
Recommendation Uncertainty in Implicit Feedback
Recommender Systems

Victor Coscrato Derek Bridge

School of Computer Science & Information Technology,
University College Cork, Ireland

Abstract. A Recommender System’s recommendations will each carry a cer-
tain level of uncertainty. The quantification of this uncertainty can be useful
in a variety of ways. Estimates of uncertainty might be used externally; for ex-
ample, showing them to the user to increase user trust in the abilities of the
system. They may also be used internally; for example, deciding the balance of
‘safe’ and less safe recommendations. In this work, we explore several meth-
ods for estimating uncertainty. The novelty comes from proposing methods
that work in the implicit feedback setting. We use experiments on two datasets
to compare a number of recommendation algorithms that are modified to per-
form uncertainty estimation. In our experiments, we show that some of these
modified algorithms are less accurate than their unmodified counterparts, but
others are actually more accurate. We also show which of these methods are
best at enabling the recommender to be ‘aware’ of which of its recommenda-
tions are likely to be correct and which are likely to be wrong.

Keywords: Recommender Systems · Uncertainty · Neural Networks

1 Introduction

Recommender Systems (RS) help users discover items in item catalogs. In gen-
eral, for each user, the majority of the items are not relevant; therefore, the system’s
task is to select and present personalized recommendation lists to each individual
user. In most RS domains, the item catalog is huge, meaning that users will have in-
teracted with only a tiny fraction of the items. This is known as sparsity. It means the
system must infer the user’s preferences from a relatively small amount of informa-
tion, leading sometimes to the generation of unsuccessful recommendations. Other
factors that make it difficult to make good recommendations include changes in user
mood and changes in user preferences over time. Due to the challenges of modelling
ever-changing preferences from sparse feedback, there can be high uncertainty in
the recommendations that an RS makes to its users [22].

It is important for an RS to quantify its uncertainty. Estimates of recommenda-
tion uncertainty can help the RS detect which of its recommendations are more or
less likely to be incorrect [16]. It can use these estimates in a variety of ways. The

This work was conducted with the financial support of the Science Foundation Ireland Cen-
tre for Research Training in Artificial Intelligence under Grant No. 18/CRT/6223.

2 Victor Coscrato Derek Bridge

simplest is to expose them to the user: a recommendation can be accompanied by
a number, a text or a visual that shows how sure or unsure the RS is that the user
will like the recommendation. If a poor recommendation (one that the user does
not like) is accompanied by a declaration of high uncertainty, for example, user trust
may not be lost in the way that it might have been if there had been no declaration
of uncertainty. As well as exposing uncertainty estimates to users, an RS may use the
uncertainty estimates internally. For example, it may use them to decide how many
uncertain recommendations to show (perhaps none when building trust, perhaps
more when aiming for serendipity); or a hybrid RS may use them to decide when to
call on different recommendation algorithms.

The literature on RS uncertainty quantification focuses almost exclusively on the
rating prediction task, e.g. [22,31]. This is the case where the system has explicit feed-
back, usually in the form of numeric ratings (e.g. 1–5 stars) and where the task of the
RS is to predict the rating for an unseen user-item pair. Of much more importance
to the construction of usable RS is the top-K recommendation task and even more
so in the case of implicit feedback, where the RS knows only which items a user has
interacted with (e.g. which she has purchased or which she has clicked on). Yet there
is almost no published research on uncertainty estimation in this more important
setting. Not only that, but much of the work done on uncertainty estimation in the
explicit rating prediction setting does not generalise to the implicit feedback setting.
For example, in some explicit rating approaches, the ratings are assumed to follow
a statistical distribution, whose dispersion is used to estimate uncertainty, e.g. [29].
This cannot generalise to the case where there there are only implicit signals, with no
rating values.

However, in other fields, dominated by neural models, such as computer vision
[19] and natural language processing [30], methods for estimating the network’s pre-
dictive uncertainty have been explored. Among the most popular methods used for
uncertainty quantification in neural networks are Bayesian Neural Networks (BNNs)
[3], Monte-Carlo Dropout (MCDropout) [7] and Deep-Ensembles [20].

We see an opportunity to adapt ideas from these other fields to the field of RS.
This adaptation is made easier by the fact that the state-of-the-art in recommenda-
tion algorithms has changed in recent years. Now, several neural network-based rec-
ommenders have been proposed [4,15,23], with some achieving impressive results.
Several properties of neural networks explain their increasing usage. First, the flexi-
bility of neural architectures allows for a wide variety of data inputs, making it rela-
tively straightforward to combine interaction data with item content data, user data
and contextual data [13]. Second, neural networks are a great tool for latent represen-
tation learning, as shown by the success of variational autoencoder recommenders
[21]. Up to now, uncertainty estimation in these neural RS remains unexplored.

In this paper, we introduce uncertainty estimation to implicit feedback RS. More
specifically, we re-purpose several uncertainty estimation methods that were suc-
cessful in other tasks —either on explicit feedback recommenders or on neural net-
works in other fields— to make them suitable for the implicit recommender case. We
compare these uncertainty estimation methods against each other, aiming to pro-
vide initial answers to two questions:

2. BACKGROUND 3

Q1: When implicit feedback RS are modified to perform uncertainty estimation, are
there changes (gains or losses) in the accuracy of the RS?

Q2: Do the uncertainty estimates help the RS understand which of its recommen-
dation are more likely to be right and which are more likely to be wrong?

The following Section (2) formulates the uncertainty estimation problem for im-
plicit feedback RS. Section 3 proposes some techniques for solving this problem. Ex-
periments are described in Section 4 along with their results. In Section 5, we review
some related work that can be relevant to further work on RS uncertainty. Finally,
Section 6 contains our conclusions.

2 Background

At its core, recommending is the task of selecting from many items those that
are most relevant to the user. In this work, we focus on implicit feedback systems. In
this case, the task of recommending can be seen as comprising at least two sub-tasks:
first, estimating relevance scores for unobserved user-item interactions; and second,
selecting the top-K items for a given user, guided by these relevance scores.

Formally, let D = {(u, i)∣u ∈ U , i ∈ I} denote all the user-item pairs, where U
and I are the set of users and items in the system, respectively. Users interact with
items, e.g. purchasing them, clicking on them, and so on. We denote the set of ob-
served user-item interactions byD+ ⊂D. Similarly, we denote the set of unobserved
interactions D− = D−D+. Then, for relevance scoring, the RS must learn a model
Fθ(u, i) = rui , parameterized by θ, from the observed interactions to predict the rel-
evance of unseen user-item pairs.

With this setup, the implicit feedback task closely resembles a classification task,
with observed interactions treated as ones, and non-observed ones treated as zeros.
Therefore, the same objective functions used in classification tasks can be used [17].
In this work, we employ cross-entropy loss for every recommender. Nevertheless, we
remark that ranking-based losses, such as Bayesian Personalized Ranking [27], could
also be used instead, without affecting the uncertainty estimation methods that we
will explore in Section 3.

The methods for uncertainty estimation herein can be applied to a wide class of
recommender algorithms, that is, there are several possible choices for Fθ. Where
possible, we will employ the well-known matrix factorization (MF) algorithm [17].
MF consists in learning a D-dimensional latent vector for each user and item. To
predict rui , the user and item embeddings are combined, as follows,

Fθ(u, i) = p t
u qi (1)

where pu and qi are the user and item latent representations, respectively. In this
case, θ = {{pu}u∈U ,{qi}i∈I}.

Furthermore, as explained in Section 1, we also want to use some uncertainty es-
timation methods that apply to neural models. For our neural recommender, we will

4 Victor Coscrato Derek Bridge

use one of the simplest and most popular algorithms: He et al.’s Multi-Layer Percep-
tron (MLP) recommender [15]. In this case,

Fθ(u, i) =MLP(pu ∣∣qi) (2)

where ∣∣ is a concatenation operator and θ = {{pu}u∈U ,{qi}i∈I ,θMLP}. The MLP con-
sists of a set of feed-forward layers f1, . . . , fL , such that,

f0 = pu ∣∣qi (3)

fl =ReLU(Wl fl−1), for l ∈ 1, . . . ,L−1; (4)

fL = Sigmoid(w t
L fL−1) (5)

where Wl is the weight matrix for hidden layer l and wL is the output layer’s weight
vector. The Sigmoid activation in the output layer scales the output to [0,1].

For both the MF and the MLP, the parameters are learned by mini-batch gradient
descent, minimizing the binary cross-entropy loss. On each training epoch, the train-
ing data consists of the observed interactions D+ and an N -sized randomly-selected
sample of non-observed interactions from D−, where N is a hyperparameter.

We now turn our attention to uncertainty estimation methods. We use σui to de-
note the uncertainty associated with the predicted relevance rui .

3 Uncertainty Estimation Methods

Recommendation uncertainty has several causes, including sparsity of data, mod-
eling choices, and stochastic learning algorithms. For this reason, methods for un-
certainty estimation in the field are very diverse. In this section, we present several
methods for uncertainty estimation, making clear which recommender algorithms
they can be used with.

One of the most notable sources of uncertainty is sparsity. For this reason, the
amount of available data offers good baseline estimates of recommendation uncer-
tainty [22]. Furthermore, these estimates can be used with any recommendation al-
gorithm. In the past, they have been used for explicit feedback recommenders, but
here we use them in the implicit setting. These estimates can be user-centric or item-
centric. Hence, following [22], we define the following uncertainty metrics,

NEG-USER-SUPPORT ∶σui = −#u (6)

NEG-ITEM-SUPPORT ∶σui = −#i (7)

where #u and #i denote the number of observed interactions for the user and the
item, respectively. The clear drawback of these uncertainty estimates is that they are
either at user-level or at item-level, that is rui is defined solely based on the user, or
the item, but not on the user-item interaction. Nevertheless, they have the advantage
of needing no additional learning and can be easily plugged into any system.

3. UNCERTAINTY ESTIMATION METHODS 5

Beyond uncertainty introduced by the data, every recommender algorithm has
its own uncertainty issues. Consider, for example, models that are based on repre-
sentation learning, such as MF, where vector embeddings are learned as a latent rep-
resentation for each user and item. For such models, the uncertainty surrounding the
learning of such representations will affect the system recommendations. In fact, MF
is known to suffer from learning instability [5,25].

In the case of explicit feedback, ensembles have been successful at estimating
the uncertainty of MF rating predictions [22]. But, explicit feedback MF is only one of
many algorithms that can benefit from ensembling. In fact, an ensemble can be used
to estimate uncertainty for any model that relies on a stochastic mechanism, such as
random parameter initialization or stochastic learning protocols. This is the case for
implicit feedback MF (Eq. 1) and also any neural network model, and in particular
the MLP model (Eq. 2).1

Formally, the principle is to train several models F (k), for k = 1, . . . ,n using a dif-
ferent random initialization each time, and then calculate interaction relevance and
uncertainty as follows:

rui =
∑n

k=1 F
(k)
θ
(u, i)

n
(8)

σui =
∑n

k=1 (F
(k)
θ
(u, i)− rui)

2

n
(9)

Bayesian Neural Networks (BNN) are another major tool tailored to uncertainty
quantification in neural models. BNNs differ from their deterministic counterpart by
treating the parameters as random variables [10], which are assumed to follow some
prior distribution p(θ). Given some training data D, the posterior weight distribu-
tion, according to Bayes rule, is as follows,

p(θ∣D) = p(θ)p(D ∣θ)
p(D) (10)

Calculating the posterior directly from Eq. 10 is generally not possible, because
the data evidence, p(D), is unknown. For this reason, inference methods such as
Monte-Carlo Markov Chains (MCMC) [9] and Variational Inference (VI) [11] are ap-
plied to approximate the exact posterior. More recently, Bayes By Back-propagation
(BBB) has been proposed [3], a method that allows for the posterior weights distribu-
tion to be learned through back-propagation, just as the weights of a non-Bayesian
network are learned by conventional back-propagation. Predictions can then be made
using the estimated posterior.

More precisely, the output’s expected value E[Fθ(u, i)] is a point prediction for
the interaction relevance rui , and its variance V ar [Fθ(u, i)] is an estimate of rele-
vance uncertainty σui . In practice, the values are estimated using samples θk , . . . ,θk

from the posterior, as follows,

1 An ensemble of neural models is often referred to as a Deep-Ensemble [20].

6 Victor Coscrato Derek Bridge

Table 1. Methods we compare.

Name Prediction model (F) Uncertainty estimator
MF-NUS MF (Eq. 1) NEG-USER-SUPPORT (Eq. 6)
MF-NIS MF (Eq. 1) NEG-ITEM-SUPPORT (Eq. 7)

MF-Ensemble MF (Eq. 1) Ensemble (Eqs. 8 – 9)
MLP-NUS MLP (Eq. 2) NEG-USER-SUPPORT (Eq. 6)
MLP-NIS MLP (Eq. 2) NEG-ITEM-SUPPORT (Eq. 7)

BayesianMLP MLP (Eq. 2) Bayesian inference (BBB) (Eqs. 11 – 12)
MCDropout MLP (Eq. 2) Monte-Carlo Dropout (Eqs. 8 – 9)

MLP-Ensemble MLP (Eq. 2) Ensemble (Eqs. 8 - 9)

rui =
∑n

k=1 Fθk
(u, i)

n
(11)

σui =
∑n

k=1 (Fθk
(u, i)− rui)

2

n
(12)

Another uncertainty estimation method that is tailored to neural networks is MC-
Dropout [7]. The method, which can be thought of as an approximation of a Bayesian
network, consists of taking multiple forward passes with dropout enabled at predic-
tion time.2 Formally, let F (k), for k = 1, . . . ,n denote k predictions calculated with
dropout enabled. Then, the final estimates for relevance and uncertainty follow ac-
cording to Equations 8 and 9.

4 Experiments

In this section, we compare the uncertainty estimation methods proposed in the
previous section, with the goal of answering the two research questions raised in Sec-
tion 1. More specifically, we will compare RS that combine MF and MLP presented
in Section 2 with the uncertainty estimators discussed in Section 3. In Table 1, we list
all the models and uncertainty estimation methods that we consider.

4.1 Datasets

We evaluate our models and uncertainty estimation methods on two popular
datasets: an implicit version of the Movielens 1M dataset [14]3 and one Pinterest
dataset [8]. Table 2 presents some summary statistics.

For both datasets, we use a user-based random data splitting method: 60% of the
interactions for each user are for training, 20% for validation and 20% for testing.

2 Conventionally, dropout is enabled at training time and combats overfitting. In MC-
Dropout, it is enabled at prediction time to sample a space of predictions.

3 To make this dataset implicit, we simply treat every given rating as an implicit signal (1),
ignoring the numeric rating value.

4. EXPERIMENTS 7

Table 2. Datasets we use.

Dataset Users Items Interactions
Movielens 6040 3416 1 Million
Pinterest 55187 9643 1.5 Million

4.2 Tuning

MF and MLP have hyperparameters that need to be chosen. First, we set the user
and item latent embeddings size D to 128. Setting them to the same size gives a fair
comparison. While it has been shown that both MF and MLP can benefit from even
higher dimensions [28], D = 128 gives us reasonable computational cost. Further-
more, to suppress the need to tune the number of training iterations, we employ
early-stopping to end the learning phase when the MAP@5 (see Eq. 13) on the vali-
dation set does not improve for three consecutive iterations.

We tuned our models using a Bayesian parameter search, assisted by Optuna [1].
We train each model 20 times by sampling the hyperparameters from the following:

– For all models, learning rate is sampled from [0.0001,0.01] and N , the number
of negative training instances per positive training instance, from {1,2, ...,20}.

– MF: The L2 penalty factor applied to the user and item factors was taken from
[10−6,10−4].

– MLP: We use the same three-layer MLP as in [15]. We also employ dropout on
the training stage. The dropout rate is tuned in [0,0.2].

– BayesianMLP: We use a Bayesian MLP with the same architecture as our deter-
ministic MLP. We use the same prior and tune the hyperparameters related to it
across the exact same grid as used in [3].

– Ensemble and sample sizes: We use n = 5 in Eqs. 8 – 9. We experimented with
larger and smaller sample sizes, but found they all produced similar results.

4.3 Evaluation

To evaluate a model’s recommendations, we obtain the top-K recommendation
list for each user, which we denote by Z K

u . These are the K candidate items that have
highest predicted relevance score rui for the user. Candidate items exclude those
that the user has interacted with in the training and validation sets; candidates are
therefore items that either the user has not interacted with or items that the user has
interacted with but the user’s interaction with the item is recorded in the test set.

Let relu be the items that u has interacted with that are in the test set. Then,
we evaluate a recommendation list according to its Mean Average Precision (MAP),
averaged over all users:

MAP@K = 1

#U
∑

u∈U

K

∑
j=1

Precision@ju ×δ(Z K
u (j) ∈ relu) (13)

8 Victor Coscrato Derek Bridge

1 2 3 4 5 6 7 8 9 10

K

0.425

0.450

0.475

0.500

0.525

0.550

0.575

M
AP

@
K

- M
ov

ie
le

ns

1 2 3 4 5 6 7 8 9 10

K

0.04

0.06

0.08

0.10

0.12

M
AP

@
K

- P
in

te
re

st

MF
MF-ENSEMBLE

MLP
MLP-ENSEMBLE

MCDropout
BayesianMLP

Fig. 1. M AP@K for K = 1,2 . . . ,10 for the Movielens (left) and Pinterest (right) datasets.

where

Precision@ju =
#{Z j

u ∩ relu}
j

(14)

and where δ(Z K
u (j) ∈ relu) = 1 if Z K

u (j), which is the j -th item in Z K
u , is in relu and 0

otherwise.

4.4 Results

To answer Q1 from Section 1, we compute the accuracy of the top-K recommen-
dations for different recommendation list sizes K = 1,2. . . ,10. Figure 1 shows the
M AP@K obtained in both datasets. Note that MF-NUS & MF-NIS and MLP-NUS &
MLP-NIS are omitted because their MAP is the same as MF or MLP.

The ensemble models, MF-ENSEMBLE and MLP-ENSEMBLE, show a remark-
able MAP improvement over the baselines, MF and MLP. On the other hand, the
BayesianMLP has similar performance to the deterministic MLP, and MCDropout
has the worst performance on both datasets. Therefore, we found that some mod-
els that perform uncertainty estimation improve accuracy, others worsen it. Clearly,
ensembling emerges as the most beneficial method with respect to accuracy.

To answer Q2, we analyze the accuracy of the models for users, grouped accord-
ing to their average recommendation uncertainty. More precisely, we calculated the
average uncertainty on each user’s recommendation list, and split the users into 10
equal-sized uncertainty bins, where bin 1 will have the 10% of users with the small-
est average recommendation uncertainty and bin 10 will have those with the highest.
Our intuition is that accuracy will fall as uncertainty grows. Figure 2 shows the results.

4. EXPERIMENTS 9

1 2 3 4 5 6 7 8 9 10

Uncertainty bin

0.3

0.4

0.5

0.6

0.7

M
AP

@
10

 -
M

ov
ie

le
ns

1 2 3 4 5 6 7 8 9 10

Uncertainty bin
0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

M
AP

@
10

 -
Pi

nt
er

es
t

MF-NUS
MF-NIS

MF-ENSEMBLE
MLP-NUS

MLP-NIS
MLP-ENSEMBLE

MCDropout
BayesianMLP

Fig. 2. M AP@10 for users grouped according to the average uncertainty of their recommen-
dation. The higher the bin index, the higher is uncertainty.

In line with our intuition, we see that MAP has a strong negative correlation
with some of the uncertainty estimation methods. In particular, MF-Ensemble, MLP-
Ensemble, MF-NUS and MLP-NUS appear to be those more strongly reflecting the
expected behaviour. The results for NEG-USER-SUPPORT show that mature users
tend to get more accurate recommendations. In fact, NEG-USER-SUPPORT has the
strongest correlation to MAP in the Movielens dataset. On the other hand, in the Pin-
terest data, the MF-Ensemble is the one to achieve the strongest correlation. This,
together with the earlier results in Figure 1, show that ensembling is not only a tech-
nique that can boost the accuracy of recommenders, but can also offer uncertainty
estimates that correspond with the expected recommendation accuracy.

Other models to follow the expected behaviour are MCDropout in both datasets,
and the BayesianMLP in the Pinterest dataset. Oddly, the BayesianMLP shows a grow-
ing MAP curve in the Movielens data, meaning that users with higher recommenda-
tion list uncertainties are getting higher accuracy, which is a result that needs further
investigation.

Models using NEG-ITEM-SUPPORT do not show a very strong correlation be-
tween uncertainty and MAP with the exception of the last uncertainty bins in the
Pinterest case. This too is a result that needs further investigation.

Largely, we believe that we have obtained a positive answer to Q2. For this re-
search question, ensembling has, again, proven to be a great tool. Nevertheless, the
simple and cheap NEG-USER-SUPPORT metric can also provide good value with no
computational cost added, in contexts where user-centric estimates suffice.

10 Victor Coscrato Derek Bridge

5 Related Work

In this section, we briefly describe some related work that could be further ex-
plored in RS research.

Bernardis et al. showed that there is a strong correlation between the eigenval-
ues of the item similarity matrix and the accuracy of item-based recommenders [2].
Because of this, they propose an eigenvalue confidence index to measure the con-
fidence level of the recommendations given to each user. Their method is suitable
for both explicit and implicit recommendation tasks, and confidence can be thought
of as the inverse of uncertainty. However, their method is applicable only to systems
based on item similarity. Furthermore, like NEG-USER-SUPPORT, their confidence
index is a user-centric measure, and therefore it lacks the granularity that is needed
to differentiate the uncertainty of the individual items being recommended to a user.

Another method, which is superficially related to the ones employed herein but is
actually quite different in its purpose, is the use of Gaussian embeddings for collabo-
rative filtering. Gaussian embeddings are a generalisation of the embeddings used in
many recommender algorithms. In [6], Gaussian embeddings are learned by a matrix
factorization algorithm; in [18], they are learned by a convolutional neural model.
Gaussian embeddings give us non-deterministic user and item representations, cap-
turing the uncertainty that there is in learning these representations. However, they
do not quantify the uncertainty of item relevance to a user.

Neupane et al. [24] propose a method for quantifying the amount of evidence
available when providing recommendations to cold-start users. They propose a meta-
evidential method for doing so. We believe that, in future research, uncertainty could
be inferred in a similar way.

Finally, in the related field of Information Retrieval, Penha & Hauff explore un-
certainty in neural learning-to-rank models [26]. They obtain uncertainty estimates
for a BERT ranker with the usage of Monte-Carlo Dropout and Deep-Ensembles,
which we explained earlier. Their uncertainty-aware ranking method combines the
predicted interaction relevance with their estimated uncertainties. They found that
‘shrinking’ the relevance of interactions with high relevance can sometimes improve
the system’s recommendation accuracy. In a similar vein, but now using models based
on Gaussian Processes, Guiver & Snelson proposed to either shrink or increase the
relevance of items based on their uncertainty to make the model more conservative
or more risk-taking [12]. However, their results are largely negative: they did not find
this form of ranking to be more accurate. We leave the exploration of uncertainty-
aware recommendation strategies similar to these for future research.

6 Conclusion

In this work, we explored methods for uncertainty estimation for implicit feed-
back recommender systems, exploring how the uncertainty estimates affect accu-
racy (Q1) and intelligibility regarding the recommender accuracy (Q2). Some of the
methods had a positive impact on accuracy, others a negative impact. In particular,
ensembling was the method showing the greatest accuracy improvements. Similarly,

6. CONCLUSION 11

ensembling also was one of the top contenders when it came to correlation between
accuracy and uncertainty, together with NEG-USER-SUPPORT, suggesting that these
methods can help to identify which users are prone to receive the most or least ac-
curate recommendations.

In addition, in the previous section, we highlighted some related work that can
be useful for further exploration in the area. We hope that these, together with the
promising results shown by our experiments will foment new research in this largely
unexplored field.

References

1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperpa-
rameter optimization framework. In: Procs. of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (2019)

2. Bernardis, C., Ferrari Dacrema, M., Cremonesi, P.: Estimating Confidence of Individual
User Predictions in Item-based Recommender Systems. In: Procs. of the 27th ACM Con-
ference on User Modeling, Adaptation and Personalization. pp. 149–156 (2019)

3. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural net-
works. In: Procs. of the 32nd International Conference on Machine Learning. pp. 1613–
1622 (2015)

4. Cheng, H.T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Cor-
rado, G., Chai, W., Ispir, M., et al.: Wide & deep learning for recommender systems. In:
Procs. of the 1st Workshop on Deep Learning for Recommender Systems. pp. 7–10 (2016)

5. D’Amico, E., Gabbolini, G., Bernardis, C., Cremonesi, P.: Analyzing and improving stabil-
ity of matrix factorization for recommender systems. Journal of Intelligent Information
Systems 58, 255––285 (2022)

6. Dos Santos, L., Piwowarski, B., Gallinari, P.: Gaussian embeddings for collaborative filter-
ing. In: Procs. of the 40th International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval. pp. 1065–1068 (2017)

7. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian Approximation: Representing Model Un-
certainty in Deep Learning. In: Procs. of the 33rd International Conference on Machine
Learning. pp. 1050–1059 (2016)

8. Geng, X., Zhang, H., Bian, J., Chua, T.S.: Learning image and user features for recommen-
dation in social networks. In: Procs. of the IEEE International Conference on Computer
Vision. pp. 4274–4282 (2015)

9. Geyer, C.J.: Practical Markov Chain Monte Carlo. Statistical Science pp. 473–483 (1992)
10. Goan, E., Fookes, C.: Bayesian neural networks: An introduction and survey. In: Case Stud-

ies in Applied Bayesian Data Science, pp. 45–87. Springer (2020)
11. Graves, A.: Practical variational inference for neural networks. In: Procs. of the 24th Inter-

national Conference on Neural Information Processing Systems. pp. 2348––2356 (2011)
12. Guiver, J., Snelson, E.: Learning to Rank with SoftRank and Gaussian Processes. In: Procs.

of the 31st International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval. pp. 259–266 (2008)

13. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: A Factorization-Machine based Neural
Network for CTR Prediction. In: Procs. of the International Joint Conference on Artificial
Intelligence. pp. 1725–1731 (2017)

14. Harper, F.M., Konstan, J.A.: The Movielens Datasets: History and Context. ACM Transac-
tions on Interactive Intelligent Systems 5(4), 1–19 (2015)

12 Victor Coscrato Derek Bridge

15. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In:
Procs. of the 26th International Conference on the World Wide Web. pp. 173–182 (2017)

16. Hernando, A., Bobadilla, J., Ortega, F., Tejedor, J.: Incorporating reliability measurements
into the predictions of a recommender system. Information Sciences 218, 1–16 (2013)

17. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In:
Procs. of the 8h IEEE International Conference on Data Mining. pp. 263–272 (2008)

18. Jiang, J., Yang, D., Xiao, Y., Shen, C.: Convolutional gaussian embeddings for personalized
recommendation with uncertainty. In: Procs. of the 28th International Joint Conference
on Artificial Intelligence. pp. 2642–2648 (2020)

19. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer
vision? In: Procs. of the 31st International Conference on Neural Information Processing
Systems. pp. 5580–5590 (2017)

20. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty
estimation using deep ensembles. In: Procs. of the 31st International Conference in Neural
Information Processing Systems. pp. 6405–6416 (2017)

21. Liang, D., Krishnan, R.G., Hoffman, M.D., Jebara, T.: Variational autoencoders for collab-
orative filtering. In: Procs. of the 2018 World Wide Web Conference. pp. 689–698 (2018)

22. Mazurowski, M.A.: Estimating Confidence of Individual Rating Predictions in Collabora-
tive Filtering Recommender Systems. Expert Systems with Applications 40(10), 3847–3857
(2013)

23. Naumov, M., Mudigere, D., Shi, H.J.M., Huang, J., Sundaraman, N., Park, J., Wang, X.,
Gupta, U., Wu, C.J., Azzolini, A.G., et al.: Deep Learning Recommendation Model for Per-
sonalization and Recommendation Systems. arXiv:1906.00091 (2019)

24. Neupane, K.P., Zheng, E., Yu, Q.: MetaEDL: Meta Evidential Learning For Uncertainty-
Aware Cold-Start Recommendations. In: Pros. of the IEEE International Conference on
Data Mining. pp. 1258–1263 (2021)

25. Peña, F.J., O’Reilly-Morgan, D., Tragos, E.Z., Hurley, N., Duriakova, E., Smyth, B., Lawlor, A.:
Combining Rating and Review Data by Initializing Latent Factor Models with Topic Mod-
els for Top-N Recommendation. In: Procs. of the 14th ACM Conference on Recommender
Systems. pp. 438–443 (2020)

26. Penha, G., Hauff, C.: On the Calibration and Uncertainty of Neural Learning to Rank Mod-
els. arXiv:2101.04356 (2021)

27. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: Bpr: Bayesian personalized
ranking from implicit feedback. arXiv preprint arXiv:1205.2618 (2012)

28. Rendle, S., Krichene, W., Zhang, L., Anderson, J.: Neural collaborative filtering vs. matrix
factorization revisited. In: Procs. of the 14th ACM Conference on Recommender Systems.
pp. 240–248 (2020)

29. Wang, C., Liu, Q., Wu, R., Chen, E., Liu, C., Huang, X., Huang, Z.: Confidence-Aware Ma-
trix Factorization for Recommender Systems. In: Procs. of the 32nd AAAI Conference on
Artificial Intelligence. pp. 434—-442 (2018)

30. Xiao, Y., Wang, W.Y.: Quantifying uncertainties in natural language processing tasks. In:
Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33, pp. 7322–7329 (2019)

31. Zhu, B., Ortega, F., Bobadilla, J., Gutiérrez, A.: Assigning reliability values to recommenda-
tions using matrix factorization. Journal of Computational Science 26, 165–177 (2018)

	Recommendation Uncertainty in Implicit Feedback Recommender Systems

