
Creating New Sandwiches From Old

Derek Bridge and Henry Larkin?

Insight Centre for Data Analytics,
School of Computer Science and Information Technology,

University College Cork, Ireland
derek.bridge@insight-centre.org|h.larkin@umail.ucc.ie

Abstract. Earl is a case-based reasoning system which works in the
domain of sandwich recipes. It has a case base of 9,507 cases, each be-
ing a sandwich recipe which we scraped from the web. We show how
Earl can compose new sandwiches from the ingredients of sandwiches
that it retrieves from its case base. On each iteration, it inserts into the
sandwich the candidate ingredient which results in greatest coherence.
Earl computes coherence with reference to the cases in the case base.
A preliminary experiment with human participants shows that Earl’s
sandwiches are competitive with human-authored sandwiches.

1 Introduction

The Computer Cooking Contest has its roots in Case-Based Reasoning (CBR).
Most entrants to the Contest are systems that retrieve and adapt recipes from a
case base of human-authored recipes. To the best of our knowledge, no entrant
to the Contest has ever been capable of creating new recipes, rather than making
small substitutions to existing recipes. This is surprising, considering that one of
the most famed early CBR systems, CHEF, used case-based planning to create
new recipes [3].

In this paper, we describe Earl. Like CHEF, Earl is case-based and it creates
new recipes. Unlike CHEF, it is not a planner. It uses a form of constructive
adaptation [5]. It composes a new recipe from the ingredients of multiple recipes
that it retrieves from its case base. On each iteration, Earl inserts the candidate
ingredient to the sandwich which results in greatest coherence. Earl computes
coherence with reference to the cases in the case base. The design of Earl owes
much to Baccigalupo and Plaza’s case-based system for creating music playlists
[2].

It is important to note, however, that Earl is not a general-purpose recipe
creation tool. It works in a highly circumscribed domain: that of sandwiches.
Creating sandwich recipes is obviously much easier than creating recipes for
other meals. Nevertheless, Earl represents a first step in a different direction for
the Computer Cooking Contest.

? This publication has emanated from research supported in part by a research grant
from Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289.

Section 2 describes Earl’s recipe case base; Section 3 presents Earl’s algo-
rithm for creating new sandwich recipes; Section 4 reports a simple experiment;
Section 5 considers avenues for future inquiry.

2 The Sandwich Case Base

To build Earl, we needed a large case base of sandwich recipes. We entered the
search term ‘sandwich’ into five recipe web sites: allrecipes.com, allthecooks.com,
tastykitchen.com, food2fork.com and yummly.com.1 We scraped 10,721 recipes
from the search results. Even though some of the search engines allowed us to
exclude desserts, cakes and so on from the search, the search results nevertheless
contained many recipes with ‘sandwich’ in the title that were not sandwiches (e.g.
“Victoria sponge sandwich” and “ice-cream cookie sandwich”). We manually
removed these as best we could, resulting in a case base of 9,507 sandwich recipes.
We stored each recipe’s name, star rating and list of ingredients. Over 61% of
recipes had a rating greater than or equal to four stars. Earl uses only these
recipes, meaning that it makes use of about 5,800 recipes.

Earl relies on identifying sets of ingredients that recur across recipes (see
Section 3). But the recipes we had scraped often described the same ingredient
in different ways. Recipe authors often use alternative names for an ingredient
(e.g. “arugula” and “rocket”); they might use brand names (e.g. “Hellman’s”);
they might misspell or mistype ingredients (e.g. “mayonaise”); and they often in-
clude measurements and preparation details (e.g. “two tablespoons cream cheese,
softened”).

To enable Earl to identify recurring ingredients, we linked each ingredient in
each recipe to a canonical ingredient; for example, “mayonnaise”, “mayonaise”,
“Hellman’s” and “one tablespoon of mayonnaise” were all linked to “mayon-
naise”. We had around 1,500 canonical ingredients in a taxonomy that we had
scraped from the Cook’s Thesaurus2, which is a gastronomy web site. We provide
more details of how we built this taxonomy in [4].

We linked each recipe ingredient to a canonical ingredient as follows. We
tokenized recipe ingredients and singularized the tokens. We sought matches and
close matches (using Levenshtein distance) between an ingredient’s tokens and
the foodstuff names in the taxonomy. In the event of multiple good matches,
we used heuristics to select one foodstuff from the taxonomy. In essence, the
heuristics selected the most specific ingredient for which we had good evidence.
We automatically canonicalised just over 85% of the ingredients in this way.
The remainder (mostly brand names and gross misspellings), we canonicalised
manually where we could. There were a few ingredients that we could make no
sense of at all, and we simply removed these from the sandwiches in which they
appeared.

1 allrecipes.com, www.allthecooks.com, tastykitchen.com, www.food2fork.com,
www.yummly.com

2 www.foodsubs.com

3 Making Sandwiches

As we have explained, Earl takes inspiration from Baccigalupo and Plaza’s work
on case-based music playlist generation [2].

3.1 Generating candidate playlists and sandwiches

Here we present Baccigalupo and Plaza’s algorithm. However, we generalise it
so that it can apply also to sandwich creation. Their algorithm uses a case base
that contains human-authored music playlists, and it incrementally builds a new
playlist by adding songs. Earl uses a case base that contains human-authored
sandwich recipes, and the algorithm incrementally builds a new sandwich by
adding ingredients. Both systems work as follows:

1. Take in a seed item s (a song or an ingredient) and a desired (playlist or
recipe) length from the user.

2. Create an initial partial solution p which contains just s.
3. From the case base, retrieve cases (playlists or recipes) that contain the seed

item.
4. Repeat the following until p is of the desired length:

(a) For every item s′ in the cases that were retrieved, create a candidate
extension of p by adding s′ into p.

(b) Calculate the coherence of each candidate extension (discussed below).
(c) Choose the candidate extension with highest coherence, and this becomes

p on the next iteration.

In fact, Baccigalupo and Plaza’s playlist creation algorithm is more compli-
cated in two ways. First, they retrieve only the k highest-scoring cases (playlists)
that contain the seed item (song) from the case base, whereas we retrieve all cases
(recipes) that contain the seed item (ingredient). Hence, they calculate coher-
ence at both retrieval time and when judging candidate extensions, whereas we
do not use coherence scores at retrieval time. The main effect is one of efficiency:
they retrieve fewer cases and thus create fewer candidate extensions.

Second, on each iteration, for each song s′, Baccigalupo and Plaza create two
candidate extensions of p: one in which s′ is added to the front of p, and one in
which it is added to the back of p. What this means is that they treat song order
as important. We, on the other hand, treat ingredient order as unimportant: we
treat sandwiches as sets, rather than as ordered lists. Hence, on each iteration,
for each ingredient s′ we need to create only one extension, simply by inserting
s′ into the set p.

In reality, ingredient order in a sandwich is important; for example, one might
place moist ingredients away from the bread; one might place crunchy ingredients
between softer ones; and so on. But our recipe case base does not give us usable
ordering information. Baccigalupo and Plaza assume that each playlist in their
case base is a meaningfully ordered sequence of songs; indeed, they prune from
their case base any playlists that appear to violate this assumption (e.g. ones

that are alphabetically ordered). We could not make a similar assumption about
the recipes in our case base. In the recipes we have scraped, ingredients are
listed in all sorts of ways: rarely, if ever, are the ingredients presented in the
order in which one might layer them in the final sandwich. Typically, the main
ingredients are first —the meats or cheeses. Salad ingredients usually follow, and
then condiments. But many sandwiches ignore this ordering completely and list
ingredients alphabetically or by some other criteria that is not clear at all. Since
we cannot rely on our cases to have an ordering based on sandwich construction,
it does not make sense to use ordering in the sandwich creation algorithm.

3.2 Coherence

On each iteration, Earl must calculate the coherence of partial sandwich p ex-
tended by candidate ingredient s′, and here we define this coherence score, again
adapting the ideas in [2].

In advance, we use the Apriori algorithm to mine frequent item sets from the
cases in the case base [1]. We keep only those frequent item sets whose support
(frequency) exceeds a threshold (in our case, 0.02). The score of p extended by s′

depends on the frequent item sets that both (a) contain s′, and (b) are a subset
of p extended by s′. In symbols, if we let FIS be the frequent item sets, then
the coherence of p extended by s′ is the sum of the relevances of those frequent
item sets that satisfy conditions (a) and (b):

coherence(p, s′) =
∑

fis∈FIS∧s′∈fis∧fis⊆p

relevance(fis, s′)

The relevance of a frequent item set to one of its member items s′ is based
primarily on the support of that item set, i.e. its frequency across the cases in the
case base. However, there are two factors that can incorrectly inflate the support
and hence the relevance of a frequent item set: its length and the popularity of the
members of the item set. Smaller item sets are more likely to appear more often,
and popular items are more likely to appear. The definition of relevance must
penalize smaller item sets and item sets whose support is boosted by containing
popular items. The penalties are controlled by two parameters, α and β:

relevance(fis, s′) = support(fis)× αθ−|fis|

(support(fis \ s′))β

θ is the size of the largest frequent item set that we mined. Hence, if a frequent
item set is small, then θ − |fis| will be large and, for α in (0, 1], αθ−|fis| will be
small, thus penalizing the small item set. In the denominator, support(fis \ s′)
is the support of an item set that comprises the members of fis excluding s′.
Dividing by this amount (raised to the β in [0, 1]) decreases the relevance of
item sets that contain popular items.

This scoring function is a simplified version of the one used by Baccigalupo
and Plaza. Their scoring function differs from ours in two ways. First, they must

again handle the ordering of songs in playlists. Hence, they refer to ‘patterns’
instead of frequent items sets. But a pattern is simply an ordered version of a
frequent item set.

Second, Baccigalupo and Plaza reward a playlist if it exhibits variety. The
idea is that a user might dislike a playlist in which songs from the same author or
the same album are repeated. This is particularly important for music playlists
for at least two reasons: (a) playlists are ordered lists, not sets, and so the variety
measure discourages the addition of duplicate songs to a playlist, and (b) some
of the cases in their case base might deliberately lack variety (e.g. a playlist that
is in fact an album track listing, or a playlist that contains all of a person’s
favourite songs by a single artist). Thus Baccigalupo and Plaza score a partial
playlist using the product of coherence and variety, where they define variety
using music meta-data. Earl, on the other hand, does not need a definition of
variety: (a) sandwich recipes are sets, not ordered lists, and sets cannot contain
duplicates, so this at least avoids a sandwich with two helpings of radishes, for
example; and (b) we can assume that almost all of the sandwich recipes in our
case base, if they are genuine sandwich recipes (which is likely because we are
only using sandwiches with high ratings), already exhibit sufficient variety to
justify their high rating.

3.3 Discussion

Preliminary testing of Earl revealed that after seven iterations many candidate
extensions would have the same coherence score. There are enough ingredients
present in the sandwich that the same frequent item sets match all candidates.
For this reason, we often run Earl with a default length of seven ingredients.

An interesting observation is that, for a wide variety of seed ingredients, Earl
adds bread to the sandwich in one of the first few iterations. Although nearly all
of the sandwiches in our case base assume the other ingredients will be placed
between slices of bread, only about 50% of them explicitly list the bread as an
ingredient. So it was not a foregone conclusion that Earl would create sandwiches
that include bread, and it is pleasing that it automatically does so.

Earl has a major weakness: the sandwiches that it produces are often very
similar. Starting with any common ingredient as the seed, all-too-often it gen-
erates a sandwich with bread, butter, salt, tomatoes, peppers, onion, and the
seed. The ingredients that it chooses are so ubiquitous across the case base that
they all score highly and appear very relevant for any common seed ingredient.
This is despite the fact that the sandwiches in the case base are quite inventive,
exhibiting a wide range of ingredients, including watercress, walnuts, artichoke
hearts and apple among more than a thousand others.

Note that this is not a question of the variety of ingredients within the sand-
wich (which we discussed above). The problem is not that Earl is including three
types of lettuce in a sandwich. The problem is one of coverage of the ingredient
space, resulting in sandwiches which are too similar to each other.

We tried to overcome this problem by modifying the values of α and β.
The effect was not very pronounced on the sandwiches produced. One of the

typical ingredients might be replaced by a different one, but this change would
be reflected across all the sandwiches produced, so the issue remained.

Another thing we tried was using local support instead of global support.
Originally, support is computed over the entire case base. We changed this to
calculate support only on the recipes retrieved from the case base, i.e. those
with the seed ingredient in them. This was combined with some modification of
α and β. Again there was little effect. Overcoming this weakness is obviously one
avenue for future research. One avenue is to favour medium values for support
instead of high values. This would avoid rewarding ‘mainstream’ combinations
that occur most often in the case base, without rewarding bizarre combinations
that occur only once or twice.

4 A Preliminary Experiment

We have run a simple online experiment to obtain a preliminary evaluation of
Earl’s sandwich creation algorithm. We asked participants to compare human-
authored sandwiches (from the case base) with system-generated sandwiches.

In advance, we selected nine different seed ingredients. We used meats (beef,
ham, bacon, chicken), tuna and cheese. But we also used lettuce, corn and avo-
cado. We had previously found that Earl would generate meat-free sandwiches
for these three seeds, thus ensuring inclusion of vegetarian sandwiches in the
experiment. To get the human-authored sandwiches, we used the seed to query
the case base and randomly chose from the results a sandwich with a star rating
of 4 or higher. For the three seeds chosen to get vegetarian options, if the sand-
wich contained meat, we chose randomly from the vegetarian results. For the
system-generated sandwiches, we ran Earl using the seed and a desired length
of 7. The sandwiches were all pre-generated to reduce the chance that waiting
times would cause participants to quit the experiment.

The web page displayed two sandwiches for the same seed ingredient: one
human-authored sandwich and one system-generated. We asked participants to
rate both sandwiches on a scale of 1 to 10, with 1 being low and 10 being high.
What we wanted the participants to tell us was how well the ingredients worked
as a sandwich, irrespective of their personal tastes. Pilot testing revealed that
many people had difficulty being objective in this way. If someone did not like
olives and the sandwich contained olives, participants awarded the sandwich a
low rating, regardless of how well the ingredients went together. Therefore, in the
experiment itself, we tried to encourage participants to be objective by asking
for two ratings for each sandwich: a personal rating (where they could tell us
about their preferences) and an impersonal rating (where we hoped they would
be more objective). We hoped that, by asking both questions, we would make
participants more aware of the difference between them.

A total of 56 people completed the experiment. Hence, each of the 9 pairs
of sandwiches was shown to at least 6 participants. Figure 1 shows the av-
erage rating each sandwich received by method (Human-authored or System-
generated) and rating type (Personal or Impersonal). The Figure shows that

Fig. 1: Average ratings by sandwich

certain sandwiches were better received than others. Human-authored sandwich
5 and system-generated sandwich 4 in particular are the two that participants
seemed to prefer most. There are some sandwiches where the personal rating is
higher than the impersonal, and vice-versa. System-generated sandwiches seem
to score higher overall but on one of the weaker system-generated sandwiches,
sandwich 5, the human-authored method produces one of the higher scoring hu-
man sandwiches across both personal and impersonal ratings. This is the only
sandwich where the human method has a higher personal rating and there is
only one other sandwich where the human method has a higher impersonal rat-
ing. Across the rest, the system-generated sandwiches score higher, some by a
considerable margin.

The average personal ratings were 4.4 and 6.2 for human-authored and
system-generated sandwiches, respectively. The average impersonal ratings are
better, 5.3 and 6.6. On average, participants found the system-generated sand-
wiches to be more to their tastes (statistically significant at the 1% level, using
a paired, two-tailed t-test), and they thought these sandwiches were better de-
signed (also statistically significant at the 1% level).

5 Conclusions

Our evaluation surprised us! On average, system-generated sandwiches scored
higher than human-authored ones. This conclusion comes with the caveat that
the experiment is of very small scale. Furthermore, the majority of participants
are 18–23 year old students. Earl does tend to suggest sandwiches with very

familiar ingredients, while the sandwiches in the case base are often more adven-
turous. It is possible that many of the participants were conservative in nature.
Participants with different demographics might have different tastes or have dif-
ferent experiences to draw on, making for very different results.

In an ideal world, we would have a deli that would produce all the recom-
mended sandwiches for the participants to taste. Without actually tasting the
sandwiches, it is hard to judge them. An unusual combination of ingredients
might not sound very appealing but might actually taste good.

There are many avenues for future work. We have already noted that Earl
creates sandwiches that lack diversity; remedying this is a priority. We noted too
that we treat sandwiches as unordered sets of ingredients, but this is not how
a sandwich works in reality. There are rules that are generally followed, such
as not putting the tomato beside the bread so the bread does not get soggy.
It would be interesting to use ordering knowledge, either mined from sandwich
recipes that contain this information or using heuristics that work on knowledge
about the texture of the ingredients.

At present, Earl does not offer any way to customise what kind of sandwich
gets created. If a user wants a vegetarian sandwich, simply starting with a non-
meat ingredient as the seed does not guarantee that she will get something that
is vegetarian. Offering more control is a desirable improvement.

More challenging is to consider whether the ideas in Earl can be extended to
recipes for something more complicated than sandwiches. We would need to lift
assumptions that we have made. For example, in using canonical foodstuffs, Earl
ignores the measurements of the original recipe ingredients. We took the view
that, once it is known that there is ‘cream cheese’ in a sandwich recipe, a suitable
amount can be put in according to personal taste. This does not work with other
recipes; for example, it might be crucial to use two teaspoons of baking powder,
neither more nor less. Furthermore, our coherence score is primarily determined
by recurrence of sets of ingredients across the case base. But to create cooking
recipes, a system will often need to know something about the chemistry of the
ingredients, i.e. the way they react together.

References

1. Rakesh Agrawal and Ramakrishman Srikant. Fast algorithms for mining association
rules. In Procs. of the 20th International Conference on Very Large Data Bases,
pages 487–499, 1994.

2. Claudio Baccigalupo and Enric Plaza. Case-based sequential ordering of songs for
playlist recommendation. In Proceedings of the 8th European Conference on Case-
Based Reasoning, pages 286–300. Springer, 2006.

3. Kristian J. Hammond. Explaining and repairing plans that fail. Artificial Intelli-
gence, 45(1–2):173–228, 1990.

4. Henry Larkin and Derek Bridge. Subs and sandwiches: Replacing one ingredient by
another. In Workshop Programme of the 22nd International Conference on Case-
Based Reasoning, (this volume) 2014.

5. Enric Plaza and Josep Llúıs Arcos. Constructive adaptation. In Proceedings of the
6th European Conference on Case-Based Reasoning, pages 306–320. Springer, 2002.

