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ABSTRACT
Offline evaluation of Active Learning in recommender systems in-
volves simulated users who, when prompted by the Active Learning
strategy, may reveal ratings that were previously hidden from the
recommender system. Where the literature describes offline evalua-
tion of Active Learning, the evaluation is quite narrow: mostly, the
focus is cold-start users; the impact of newly-acquired ratings on
recommendation quality is usually measured only for those users
who supplied those ratings; and impact is measured in terms of
recommendation accuracy. But Active Learning may benefit ma-
ture users, as well as cold-start users; in recommender systems that
use collaborative filtering, the newly-acquired ratings may have
an impact on recommendation quality even for users who did not
supply any ratings; and the new ratings may have an impact on
aspects of recommendation quality other than accuracy (such as
diversity and serendipity).

In this paper, we present the offline method that we are using
to evaluate Active Learning. For reproducibility and to provoke
discussion, we make its details as explicit as possible. Then we
use this evaluation method in a case study to demonstrate why
offline evaluation needs to be more comprehensive than it has
been up to now. With just a single dataset and a few very simple
Active Learning strategies, we are able to show trade-offs between
strategies that would not be revealed otherwise.
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1 INTRODUCTION
Personalized recommender systems acquire user profiles; from the
profiles, they build a model; using the model, they select and rank
candidate items to decide which items to recommend to individual
users. Other things being equal, the better the profiles, the better the
model; and the better the model, the better the recommendations.
Profiles are typically populated during a sign-up process, where
a new user states her preferences for a small subset of the items.
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Subsequently, profiles grow either by observing the user’s interac-
tions with items (in the case of implicit ratings) or by acquiring the
user’s opinion of an item after she has consumed it (in the case of
explicit ratings). But it is also possible for a recommender system
to grow a user’s profile by using Active Learning (AL). In AL, the
recommender system proactively solicits the user’s opinions for
selected items.

Different AL strategies take different approaches to identifying
which items to ask the user about. In general, a good AL strategy
asks the user for as little information as possible while obtaining
the most benefit. In selecting items to ask about, a good AL strategy
will choose items which it predicts are familiar to the user (since
there is little point in asking about items the user is unlikely to
be able to rate) and items whose ratings will improve the quality
of the recommendations. Most AL strategies take the form of sim-
ple heuristics, but there are more complex strategies that involve
building a model from the existing ratings.

There is a growing body of work on AL strategies for recom-
mender systems; see survey papers such as [6], for example. But the
area is still under-explored. We identify at least the following three
opportunities to extend the scope of AL in recommender systems.

First, despite being a general approach to the acquisition of
additional ratings, in recommender systems AL has mostly been
used in situations where there is a clear lack of data, i.e. to solve
the specific problems of cold-start users — new and low-activity
users whose profiles contain little data. However, AL’s generality
suggests that it could also be employed for more mature users (by
which we mean users who have more data in their profiles), e.g. to
regularly acquire fresh data and stimulate new recommendations.

Second, the benefit of AL to recommender systems has almost
exclusively been measured in terms of its effect on recommendation
accuracy for these cold-start users. But, it is well-known by now
that satisfaction with recommender systems is not just a question
of their accuracy. In some cases, satisfaction can be increased by
ensuring that a set of recommendations is diverse or that it contains
serendipitous items, for example. For both cold-start users and more
mature users, we want to know how existing AL strategies impact
on these other measures of satisfaction, and we may even want to
design new AL strategies that target these measures. For example,
there are new approaches to diversification, known as intent-aware
approaches, which produce more diverse sets of recommendations
bymaking recommendations that cover the user’s different interests
(as revealed by the user’s profile) [16]. In a recommender that uses
intent-aware diversification, an AL strategy that acquires more
ratings in order to make a user’s profile more representative of her
interests may result in a more satisfactory level of diversity.
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Third, the benefit of AL to recommender systems has almost
exclusively been measured in terms of its effect on recommenda-
tion accuracy for the users who are asked to provide new ratings.
But, in collaborative filtering recommenders, new ratings might
influence the recommendations made to other users too, not just
those participating in the AL. This is why in [5] Elahi et al. measure
the system-wide impact of AL. In practice, both must be measured:
there is a time cost, and perhaps a cognitive cost, to providing a
rating, so those who participate must generally benefit, but those
who are not participating should also benefit or, at least, see no
worsening of performance.

It is clear that when evaluating an existing AL strategy, or de-
signing and evaluating a new strategy, we need to do so as compre-
hensively as possible: we need to look at different kinds of users
(cold-start versus mature, those who participate in the AL versus
those who do not, for example) and a wider range of performance
measures (both accuracy and beyond-accuracy).

As with the evaluation of recommender systems, preliminary
evaluation of AL strategies for recommender systems must be done
offline, with some kind of simulation on a pre-collected dataset.
Promising strategies can be further evaluated both in user trials
and online in, for example, A/B experiments within a deployed
recommender system. The offline evaluation can help to narrow
the number of strategies that need to be evaluated in costly user
trials and online experiments.

Offline evaluation of recommender systems typically involves a
snapshot, measuring how one or more models, built from training
data, perform on one or more test sets. Offline evaluation of AL
strategies for recommender systems, on the other hand, requires
that we simulate the behaviour of users and measure recommender
performance both before and after the application of the strategy
to see how performance changes. This requires that the dataset be
split into at least three parts: the known ratings, the hidden ratings
and the test set. The known ratings are the ones on which the initial
recommender model is built; the known ratings are also the ones
on which the AL strategy generally operates. The hidden ratings
are the ones which the simulated user might reveal to the system if
prompted to do so by the AL strategy. Subsequently, these elicited
ratings can be added to the known ratings, and a new recommender
model can be built. The performance of the initial recommender
model and the new recommender model are measured against the
ratings in the test set. We refer to this as a single-step AL evaluation,
since it measures the effect of a single application of the AL strategy,
and this is the focus in this paper. In the last section of the paper,
we discuss multi-step AL evaluation, which simulates more than
one application of the strategy.

The first contribution of this paper is to present the offline eval-
uation method that we are using. It draws on existing methods,
especially [5]. But, for reproducibility and to provoke discussion,
we make more of the details explicit than is commonly done. The
design of an offline evaluation of AL strategies is not trivial. Done
incorrectly, it can introduce bias in the results.

Our second contribution is to demonstrate why offline evaluation
needs to be more comprehensive (as described above) than it has
been up to now. With just a single dataset and a few very simple AL
strategies, we are able to show that the fuller picture afforded by

being more comprehensive may change the choice of AL strategy or
strategies to adopt. By extension, more comprehensive evaluation
of this kind is likely to be even more valuable for more nuanced
strategies and other datasets.

The rest of this paper is structured as follows: Section 2 reviews
the literature on offline evaluation of AL strategies for recommender
systems. Section 3 formally describes the experimental methodol-
ogy that we use for offline evaluation of AL strategies. Section 4
presents a sample of some of the results we have obtained by using
the methodology to compare three simple AL strategies. It takes
the form of a case study that illustrates the importance of taking
a more comprehensive approach. Finally, Section 5 draws conclu-
sions, discusses some remaining issues, and offers ideas for future
work.

2 RELATEDWORK
Most of the published work on Active Learning in recommender
systems focuses on presenting new AL strategies. Since this paper
is about offline evaluation of AL, we will not summarize any of
these strategies.

In early work, AL was used to improve recommendations either
for users who had small user profiles (cold-start users) or new
users (sometimes known as extreme cold-start users). For these
new users, AL has been used in the sign-up process to assist the
user in building her initial profile [14]. AL approaches for cold-start
users include conversational [2], Bayesian [8], personality-based
[7] and decision-tree-based [10]. Again, we will not describe their
details because our focus is on offline evaluation. But this does
highlight the point we have already made, that a lot of the work
focuses on cold-start users and it neither targets, nor evaluates, the
impact of AL on more mature users. To the best of our knowledge,
only Carenini et al. [2] and Elahi et al. [5] consider non-cold-start
users. Carenini et al. describe a conversational approach to be used
after the sign-up process. However, even this work is quite narrow
since its evaluation is confined to users who have 50 ratings; no
other scenarios are considered. By contrast, in the work of Elahi
et al. the AL strategy is applied to all the users, irrespective of the
sizes of their profiles. Therefore, Elahi et al.’s evaluation includes
cold-start users but more mature users too. Unfortunately, they
do not then break their results down. We cannot therefore discern
whether a strategy has a different impact on cold-start users from
the one it has on more mature users.

Elahi et al. also make the point that all of the offline evaluations
of AL strategies that are reported in the literature (apart from
their own) take what they call a user-centric approach: results are
reported only for the subset of simulated users who participate
in the AL (typically again, just the cold-start users). Elahi et al.
pioneer the idea of a system-wide evaluation, in which they report
the impact of the AL on thewhole user population. This is important
in recommender systems that use collaborative-filtering where new
ratings might influence the recommendations made to other users,
not just those participating in the AL. In Section 3.3, we break down
the sets of users even further.

Finally, we note that in early work, the impact of the AL strategy
on the quality of the recommendations is measured by computing
prediction error on the test set using metrics such as MAE or RMSE,
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e.g. [15]. In the same way that prediction error has been displaced
in recommender system evaluation by metrics such as precision,
recall and nDCG, the same has happened in the evaluation of AL
strategies, e.g. [5]. A few of the evaluations that are reported in
the literature employ other metrics such as average popularity [7],
coverage [5], and spread [7, 13]. But it also recognized nowadays
that satisfaction with recommendations is not just a question of
their accuracy [12]. It may be desirable for a set of recommendations
to be diverse or for the recommendations to be serendipitous. A
wide range of metrics has been proposed to measure these ‘beyond-
accuracy’ aspects of recommendation quality, especially for offline
evaluation, e.g. [9]. To the best of our knowledge, none of the
evaluations of AL that are reported in the literature has ever used
these measures.

We conclude by observing that the literature does contain reports
of user trials of AL. For example, [14] and [3] both report user trials
that ran in association with the live MovieLens system. The focus
in [14] was new users (extreme cold-start); the focus in [3] was
“recently-active users”.

3 EVALUATION METHODOLOGY
In this section we formally describe the more comprehensive offline
evaluation methodology that we use.

3.1 Setup
The first step consists in preparing the dataset for the experiment’s
execution. We will assume a dataset of explicit ratings (like the one
we use for our experiments in Section 4). However, the principles
should easily adapt to implicit ratings datasets.

LetU be the set of users and I the set of items; let R be the ratings
matrix with rui being the rating that u ∈ U gives to item i ∈ I or
rui = ⊥ if u has not rated i; and let Ru be u’s ratings (the ones in
her profile), i.e. Ru = {rui | rui , ⊥}.

We start by eliminating users who have too few ratings. Each user
must have enough ratings so that we can meaningfully partition
them for the purposes of the experiment. In Section 4, we use 75 as
the minimum number of ratings, but it will differ from dataset to
dataset.

Next, we randomly partition the ratings R into training (RTR) and
test sets (RTE). We do this in a user-based way. For each user, we
randomly partition Ru so that a fixed proportion p are in RTRu and
the rest are in RTEu . Then RTR =

⋃
u ∈U RTRu and RTE =

⋃
u ∈U RTEu .

By this approach, every user has a set of test ratings. We do this
in order to allow for system-wide evaluation, i.e. measuring the
impact of an AL strategy on recommendations on all usersU , not
just those who participate in the AL. For example, in Section 4, we
use p = 0.8.

We want to evaluate what we previously called a single AL step,
i.e. performance before and after using an AL strategy. If we do this
for just one user, we are unlikely to see any impact. In even the
best of circumstances, so few new ratings will be acquired that the
difference in recommender performance will be negligible. So, in
the same style as previous work [8, 13], we randomly select a group
of users to whom the AL strategy will be applied. Let’s call these
the Active users, UActive ⊆ U . For example, in Section 4, we select
one-third of users to be Active users.

For each active user in u ∈ UActive , we now need to define a set
of ratings initially known by the recommender (RKu ) and a set of
ratings hidden from the recommender (RHu ), i.e. the ones which
might be elicited by means of active learning. Therefore, for each
active user u ∈ UActive , we randomly partition u’s training set
ratings RTRu into RKu and RHu . The proportion pu of RTRu that are
placed in RKu is user-specific. In other words, we choose a different
valuepu for eachu. In Section 4, we choose with uniform probability
values from [0.15, 0.85]. By using user-specific values pu , we vary
the proportions of known and hidden ratings. This ensures that the
simulation contains users in different states: from small to large
profiles and, relative to those profile sizes, small or large number
of known ratings versus hidden ratings.

To complete the setup, we define Rbefore =
(⋃

u ∈UActive R
K
u
)
∪(⋃

u<UActive R
TR
u
)
. This is the entire set of ratings known by the

recommender at the initial stage of the experiment. It includes all
the known ratings of the Active users and all the ratings (except
test set ratings) of the non-Active users.

3.2 An AL step
Using similar notation to that in [5], we define an AL strategy SAL
as a function of four arguments, SAL (u,n,G, Pu ), which for user u
returns a set of itemsQu of size no more thann. The items it returns,
Qu , are selected from a pool of candidates items, Qu ⊆ Pu . Usually,
these candidate items are ones for which u’s rating is not currently
known by the recommender, i.e. Pu = {i ∈ I | rui < Rbefore }. The
strategy also has a parameterG , which designates the data that the
AL strategy can use when selectingQu from Pu . Most commonly,G
is simply the ratings that are currently known by the recommender,
i.e.G = Rbefore . It is conceivable, however, thatG contains additional
data (e.g. personality data [7]). The only constraint is that it must
be data that the recommender has acquired before this AL step.

In an online evaluation, if Qu is non-empty, the items in Qu
would be presented to the user and she would be invited to rate as
many of them as she cared to. In offline evaluation, this is where
we use the hidden ratings RHu . The simulated user provides to the
system her hidden ratings for items in Qu . We will call these the
elicited ratings, REu = {rui ∈ RHu | i ∈ Qu }. Note, by this approach,
if the simulated user has the rating, she supplies it. This may seem
unrealistic: real users are likely to ignore at least some of the re-
quests made by an AL strategy or, even if willing to engage, may not
be familiar enough with the items Qu and thus unable to provide
ratings. This is anticipated in the design of this offline evaluation
because the overlap between the items in Qu and the ones whose
ratings are available in RHu will typically be small, and often there
will be no overlap.

Now that we have established the notation, we can show how to
evaluate the impact of an AL strategy SAL . We must measure rec-
ommender performance before and after the acquisition of ratings
by the strategy, as follows:
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Before:
(1) Build a recommender model from Rbefore .
(2) Test the model (see below).

AL:
(1) For every Active user u ∈ UActive ,

(a) Compute the items whose ratings the strategy
wants to acquire, Qu = SAL (u,n,G, Pu ).

(b) Obtain the ratings for these items REu = {rui ∈
RHu | i ∈ Qu }.

(2) Update the recommender with the elicited ratings
Rafter = Rbefore ∪

⋃
u ∈UActive R

E
u .

After:
(1) Build a new recommender model from Rafter .
(2) Test the new model (see below).

Testing the quality of the recommender (above) is the same both
before and after. For every user u ∈ U , we use the recommender
model to obtain a set of recommendations for u and then compute
the value of each evaluation metric (see Section 3.3) by comparing
the recommendations with u’s test set RTEu .

Note that where there is more than one strategy to compare,
the activities labeled Before are run just once. But the AL and After
activities are run once per strategy.

There is, of course, the usual danger that the results obtained
are specific to this particular split of the data. Hence, we partition
again and repeat the AL step multiple times (repeated holdout), and
report the average results. For example, in Section 4, we average
over 10 runs.

3.3 Evaluation metrics
As we said in Section 1, there is good reason to evaluate AL strate-
gies using a wider range of metrics than has been used up to now.
We do not have space to survey the metrics. Instead, we will simply
list the ones that we use in our case study in Section 4:

• For accuracy: Precision, Recall and nDCG.
• For diversity: Expected Intra-List Distance (EILD) and α-

nDCG.
• For novelty: Expected Popularity Complement (EPC), Ex-

pected Free Discovery (EFD) and Expected Profile Distance
(EPD).

• For serendipity: Content-Based Surprise (CBS).
Others that we compute but do not show in Section 4 include
Average Popularity, Subtopic-recall and Expected Reciprocal Rank.
For the definition of CBS, see [9]; for the rest, see [16]. Note that, for
several metrics, [16] offers two definitions, depending on whether
recommendations are compared with all test set ratings, or just
ratings for ‘relevant’ items. In Section 4, we use the latter definitions.

But there is the additional issue, also raised in Section 1, of
whether we report the average values of the metrics for all users or
just for certain subsets of the users. For example, we can report the
average values for the following groups:

• All users,U .
• Active users,UActive , i.e. just those users who are randomly

selected to be the ones to whom the AL strategy is applied.
• Solicitees, {u ∈ UActive | Qu , { } }, i.e. just those Active

users for whom Qu is non-empty. These are users whose
ratings are being solicited.

• Respondents, {u ∈ UActive | Qu , { } ∧ REu , { } }, i.e. just
those Solicitees who provide at least one rating.

• Solicitees-less-Respondents, i.e. users who were asked for
ratings but did not provide any.

• U -less-Respondents, i.e. everyone who did not provide a rat-
ing either because they were not asked for one or because
they were asked for ratings but did not provide any.

In the literature, Elahi et al. give results averaged overU , referring
to these as system-wide results. Other work in the literature takes a
user-centric approach, which focuses on users involved in the AL,
typically giving results for the Active users. We will see in Section 4
that it can be useful to give results for some of the other subgroups
too. For example, suppose that Respondents benefit hugely from
the AL but that the impact on all the other users is sometimes neg-
ative. If the positive benefit to Respondents outweighs the negative
impact on the other users, then system-wide results (forU ) may be
misleading. If, on the other hand, we also show results for U -less
-Respondents, we will see the negative impact that the strategy has.

3.4 Setting the values of hyperparameters
Both the recommender model and the AL strategy may have hyper-
parameters whose values need to be tuned. The AL literature says
little on this, and we want to distinguish our work by providing a
more rigorous exposition.

We begin by deciding what metric we wish to optimize in hy-
perparameter tuning. For example, for the recommender model we
typically want hyperparameter values that give highest precision
across all users. For now, we assume that hyperparameters for the
AL strategy should also optimize precision across all users.

Suppose a dataset has been prepared in the way described in
Section 3.1. In particular, each active user’s ratings have been parti-
tioned into known, hidden and test. Hyperparameter values must be
chosen before running the AL step (Section 3.2). The only data that
can be used for this is Rbefore (the active user’s known ratings and
the non-active user’s training ratings). If we use the active user’s
hidden ratings or any user’s test ratings, then we have leakage.

We further split Rbefore in the same way as described in Sec-
tion 3.1. In other words, for every user we split off a set that will be
used for testing. Then for the active users, we split their remaining
ratings into known and hidden. It may help to visualize as follows:
an active user’s rating were divided into three, RKu , RHu and RTEu .
Now, for hyperparameter tuning purposes, RKu has been split into
three again, RvalKu , RvalHu and RvalTEu .

We tune the recommender model’s hyperparameters first. For
each configuration of hyperparameter values, we train a recom-
mender on ratings that are not part of any hidden sets or test
sets. We measure recommender performance using RvalTEu for each
user. We perform the splits again (repeated holdout), compute the
average and select the hyperparameter values that optimize the
metric we chose earlier (e.g. precision). In Section 4, for example,
we average results over 5 runs.

Now we can tune the AL strategy’s hyperparameters. For each
configuration of hyperparameter values, we run an AL step but
using RvalKu , RvalHu and RvalTEu . We run an AL step for each different
split of the repeated holdout and we choose the hyperparameter
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Table 1: Dataset statistics (after filtering)

~93% sparsity ~9K ratings
3482 users avg. ~256 ratings per user
3675 items avg. ~243 ratings per item

values that optimize the metric we chose previously (e.g. precision
across all users).

4 CASE STUDY
In a more conventional paper, this section would compare the
authors’ new AL strategy with existing and baseline strategies,
perhaps on multiple datasets, in an effort to convince the reader
of the value of the new strategy. But that is not our intention here.
Instead, we present a sample of our results, obtained using three
very simple strategies on a single dataset, and our intention is to
show the value of a more comprehensive evaluation. We want to
illustrate, for example, that it can be misleading to conduct only a
system-wide or only a user-centric evaluation; it can be misleading
to fail to distinguish cold-start from more mature users; and it can
be misleading to ignore metrics other than accuracy.

4.1 Preliminaries
The dataset we use is the MovieLens 1M dataset.1 As discussed
in Section 3.1, we discard users who have fewer than 75 ratings.
But recall that p = 0.8 so, for all users, 20% of those ratings will be
test set ratings, and for Active users pu is chosen from [0.15, 0.85],
so between 15% and 85% of the training ratings will be known
ratings, the remainder being hidden ratings. Hence, even though
we start with users who have quite a lot of ratings (minimum 75),
we will still end up with some Active users with very few known
ratings (effectively becoming cold-start users). Table 1 summarizes
the characteristics of the dataset after filtering.

For the recommender, we use the RankSys implementation of
Matrix Factorization.2

Of the AL strategies that we have implemented, the ones that
appear in this case study are:

• popularity: We score each item by the total number of rat-
ings for that item inRbefore . Items are ordered by decreasing
score and the top n are selected. This strategy is not per-
sonalized: if two users have the same pool of candidates
Pu , then their Qu will be the same.

• highest-predicted [5]: For every active user u ∈ UActive
and for each item in Pu , the Matrix Factorization recom-
mender predicts the user’s rating. Items are then ordered
by decreasing predicted rating and the top n are selected.
This strategy is personalized, choosing items which the
recommender thinks the user will like.

• binary-predicted [5]: The matrix Rbefore is binarized to give
a new matrix B, where bui ∈ B is 1 if rui ∈ Rbefore is 1
and bui is 0 if rui is ⊥. An implicit Matrix Factorization
model is built from B. Then, the highest-predicted strategy
is applied, and the top n items are selected. The strategy is

1https://grouplens.org/datasets/movielens/1m/
2https://github.com/saulvargas

Table 2: # of elicited ratings per Solicitee

# elicited per user
binary-predicted 2.45
highest-predicted 2.41

popularity 1.75

personalized, choosing items that are likely to be familiar
to the user.

In our experiments, the maximum number of items selected, n,
is 5 and Pu (the pool of candidates) are ones whose ratings are not
known (Pu = {i ∈ I | rui < Rbefore }). The number n = 5 is chosen
as a reasonable approximation to what might fit on a screen. On
portable devices, it might be slightly fewer; on other devices, it
might be slightly more.

We run the experiments for 10 iterations of repeated holdout and
we average results over the 10 runs. In each run, we randomly select
one-third of the users to be Active users (about 1100 users). To the
best of our knowledge, no best practice exists in the literature to fix
this proportion. We chose one-third in order to have enough Active
users and non-Active users to be able to show both user-centric
and system-wide results.

TheMatrix Factorization has one main hyperparameter, the num-
ber of latent factors.We use 5 iterations of repeated holdout to select
the value from {10, 15, 20, 25, 30, 35, 40} that maximizes precision
for top-10 recommendations across all users. Among the AL strate-
gies, only binary-predicted has a hyperparameter, again the number
of latent factors. This too is selected from {10, 15, 20, 25, 30, 35, 40}
to maximize top-10 recommendations across all users.

When testing recommendation quality, we make 10 recommen-
dations and we consider a test set item to be ‘relevant’ if its rating is
above 3 stars. To compute scores for diversity, novelty and serendip-
ity, we use the 18 MovieLens genres as item features.

4.2 System-wide versus user-centric results
Consider the accuracy results in Figure 1 first. In every subplot,
we report the percentage improvement in each accuracy metric
(Precision, Recall and nDCG). Subplot (a) shows the results for Re-
spondents, i.e. users who have provided at least one new rating to
the system. All three strategies enjoy a substantial improvement
for all three metrics and this is a demonstration of the utility of AL.
All three metrics also agree on how to rank the strategies: highest-
predicted is the best strategy (including a notable 37% improvement
in terms of nDCG), then binary-predicted and last popularity. Ta-
ble 2 shows the number of elicited ratings. From this, we note
that highest-predicted and binary-predicted gather about the same
amount of ratings. But, highest-predicted must on average be acquir-
ing more useful ratings, since the ratings it acquires result in higher
accuracy. However, we will not investigate the reasons behind these
results because this is not the purpose of this case study.

Subplot (b) shows the system-wide performances (i.e. averaged
over all u ∈ U ). The strategies have the same ranking. Careful
inspection of the scales on the y-axes shows that the improvements
are significantly lower, but this is expected because these results
include non-Active users.

https://grouplens.org/datasets/movielens/1m/
https://github.com/saulvargas
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Figure 1: Accuracy results, user-centric vs. system-wide
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Figure 2: Beyond-accuracy results, user-centric vs. system-wide

Subplot (c) shows the results forU -less-Respondents. The rank-
ing of the strategies remains the same but the improvements are
very low. This is a useful feature of a more comprehensive method:
it confirms that in this collaborative-filtering case study, active
learning on average does have accuracy benefits even for the users
who do not have new incoming data. Subpot (b) alone would not
confirm this because it includes results for Respondents.

Now, consider the beyond-accuracy results in Figure 2. Subplot
(a) shows that Respondents enjoy improvements in all measures,
although for the EPD novelty measure the improvements are neg-
ligible. This is good because it means that the new data makes
recommendations more diverse, serendipitous and, according to
most of the novelty metrics, more novel. highest-predicted is the
winning strategy for all the metrics except for EPD, where the win-
ner is popularity. Subplot (b) shows the same trend system-wide.

There is one small difference with subplot (a): in the system-wide
results, popularity does not improve the EPC novelty metric (it is
slightly negative).

But it is subplot (c) that most illustrates the advantage of averag-
ing over different user groups. For users who do not provide any
rating (U -less-Respondent), popularity is now a winning strategy
in terms of α-nDCG and CBS. Furthermore, the EPC novelty is on
average negative for all three strategies and the EFD is negative for
two strategies. The dis-improvements here are small and apply only
to two metrics and so a system designer might decide to sacrifice a
little recommendation novelty in exchange for the benefits across
the other metrics. But, without subplot (c), this trade-off would be
hidden.
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Figure 3: Precision results for Respondents by profile size
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Figure 4: EPD results for Respondents by profile size

4.3 Results by profile-size
In this section, we concentrate on Respondents but we show results
by profile size. This enables us to compare the impact of AL on
cold-start users and more mature users. To do this, we put each
Respondent u into a bucket based on her profile size, |RKu |. The
design of the buckets in this case study is somewhat heuristic. The
first bucket comprises profiles that contain 1–20 ratings. This is
inspired by the literature (e.g. [7, 11]), where a user is labeled as a
cold-start user if her profile is in this specific range. The subsequent
buckets are chosen in a way that ensures each contains a substantial
number of users.

We do not have space to show all the metrics, so we select just
three: Precision (Figure 3), EPD (Figure 4) and CBS (Figure 5).

Figure 3 shows improvements in Precision. For all except the
first bucket, we see the same trend we have seen before: highest-
predicted is the best strategy followed by binary-predicted and then
popularity. However, for cold-start users (profiles of size 1–20),
binary-predicted is the best strategy. This might suggest to a system
designer the need for a hybrid strategy, or even an adaptive hybrid.
This result is hidden if the only results are like those in Figure 1.

Figure 4 and 5 shows improvements in EPD and CBS respec-
tively. Again this level of analysis reveals interesting trade-offs. For
EPD (Figure 4), popularity is generally the best strategy, but it is
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Figure 5: CBS results for Respondents by profile size

particularly good for cold-start users whereas highest-predicted and
binary-predicted have a negative impact on cold-start users. For CBS
(Figure 5), for cold-start users, popularity is the best strategy, with
binary-predicted second and highest-predicted last, but for other
users the usual ranking of the strategies applies.

5 CONCLUSIONS, DISCUSSION AND FUTURE
WORK

In this paper, we have presented as explicitly as possible the method-
ology that we use for offline evaluation of Active Learning (AL)
strategies. We presented it at a level of detail that allows for re-
producibility and detailed discussion. We have argued that a full
picture only emerges if AL offline evaluation results are analyzed:
(a) for different groups of users (e.g. all users U , Respondents only,
U -less-Respondents, etc.), (b) by profile size, and (c) using a wide
range of metrics, both accuracy and beyond-accuracy. A small case
study illustrated this. The purpose of the case study was not to
choose the best strategy, nor to analyze why one strategy outper-
forms another. The purpose was to illustrate that, even for three
very simply AL strategies, trade-offs only become visible with the
level of analysis that we propose.

We want at this point to discuss three aspects of the method that
may be open to criticism. The first is the proportion of users who
are randomly chosen to be Active users. We select one-third for the
pragmatic reason that it gives a reasonable number of both Active
users and non-Active users. But the balance between the two affects
the results. If there were fewer Active users, for example, then
system-wide results (for all U ) might not look so good: with fewer
Active users there can be fewer new ratings and thus a reduced
impact. Of course, in some ways, this further supports our position
that one should not just look at system-wide results; one should
look at results for other user subgroups too. Nevertheless, we are
doing some experiments using different proportions of Active users
to quantify its effect.

The second discussion point concerns the distribution of rating
values. In recommender systems that use explicit ratings, positive
ratings (e.g. 4s and, to some extent, 5s) often predominate; cer-
tainly, this is true of the MovieLens datasets. This motivates work
on recommender models that recognize that missing ratings are
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missing-not-at-random [18]. But our concern here is how this af-
fects offline evaluation. For example, it means that positive ratings
predominate in hidden sets. Could this mean that a strategy such
as highest-predicted, which targets items that it thinks the user will
like, enjoys an advantage in the offline evaluation that it would not
enjoy in a deployed system? In fact, we took steps to check this.
We ran a version of our experiment on a modified version of the
MovieLens dataset in which we discarded ‘excess’ positive ratings
to ensure that hidden sets were not dominated by them. There
were no noticeable differences in the results that we obtained. In
particular, highest-predicted was still the winning strategy as often
as before. Nevertheless, we continue to think about ways of testing
for, and avoiding, biases of this kind.

The third discussion point is that we are not using multi-step
evaluation, where AL is applied repeatedly to simulate the evolution
of a recommender system. There are many questions about whether
multi-step evaluations do, in fact, model system evolution. Some of
these are addressed in [4, 6]. Unless these issues can be resolved
satisfactorily, it may be best to resort to user trials and online
evaluation as soon as single-step evaluation identifies the promising
AL strategies.

For the future, there are several lines of research. One is to apply
the method more widely, e.g. to other datasets and to more AL
strategies. It may be useful to extend the analysis of results, so we
can see results not just by profile size but also perhaps by rating
variance and profile diversity. We should also include analyses of
AL costs: there are time costs and cognitive costs to users; there
are time and space costs in building and running recommender
models, building and running AL models, and in re-training rec-
ommender models. Moreover, at the moment, the method takes a
user-perspective: it assumes that AL acquires new ratings for the
benefit of users. But AL can be used for cold-start items [1, 17]. A
similar evaluation method can be designed for situations where AL
is used to boost the ratings of new items and more mature items.

Finally, we want to use our method to help us design new AL
strategies that are better targeted to the needs of different kinds
of users. We could imagine, for example, personalized or adaptive
strategies that help cold-start users rapidly improve recommenda-
tion relevance but which place an emphasis on discovery for more
mature users.
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