrics, and therefore also lack empirical support for
their uncertainty estimates. Finally, [33] has two major issues with their experiments: it does not
compare BeMF against OrdRec, which has a similar motivation to it, and it has an unconventional
recommendation evaluation, where candidates for recommendation are taken only from the test
set and therefore unrated items are never recommended.

Our implementation makes considerable use of PyTorch [34] and is partially inspired by the
Spotlight Python libraries.1 For reproducibility, all the code used is available.2

5.1 Models

We compare the following ways of estimating uncertainty, each of which was described
in Section 3: NEG-ITEM-SUPPORT, ITEM-VARIANCE, RESAMPLE, ENSEMBLE, EB-FunkSVD,
EB-Linear, CPMF, BeMF, and OrdRec. As explained previously, we do not include the user-wise
estimates, NEG-USER-SUPPORT or USER-VARIANCE: they assign the same level of uncertainty
to all of a user’s candidate items, which is not helpful to a top-n recommender system.

1https://github.com/maciejkula/spotlight.
2https://github.com/vcoscrato/uncertain/tree/SnapExplicit.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

https://github.com/maciejkula/spotlight
https://github.com/vcoscrato/uncertain/tree/SnapExplicit

Uncertainty in Recommender Systems 7:19

Table 3. Characteristics of the Datasets Used in Our Experiments

Dataset MovieLens Netflix

num. users, #U 162,542 53,424
num. items, #I 59,047 480,189
num. ratings, #R 25,000,095 100,480,507
sparsity 99.74% 99.61%
avg. num. ratings per user 154 1881
avg. num. ratings per item 423 209
rating scale {0.5, 1, 1.5, . . . , 5} {1, 2, . . . , 5}

Most of these techniques rely on a separate rating predictor; only CPMF, BeMF, and OrdRec
have their own methods for predicting the ratings. For those that need a separate rating predictor,
we use FunkSVD (Equation (1)). Moreover, FunkSVD is also the underlying rating prediction model
Φ in the case of OrdRec and BeMF, and has the same formula as the distribution average in the
case of CPMF (Equation (12)).

Furthermore, we also use FunkSVD separately as a baseline for recommendation accuracy. We
will want to determine whether the new techniques have similar or better prediction error (RMSE)
and top-n accuravy (MAP@n and Recall@n) than FunkSVD.

5.2 Datasets

We use two large ratings datasets: the MovieLens 25 million ratings dataset [20] and the Netflix
prize dataset [6]. Table 3 shows some information about each dataset. We chose these datasets
because they are by far the most popular ones for the rating prediction task.

5.3 Methods

5.3.1 Data Splitting. We select a random sample of 10,000 users to be test users. The restriction
to 10,000 users is to reduce the computational cost of running this extensive set of experiments on
such large datasets. For these sampled test users, we chronologically order their ratings and place
the last 20% of them in the test set. We use the remaining ratings (from every user, not just the test
users) for training or validation. Specifically, we order these remaining ratings chronologically; for
each user, we use the first 80% of these ratings for our training set, and the rest for our validation
set.

5.3.2 Tuning. We have a number of hyperparameters, whose values we need to choose. We
tune the models by training them with different hyperparameter values on the training set and
evaluating them on the validation set, choosing values that give the lowest validation set RMSE.

Wherever we are using matrix-factorization, the latent feature vector dimension d and the regu-
larization strengths λU and λI are hyperparameters. The latent feature vector dimension is chosen
from {50, 100, 200}, while the regularization strengths are chosen from {0.1, 0.01, 0.001}. The la-
tent feature vectors are initialized by sampling from a zero-centered Gaussian distribution with
a standard deviation of 0.01. We set the learning rate to 0.0001 in all cases and used the Adam
optimizer to account for learning rate adaptations. Furthermore, to suppress the need to optimize
the number of training epochs, we employed early-stopping, monitoring RMSE after every epoch
and stopping training when validation RMSE does not improve for five consecutive epochs. This
setup is similar to the one used in [16], for example.

For ENSEMBLE and RESAMPLE, which involve multi-modeling (Equations (5) and (6)), we use
N = 5 different models. For RESAMPLE, we use an 80% sample fraction. For the error-based

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

7:20 V. Coscrato and D. Bridge

methods, EB-FunkSVD and EB-Linear, we use two-way cross-validation to create the error matrix
E. We conducted some preliminary experiments with more multi-modeling runs (10 and 20) and
more CV-folds (5 and 10), but we obtained similar results to the ones for N = 5 and for two-way
cross-validation.

BeMF trains multiple MF models, one per rating value. For fairness, we ensure that BeMF has a
similar number of parameters to all the other models. For example, for the Netflix dataset, where
there are five possible rating values, if the other models are using d = 50, then BeMF will learn
five models with dimension 10 each.

5.3.3 Rating Prediction Evaluation. To evaluate rating predictions, we measure the RMSE be-
tween the ratings in the test set and the predicted ratings. To evaluate the uncertainty estimates,
we use the following evaluation techniques that we presented in Section 4.2: Pearsonρ , Spearmanρ ,
UPI, RMSE-Uncertainty curves, δRMSE, and EUC .

5.3.4 Top-n Recommendation Evaluation. We compute recommendations for each of the 10,000
test users. For each of these users u, the candidate items Cu ⊆ I that can be recommended to u
are all the items that u has not rated in either the training or validation sets. Then, for each user,
we create a top-n, Zn

u ⊆ Cu , |Zn
u | = n. The way we do this depends on whether we are evaluating

RBR, UBF, or PRR (Sections 4.3.1, 4.3.2, or 4.3.3, respectively). We measure the accuracy of a top-n
using MAP@n and Recall@n, averaged over all 10,000 users. An item i is considered relevant to a
user u if its test set rating rui ≥ θ , where θ = 4. We evaluate the uncertainty estimates using the
evaluation techniques that we presented in Section 4.3, namely UAC and URI .

6 RESULTS

In this section, we present the results. The subsections correspond to the ones in Section 4.

6.1 Expected Correlations

We start by exploring correlations between the uncertainty estimates and each of the user pro-
file size (#Ru ·), item support (#R ·i), user rating variance (Var (Ru ·)), and item rating variance
(Var (R ·i)).

We compute Spearman correlations on a set of 100,000 randomly sampled user-item pairs. In
other words, we pick a random user and a random item, we estimate the uncertainty ρui , and once
we have done this for 100,000 such pairs, we correlate with the statistics mentioned in the previous
paragraph. Selecting users and items at random avoids a bias: if we had instead selected users and
items from R (rui ∈ R), then we would bias these correlations to cases where the user has rated
the item.

Figure 2 gives the results. The correlations between NEG-ITEM-SUPPORT and #R ·i and between
ITEM-VARIANCE and Var (R ·i) are trivially perfect and so they are not included.

In the MovieLens dataset, the models’ correlation with user profile size, user variance, and item
variance are very low; EB-Linear and BeMF show strong negative correlation with item support, as
expected, but there are counter-intuitive positive correlations with item support for ENSEMBLE,
EB-FunkSVD, and OrdRec. In the Netflix dataset, some expected positive correlations with user
variance and item variance can be observed, with the most noticeable values being achieved by
EB-Linear; in the case of item support, EB-Linear and BeMF show strong negative correlation, as
expected, while RESAMPLE, ENSEMBLE, and EB-FunkSVD show positive correlations to it, which
is counter-intuitive.

Notwithstanding the heuristic nature of these expected correlations, the results are quite
concerning. Although they are all supposed to be estimates of uncertainty, they behave differently
from each other, and there is no uncertainty estimate that convincingly exhibits all the expected

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

Uncertainty in Recommender Systems 7:21

Fig. 2. Correlations between uncertainty estimates and dataset statistics. We expect negative correlation

with #Ru · and #R ·i ; we expect positive correlation with Var (Ru ·) and Var (R ·i).

behaviours. We highlight, among these concerning results, how EB-FunkSVD and EB-Linear
have an opposite correlation with item support. This is particularly odd because both methods
are based on the errors of the same baseline, and yet their uncertainty estimates differ drastically.
While some of the forthcoming results in the reminder of this work will show good performance

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

7:22 V. Coscrato and D. Bridge

Table 4. Rating Prediction: RMSE

RMSE

Model MovieLens Netflix

Baseline 0.8400 0.8618
ENSEMBLE 0.8294 0.8493

CPMF 0.8447 0.8742
BeMF 1.0031 1.0270
OrdRec 0.8832 0.8666

(Results for NEG-ITEM-SUPPORT, ITEM-VARIANCE,
RESAMPLE, EB-FunkSVD and EB-Linear will be the
same as the Baseline.) The best values (lowest) are
highlighted in bold.

for these methods, the correlations we have observed raise a flag to the credibility of uncertainty
estimates based on prediction error.

In the remaining subsections, we evaluate the uncertainty estimates using the methods that we
reviewed in Section 4.

6.2 Rating Prediction

We begin our evaluation of rating prediction by comparing the prediction error of the dif-
ferent models, leaving uncertainty aside. Results are shown in Table 4. Several methods
(NEG-ITEM-SUPPORT, ITEM-VARIANCE, and RESAMPLE) are not explicitly listed in this table.
This is because, for rating prediction itself, they use the baseline model, and therefore their RMSE
is the same as that of the baseline.

It is worth mentioning that, as explained in Section 3, CPMF, BeMF, and OrdRec do not directly
optimize RMSE, while the baseline model and the models within the ensemble do. In light of this,
CPMF shows good performance for both datasets, while ENSEMBLE is able to outperform the
baseline in both cases (keeping in mind that low values are better). OrdRec has a slightly worse
performance in the MovieLens dataset, while being closer to the other models in the Netflix dataset.
BeMF has the worst performance in both datasets.

To assess the quality of the uncertainty estimates from a prediction error point of view, we
employ the methods described in Section 4.2. The RMSE-uncertainty curves are given in Figure 3.
On the whole, we see what we would expect: as uncertainty grows, so does error. In both datasets,
EB-Linear seems to be the curve that shows this most strongly. In the Netflix dataset, OrdRec and
EB-FunkSVD also exhibit this behavior quite strongly. However, as stated before, these curves
are relatively hard to interpret, and for this reason we refrain from drawing strong conclusions
from them and turn our attention to the various other evaluation metrics that we presented in
Section 4.2. The values for these metrics are shown in Tables 5 and 6.

The best overall results are obtained by EB-Linear and OrdRec, while the worst results come
from ENSEMBLE. In general, the different metrics in the table seem quite correlated. That is, the
performances of the models have nearly the same ordering across all metrics and both datasets.
We find these results to be reassuring, since all the metrics are designed to measure the strength
of the relationship between uncertainty and rating prediction error. On this, a few observations
can be made. EB-Linear’s uncertainty seems to correlate linearly with error since their Pearson
correlation is stronger, while OrdRec’s might correlate non-linearly given the higher Spearman
correlation. Moreover, EB-Linear performed strongest according to UPI, while the results for other
metrics, such as EUC, are closer, with even a slight advantage for OrdRec in the Netflix dataset.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

Uncertainty in Recommender Systems 7:23

Fig. 3. RMSE-uncertainty curves.

6.3 Top-n Recommendation

The results in the previous section evaluate the measures of uncertainty through the prism of
prediction error. But, as we noted in Section 2.2, we care more about the quality of the top-n rec-
ommendations than the prediction error. Hence, using the ideas from Section 4.3, we here compare
the uncertainty estimates in a variety of top-n recommendation scenarios.

6.3.1 Rating-based Ranking. In RBR, the top-n are the n candidate items with the highest pre-
dicted ratings. We begin our evaluation by comparing the accuracy of the different models, leaving
uncertainty aside. Figure 4 shows the MAP@n and Recall@n, averaged over all test users, for dif-
ferent values for n ∈ 1, 2, . . . , 10.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

7:24 V. Coscrato and D. Bridge

Table 5. Rating Prediction Uncertainty Evaluation: MovieLens Dataset

Pearsonρ Spearmanρ δRMSE UPI EUC
NEG-ITEM-SUPPORT 0.0218 0.0391 0.5064 0.1370 0.5353
ITEM-VARIANCE 0.1266 0.0958 0.3034 0.6029 0.5674
RESAMPLE 0.1187 0.1196 0.3243 0.5205 0.5788
ENSEMBLE 0.0327 0.0215 −0.0865 0.0875 0.5051
EB-FunkSVD 0.1788 0.2008 0.0310 0.5500 0.6245
EB-Linear 0.3463 0.2928 0.9675 1.6851 0.6982

CPMF 0.0449 0.0863 0.3009 0.2444 0.5632
BeMF 0.1114 0.1189 0.3022 0.3204 0.5859
OrdRec 0.2260 0.2526 0.5552 0.6924 0.6731

The best values (highest) are highlighted in bold.

Table 6. Rating Prediction Uncertainty Evaluation: Netflix Dataset

Pearsonρ Spearmanρ δRMSE UPI EUC
NEG-ITEM-SUPPORT 0.0111 0.0277 0.1408 0.0233 0.5170
ITEM-VARIANCE 0.1340 0.1089 0.3897 0.5075 0.5742
RESAMPLE 0.0872 0.0753 0.2567 0.3632 0.5483
ENSEMBLE 0.0405 0.0262 0.0527 0.1761 0.5152
EB-FunkSVD 0.2161 0.1884 0.4370 0.8133 0.6218
EB-Linear 0.2832 0.2398 0.7382 1.0839 0.6587
CPMF 0.0752 0.0684 0.2174 0.2362 0.5424
BeMF 0.1585 0.1755 0.5319 0.3726 0.5949
OrdRec 0.2788 0.2674 0.6843 0.7673 0.6669

The best values (highest) are highlighted in bold.

The most evident result in the figure is the very low performance of BeMF in these metrics.
This is to be expected. It happens because BeMF is only able to predict rating scale values, that
is, r̂ui ∈ S ; unlike the other models, it cannot predict a rating that lies between two values on the
scale. Therefore, many candidates will receive the same predicted rating—they “tie.” The creation
of a top-n from such an ordering involves a lot of random tie-breaking. This is presumably why
BeMF is not evaluated for RBR in [33]. Apart from BeMF, the remaining models perform similarly,
which is reassuring. But there are exceptions: OrdRec has worse MAP for the MovieLens dataset;
CPMF is notably worse for the Netflix dataset; and both OrdRec and CPMF have poor recall on
the Netflix dataset.

Turning our attention now to the evaluation of the uncertainty estimates, in the RBR scenario
our evaluation tools are URI and AUC. The results are shown in Table 7. Remember that higher
(positive) URI values denote better performance, while the opposite is the case for UAC. We first
notice that the two metrics mostly agree. For both of them, BeMF showed better performance
in the MovieLens dataset (although we know that its results are affected by the random choices
in the cases of tied ratings), while CPMF was best in the Netflix dataset. On the negative
side, RESAMPLE and ENSEMBLE showed poor performance, together with EB-FunkSVD and
EB-Linear, which was one of the best performers on the rating prediction task. Therefore, we see
a clear disconnect between the models’ ability to estimate uncertainty on the rating prediction
and top-n recommendation tasks.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

Uncertainty in Recommender Systems 7:25

Fig. 4. RBR: MAP@n and Recall@n forn ∈ 1, 2, . . . , 10. (Results for NEG-ITEM-SUPPORT, ITEM-VARIANCE,

and RESAMPLE will be the same as the baseline.)

6.3.2 Uncertainty-based Filtering. In UBF, we prevent uncertain candidates (ones whose uncer-
tainty estimate exceeds τ) from being included in the top-n. In the results that we report here,
we progressively exclude bigger fractions of the most uncertain candidates, reducing the overall
uncertainty of the recommendation lists. More specifically, for each uncertainty estimate, we ob-
tain a distribution using 100,000 randomly selected user-item pairs and we obtain the 20%, 40%,
60%, and 80% percentiles of these distributions as cut-offs for uncertainty. We have chosen this
percentile approach due to the different ranges of values that the uncertainty estimates have.
Figure 5 shows the MAP@10 and Mean Predicted Rating@10 of the recommendation lists for
these different cut-offs. The same figure also shows the recommendation coverage with each cut
applied and a MAP@10 value that considers only users to whom a full 10 recommendations can
be given.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

7:26 V. Coscrato and D. Bridge

Table 7. Rating-based Ranking Uncertainty Evaluation: URI and UAC on

MovieLens and Netflix Datasets

MovieLens Netflix
Model URI UAC URI UAC
NEG-ITEM-SUPPORT 0.5070 0.0135 0.6747 −0.1292
ITEM-VARIANCE −0.0590 0.0316 −0.1561 0.2121
RESAMPLE −0.2371 0.1138 −0.3554 0.1470
ENSEMBLE −0.3399 0.2125 −0.4491 0.4141
FunkSVD-CV −0.0867 −0.0218 −0.2825 0.1733
Bias-CV −0.1548 −0.0489 −0.2983 0.0037
CPMF 0.5196 −0.0242 0.6944 –0.2905

BeMF 0.9527 –0.1619 0.6043 −0.0492
OrdRec 0.2833 −0.0283 0.3808 −0.2143

The best values (highest on URI and lowest on UAC) are highlighted in bold.

The only uncertainty estimates whose MAP increases as uncertain recommendations are ex-
cluded are CPMF, BeMF, and, in the case of the Netflix dataset only, NEG-ITEM-SUPPORT. Many
of the other uncertainty estimates harm precision as uncertain recommendations are excluded.
These results are similar to those we observed with URI in the previous section. An exception
is OrdRec, which had high URI but did not perform well here. We also see that the decrease in
MAP is, in general, related to the decrease in average relevance as stricter thresholds are applied.
That is, the five models with the largest average relevance decrease (ENSEMBLE, EB-FunkSVD,
RESAMPLE, ITEM-VARIANCE, and OrdRec) are the same ones with the largest drops in MAP. On
the other hand, with some uncertainty metrics, such as CPMF and BeMF, it is possible to apply
cuts that reduce average relevance only slightly and increase MAP.

Empirically, UBF does not harm coverage. For most of the uncertainty estimates, we can still
make 10 recommendations, even as filtering is made stricter. The exceptions are EB-Linear and
OrdRec (and the latter only for the MovieLens dataset), and then, even in the worst case (EB-Linear
at the 80% quantile cut-off), the model is still able to provide 80% of the requested recommendations.
Therefore, the MAP@10 values for users whose coverage is unharmed are very similar to the
original ones.

6.3.3 Probability-of-relevance Ranking. In PRR, we generate recommendations by ranking
items according to the probability that their rating is greater than or equal to the relevance thresh-
old, θ , which for these datasets is 4. As we discussed in Section 2.2.3, this idea was proposed for
BeMF. But it applies directly also to CPMF and OrdRec. The remaining (non-probabilistic) models
appear to be unsuitable to PRR. Nevertheless, in order not to exclude all of them from the compar-
isons, we can use some heuristic extensions. The ENSEMBLE trains several models, which can be
thought of as an N -dimensional sample of the theoretical population of the rating estimator under
all the possible random initialisations. This setup is reminiscent of the central limit theorem. Then,
assuming normality, we can use

P(rui ≥ θ) = P 	
N
	

1

N

N∑
k=1

Φ(k) (u, i),
ρui√
N
�
� ≥ θ�� . (37)

Furthermore, the error-based models predict rating prediction errors, that is, ρui = E[|r̂ui −rui |].
Therefore, ρui is an estimate of the ratings’ standard deviation. Now, assuming rui to follow a Nor-
mal distribution with average Φ(u, i) and standard deviation ρui , it becomes possible to estimate

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

Uncertainty in Recommender Systems 7:27

Fig. 5. UBF: MAP, Mean Predicted Rating, Coverage, and the MAP for users for whom a full set of recom-

mendations can be made. This is for top-10 recommendations with increasing τ to filter different quantiles.

P(rui ≥ θ) as

P(rui ≥ θ) = P (N (Φ(u, i), ρui) ≥ θ) . (38)

With such extensions, we can now compare ENSEMBLE, EB-FunkSVD, EB-Linear, CPMF, BeMF,
and OrdRec for the task of PRR. As discussed in Section 4.3.3, we evaluate whether PRR, which uses
the uncertainty estimates for ranking, produces more accurate recommendation lists than RBR,
which ignores the uncertainty estimates. This comparison is shown using MAP@10 in Figure 6.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

7:28 V. Coscrato and D. Bridge

Fig. 6. PRR versus RBR: MAP@10.

In the figure, we see that only CPMF and BeMF have higher MAP@10 when their recommenda-
tions are selected using PRR compared with selection by RBR. OrdRec’s MAP@10 is the same for
both. For all the other uncertainty estimates, MAP@10 is harmed. This may be because the way
that we extended PRR (from BeMF) to these other models is not well motivated enough, but it also
reflects the poor performance of these models.

Finally, as discussed in Section 2.2.3, the quantity 1 − P(rui ≥ θ) can be considered as an un-
certainty estimate. To evaluate the usefulness of these estimates, we employ UAC, remembering
that URI is not applicable in this case due to the correlation between the ranking probabilities
and the uncertainties. The results are shown in Table 8. The best performances are achieved by
BeMF in the MovieLens dataset and OrdRec in the Netflix dataset. For CPMF, this uncertainty

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

Uncertainty in Recommender Systems 7:29

Table 8. PRR Uncertainty Estimates: UAC

on MovieLens and Netflix Datasets

Model MovieLens Netflix
ENSEMBLE 0.2979 0.2787
EB-FunkSVD −0.0193 0.2296
EB-Linear 0.0075 0.1180
CPMF −0.0334 −0.0140
BeMF –0.2077 −0.1509
OrdRec −0.0237 –0.2048

The best values (lowest) are highlighted in bold.

estimate is uncorrelated with MAP. Unfortunately, for ENSEMBLE, EB-FunkSVD, and EB-Linear,
the uncertainties are positively correlated with MAP.

This concludes our results. To summarize, we have shown that there is no model that performs
better than all the others across all the metrics that we have explored. Nevertheless, we have shown
CPMF to be the best model for uncertainty-aware ranking (i.e., for uncertainty-based filtering and
probability-of-relevance ranking). On the other hand, our new EB-Linear model had the best un-
certainty estimates for most of our rating prediction results, while performing very poorly on the
top-n. This highlights a disconnect between the rating prediction task and the top-N recommenda-
tion task in the context of uncertainty estimation. Moreover, we saw that the uncertainty estimates
behave very differently from each other. This, together with the variations in the performance of
the uncertainty estimates across different metrics, raises a major concern about the credibility of
some of the uncertainty estimates. Finally, given that top-n recommendation is more important
than rating prediction, we believe CPMF to be the most promising of all the models.

7 DISCUSSION

So far, we described and empirically evaluated several ways of estimating rating prediction un-
certainty. The results show the performance of each uncertainty estimate according to different
evaluation criteria. Although we have already raised some general concerns, the results allow us to
conduct a further discussion regarding each uncertainty estimate. Furthermore, there are aspects
that may be particular to each estimate that may not be explicitly demonstrated by the results.
This section discusses these issues and critiques each of the uncertainty estimates.

NEG-ITEM-SUPPORT: Characterizing the uncertainty of a rating prediction by the number of
ratings of the target item has a solid foundation. Its high URI confirms that, when recom-
mended, well-supported items tend to be more relevant. However, its strong performance
on this metric might be attributable to the various biases known to exist in the datasets used
for offline RS evaluation [12]. Furthermore, as we have already noted, one concern about
NEG-ITEM-SUPPORT is that this estimate of uncertainty is not personalised, which does
not seem reasonable; we would expect uncertainty to depend on the relationship between
an item and the user profile. Another unreasonable property is its model independence; we
would expect uncertainty to depend in part on the quality of the rating prediction model.
Another potential issue is that, if used for UBF, NEG-ITEM-SUPPORT will reduce the item
candidates to a subset of the most popular ones, greatly decreasing the system’s ability to
recommend novel, yet relevant, items.

ITEM-VARIANCE: Disagreement between users would certainly seem to be a source of un-
certainty. In line with this, the positive results achieved by ITEM-VARIANCE in the rating
prediction uncertainty evaluation show that the predicted ratings for items about which

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

7:30 V. Coscrato and D. Bridge

users disagree tend to be less accurate. On the other hand, we did not find ITEM-VARIANCE
to be useful in the top-n recommendation case. In addition to this, and similarly to
NEG-ITEM-SUPPORT, ITEM-VARIANCE is also model independent and not a personalized
metric.

RESAMPLE: We found that the variation in predictions that ensues from perturbations dur-
ing model training does correlate with the error in the final predictions, as evidenced by
the positive values achieved by RESAMPLE in the rating prediction uncertainty evaluation
metrics. On the other hand, this method obtained negative URI, meaning that, in the task of
top-n recommendation, quantifying uncertainty by this method is not only ineffective but
also actually harmful. One possible explanation for this is that recommended items are the
ones with the highest ratings, which means they fall far from the average rating case and
are therefore more likely to get noisy predictions.

ENSEMBLE: We found ENSEMBLE to have similar, or even worse, results than RESAMPLE
in regards to uncertainty evaluation. In fact, given the similar motivation of both, we can
conclude that multi-modeling strategies are not useful for uncertainty quantification in the
case of top-n recommendation. Nevertheless, we highlight that, in the MovieLens dataset,
ENSEMBLE had the best MAP and Recall in the RBR task, although the improvement relative
to the baseline is small.

EB-FunkSVD: We expect uncertainty to be a quantity related to rating prediction error. The
cross-validation methods build on this idea directly: they use regression to predict error and
treat these predicted errors as estimates of uncertainty. Unsurprisingly, then, EB-FunkSVD
achieves good results in the rating prediction uncertainty evaluation. Unfortunately, when
it comes to top-n recommendations, it performs poorly. This may be because EB-FunkSVD
minimizes the average absolute error, but the recommended items are those with the highest
ratings, which are outliers relative to the average, and therefore might not receive good
uncertainty predictions.

EB-Linear: Our critique of EB-FunkSVD also applies to EB-Linear. In this case, the results are
even more evident: the rating prediction uncertainty evaluation results are even better than
those of EB-FunkSVD, but its URI results are even worse. Therefore, we conclude that the
simple linear model can accurately recognize the user-item interactions where rating predic-
tion imprecision is most likely to occur but cannot recognize which recommendations are
more or less likely to be correct. To solve this issue, one possibility to be explored in future
work is to restrict the error estimation learning only to those interactions that get predicted
with the highest ratings.

CPMF: CPMF extends the popular PMF model by incorporating variance parameters. Whereas
other ways of measuring uncertainty are largely heuristic in nature, CPMF has a great the-
oretical foundation. Not only that, but our experiments show CPMF to be a successful ap-
proach, being the only model able to benefit from the uncertainty-aware recommendation
methods (UBF and PRR). Nevertheless, its performance in the, admittedly less important,
rating prediction uncertainty evaluation was not impressive. Of course, this may not be a
weakness of CPMF; it may, instead, raise a flag about the disconnect between prediction er-
ror experiments and top-n recommendation experiments. Of the two, a good performance
at top-n recommendation is more important than performance in rating prediction.

BeMF: In its original formulation, this model has several particularities that contrast with the
others herein. For instance, the rating prediction function of BeMF differs from those of
OrdRec and CPMF by focusing on the mode of the rating distributions instead of their aver-
age and dispersion. We are grateful to the authors of this method, since their work greatly
helped our definitions of UBF and PRR. Nevertheless, the results achieved by their model

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

Uncertainty in Recommender Systems 7:31

have been largely underwhelming; although the uncertainty evaluation metrics have been
positive in both the rating prediction and the recommendation case, the poor MAP obtained
in both RBR and PRR makes it really hard to justify its use compared, for example, with
CPMF, especially since BeMF has much higher complexity.

OrdRec: OrdRec offers a collaborative filtering algorithm that is suitable to ordinal feedback
data. Although this was its main goal, its authors recognized that its multinomial formulation
allows the model to also provide uncertainty estimates. In Section 3.5, we raised a concern
regarding OrdRec’s uncertainty estimates at the limits of the rating scale, which may cause
issues. In particular, recommended items are usually those whose predicted ratings fall close
to the rating scale upper boundary, and therefore, these items will often receive very low
uncertainty estimates, which not only might not reflect reality but also harms some of the
evaluation metrics employed herein (e.g., URI). Furthermore, we have empirically shown
that RBR and PRR produce similar results with OrdRec. In light of this, we believe that these
uncertainty estimates add small value when compared to other models.

8 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

Conclusions. Uncertainty in RS is a very important, and yet quite under-explored, topic. In this
article, we have shown how it is possible to accurately quantify the uncertainty in rating pre-
dictions using several different methods, with EB-Linear being the most precise. This result can
motivate the use of uncertainty estimates in a variety of tasks in the RS field, e.g. active learning,
co-training, and reinforcement learning. We have also shown that it is possible to improve recom-
mendation accuracy by changing the way an RS ranks items, with the incorporation of uncertainty
estimates. In this case, either through filtering (UBF) or probabilistic ranking (PRR), we showed
CPMF to be the best contender. In addition, we showed that other models, e.g., EB-FunkSVD and
EB-Linear, have a poor performance on estimating uncertainty on top-n recommendations, which
makes it hard to defend their use in practical systems despite their success on rating prediction
uncertainty estimation.

Limitations. Even though the collection of uncertainty estimators explored in this work is the
largest yet and the empirical analysis is substantial, we recognize the empirical analysis has some
limitations.

First, both datasets that we have used come from the same domain (movies). Movie recommen-
dation has historically been one of the most studied applications of recommender systems, but
there are many others, such as shopping, social media, and so forth. While we expect the behavior
of the uncertainty estimators to generalize to other domains, there is clear value in exploring how
different rating patterns will affect the uncertainty estimates.

Second, our empirical analysis uses only a single train/test split. This is a consequence of our
decision to opt for chronological train/test splits. We chose, in other words, to preserve the tem-
poral nature of the data, which is intrinsic to recommender systems. This decision does, however,
mean that our results lack the kind of statistical significance analysis that could be obtained from
using multiple train/test splits. While we expect our results to be robust, due to the large size of
our datasets, there is clear value to exploring this further.

Finally, in our empirical analysis, for those uncertainty estimation methods that need a separate
rating predictor, we used FunkSVD (Equation (1)) with mean-squared rating prediction error as its
loss function (Equation (2)). There may be value in exploring other loss functions (e.g., ranking-
based losses). We believe our choice was appropriate because it gave a reasonably fair comparison
across the systems; the exploration of uncertainty does not rely on finding recommenders with the
very highest accuracy; and, in any case, ranking-based loss becomes more relevant when dealing

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

7:32 V. Coscrato and D. Bridge

with implicit feedback data, which is out of the scope of this article and the main focus of future
work (see below).

Future work. One avenue for future work is, of course, to address the limitations described above.
But there are at least two further additional avenues for exploration.

First, this work is deliberately limited to the case of explicit feedback; more specifically, we
focus on uncertainty estimation for rating prediction. An obvious avenue for future work is to
investigate uncertainty estimation for RSs that use implicit feedback (based on user behavior). We
are aware of only a few papers that explore uncertainty estimation in RS that use implicit feedback,
e.g., [17, 23, 31, 40]. We are already developing our own models for this case, e.g., [14], building on
the foundation that this article provides.

Second, while our results give strong support to the usefulness of uncertainty estimates in RS,
we believe that uncertainty quantification might also be the key to improving beyond-accuracy
recommendation goals, e.g., novelty, diversity, and serendipity [24]. For example, a serendipitous
recommendation can be one with high relevance yet high uncertainty. Nevertheless, the difficulties
of measuring serendipity impose great challenges to our ability to test this hypothesis. For this
reason, one avenue for future research is to conduct user trials, in which users would provide
feedback not only on their item preferences but also on their surprise regarding recommendations
that have different levels of uncertainty.

ACKNOWLEDGMENTS

We are grateful to Diego Carraro for his assistance with the preparation of this article.

REFERENCES

[1] Gediminas Adomavicius, Sreeharsha Kamireddy, and YoungOk Kwon. 2007. Towards more confident recommenda-
tions: Improving recommender systems using filtering approach based on rating variance. In Procs. of the 17th Work-

shop on Information Technology and Systems. 152–157.
[2] X. Amatriain, J. M. Pujol, and N. Oliver. 2009. I like it... I like it not: Evaluating user ratings noise in recommender

systems. In Procs. of the 17th Conference on User Modeling, Adaptation, and Personalization. 247–258.
[3] Andrea Barraza-Urbina. 2017. The exploration-exploitation trade-off in interactive recommender systems. In Procs. of

the 11th ACM Conference on Recommender Systems. 431–435.
[4] Edmon Begoli, Tanmoy Bhattacharya, and Dimitri Kusnezov. 2019. The need for uncertainty quantification in

machine-assisted medical decision making. Nature Machine Intelligence 1, 1 (2019), 20–23.
[5] Mark Belford, Brian Mac Namee, and Derek Greene. 2018. Stability of topic modeling via matrix factorization. Expert

Systems with Applications 91 (2018), 159–169.
[6] James Bennett and Stan Lanning. 2007. The Netflix prize. In Procs. of KDD Cup and Workshop. 3–6.
[7] Cesare Bernardis, Maurizio Ferrari Dacrema, and Paolo Cremonesi. 2019. Estimating confidence of individual user

predictions in item-based recommender systems. In Procs. of the 27th ACM Conference on User Modeling, Adaptation,

and Personalization. 149–156.
[8] David Block. 1998. Exploring interpretations of questionnaire items. System 26, 3 (1998), 403–425.
[9] Jesus Bobadilla, A. Gutiérrez, F. Ortega, and B. Zhu. 2018. Reliability quality measures for recommender systems.

Information Sciences 442 (2018), 145–157.
[10] Djallel Bouneffouf, Amel Bouzeghoub, and Alda Lopes Ganarski. 2013. Risk-aware recommender systems. In Procs. of

the International Conference on Neural Information Processing. 57–65.
[11] Robin Burke. 2002. Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interac-

tion 12, 4 (2002), 331–370.
[12] Allison J. B. Chaney, Brandon M. Stewart, and Barbara E. Engelhardt. 2018. How algorithmic confounding in recom-

mendation systems increases homogeneity and decreases utility. In Procs. of the 12th ACM Conference on Recommender

Systems. 224–232.
[13] Sergio Cleger-Tamayo, Juan M. Fernández-Luna, Juan F. Huete, and Nava Tintarev. 2013. Being confident about

the quality of the predictions in recommender systems. In European Conference on Information Retrieval. Springer,
411–422.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

Uncertainty in Recommender Systems 7:33

[14] Victor Coscrato and Derek Bridge. 2022. Recommendation uncertainty in implicit feedback recommender systems. In
Procs. of the 30th Irish Conference on Artificial Intelligence and Cognitive Science. Springer.

[15] Arthur F. da Costa, Marcelo G. Manzato, and Ricardo J. G. B. Campello. 2018. CoRec: A co-training approach for
recommender systems. In Procs. of the 33rd Annual ACM Symposium on Applied Computing. 696–703.

[16] Edoardo D’Amico, Giovanni Gabbolini, Cesare Bernardis, and Paolo Cremonesi. 2022. Analyzing and improving stabil-
ity of matrix factorization for recommender systems. Journal of Intelligent Information Systems 58, 2 (2022), 255–285.

[17] Ludovic Dos Santos, Benjamin Piwowarski, and Patrick Gallinari. 2017. Gaussian embeddings for collaborative filter-
ing. In Procs. of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.
1065–1068.

[18] Simon Funk. 2006. Netflix Update: Try This at Home. https://sifter.org/simon/journal/20061211.html.
[19] Barbara Hammer and Thomas Villmann. 2007. How to process uncertainty in machine learning? In European Sympo-

sium on Artificial Neural Networks. 79–90.
[20] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens datasets: History and context. ACM Transactions on

Interactive Intelligent Systems 5, 4 (2015), 1–19.
[21] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl. 2004. Evaluating collaborative filtering

recommender systems. ACM Transactions on Information Systems (TOIS) 22, 1 (2004), 5–53.
[22] Eyke Hüllermeier and Willem Waegeman. 2021. Aleatoric and epistemic uncertainty in machine learning: An intro-

duction to concepts and methods. Machine Learning 110, 3 (2021), 457–506.
[23] Junyang Jiang, Deqing Yang, Yanghua Xiao, and Chenlu Shen. 2020. Convolutional Gaussian embeddings for person-

alized recommendation with uncertainty. arXiv preprint arXiv:2006.10932 (2020).
[24] Marius Kaminskas and Derek Bridge. 2016. Diversity, serendipity, novelty, and coverage: A survey and empirical

analysis of beyond-accuracy objectives in recommender systems. ACM Transactions on Interactive Intelligent Systems

(TiiS) 7, 1 (2016), 1–42.
[25] Arnd Kohrs and Bernard Mérialdo. 2001. Improving collaborative filtering for new-users by smart object selection.

In Procs. of the International Conference on Media Futures (ICME’01).
[26] Yehuda Koren and Joe Sill. 2011. OrdRec: An ordinal model for predicting personalized item rating distributions.

In Procs. of the 5th ACM Conference on Recommender Systems. 117–124.
[27] Benjamin M. Marlin. 2003. Modeling user rating profiles for collaborative filtering. Procs. of the 16th International

Conference on Neural Information Processing Systems. 627–634.
[28] Maciej A. Mazurowski. 2013. Estimating confidence of individual rating predictions in collaborative filtering recom-

mender systems. Expert Systems with Applications 40, 10 (2013), 3847–3857.
[29] Sean M. McNee, Shyong K. Lam, Catherine Guetzlaff, Joseph A. Konstan, and John Riedl. 2003. Confidence displays

and training in recommender systems. In Procs. of IFIP INTERACT03: Human-Computer Interaction, Vol. 3. 176–183.
[30] Andriy Mnih and Russ R. Salakhutdinov. 2008. Probabilistic matrix factorization. In Advances in Neural Information

Processing Systems. 1257–1264.
[31] Krishna Prasad Neupane, Ervine Zheng, and Qi Yu. 2021. MetaEDL: Meta evidential learning for uncertainty-aware

cold-start recommendations. In 2021 IEEE International Conference on Data Mining (ICDM’21). IEEE, 1258–1263.
[32] Michael P. O’Mahony, Neil J. Hurley, and Guénolé C. M. Silvestre. 2006. Detecting noise in recommender system

databases. In Procs. of the 11th International Conference on Intelligent User Interfaces. 109–115.
[33] Fernando Ortega, Raúl Lara-Cabrera, Ángel González-Prieto, and Jesús Bobadilla. 2021. Providing reliability in rec-

ommender systems through bernoulli matrix factorization. Information Sciences 553 (2021), 110–128.
[34] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Des-

maison, Luca Antiga, and Adam Lerer. 2017. Automatic differentiation in PyTorch. In Procs. of the NIPS 2017 Workshop

on Autodiff.
[35] Francisco J. Peña, Diarmuid O’Reilly-Morgan, Elias Z. Tragos, Neil Hurley, Erika Duriakova, Barry Smyth, and

Aonghus Lawlor. 2020. Combining rating and review data by initializing latent factor models with topic models for
Top-N recommendation. In Procs. of the 14th ACM Conference on Recommender Systems. 438–443.

[36] Francesco Ricci, Lior Rokach, and Bracha Shapira. 2011. Introduction to the recommender systems handbook.
In Recommender Systems Handbook, Francesco Ricci, Lior Rokach, and Bracha Shapira (Eds.). Springer, 1–35.

[37] Ruslan Salakhutdinov and Andriy Mnih. 2008. Bayesian probabilistic matrix factorization using Markov Chain Monte
Carlo. In Procs. of the 25th International Conference on Machine Learning. 880–887.

[38] Guy Shani and Asela Gunawardana. 2011. Evaluating recommendation systems. In Recommender Systems Handbook,
Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor (Eds.). Springer, 257–297.

[39] Bin Wang, Jie Lu, Zheng Yan, Huaishao Luo, Tianrui Li, Yu Zheng, and Guangquan Zhang. 2019. Deep uncertainty
quantification: A machine learning approach for weather forecasting. In Procs. of the 25th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining. 2087–2095.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

https://sifter.org/simon/journal/20061211.html

7:34 V. Coscrato and D. Bridge

[40] Chenxu Wang, Fuli Feng, Yang Zhang, Qifan Wang, Xunhan Hu, and Xiangnan He. 2022. Rethinking missing data:
Aleatoric uncertainty-aware recommendation. arXiv preprint arXiv:2209.11679 (2022).

[41] Chao Wang, Qi Liu, Runze Wu, Enhong Chen, Chuanren Liu, Xunpeng Huang, and Zhenya Huang. 2018. Confidence-
aware matrix factorization for recommender systems. In Procs. of the 32nd AAAI Conference on Artificial Intelligence.
434–442.

[42] Azene Zenebe and Anthony F. Norcio. 2009. Representation, similarity measures and aggregation methods using fuzzy
sets for content-based recommender systems. Fuzzy Sets and Systems 160, 1 (2009), 76–94.

[43] Mi Zhang, Jie Tang, Xuchen Zhang, and Xiangyang Xue. 2014. Addressing cold start in recommender systems: A semi-
supervised co-training algorithm. In Procs. of the 37th International ACM SIGIR Conference on Research & Development

in Information Retrieval. 73–82.
[44] Bo Zhu, Fernando Ortega, Jesús Bobadilla, and Abraham Gutiérrez. 2018. Assigning reliability values to recommen-

dations using matrix factorization. Journal of Computational Science 26 (2018), 165–177.

Received 3 June 2022; revised 24 October 2022; accepted 27 January 2023

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 7. Publication date: April 2023.

