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Abstract. In this paper, we introduce a new case-based classifier. Its
novelty lies in that it uses a pair of weight vectors when computing
and comparing distances between cases. Given a case base and a query,
the classifier induces a partial order on the case base and returns the
maxima of the partial order. The maxima is a set whose size reflects the
uncertainty in the weights. This means we do not need to fix a value of
k as is done in traditional k-NN-classifiers. The paper also describes a
learning algorithm which is capable of learning the pair of weight vectors.
We compare our classifier with a k-NN-classifier that uses a vector of
weights learned by a variant of the RELIEF-F algorithm.

1 Introduction

We begin, in Section 2, by describing k-NN classifiers, as a way of laying down
the notation used in this paper. In Section 3, we describe a weight learning
algorithm from the literature. It learns a weight vector that can be used by the
k-NN-classifier. We describe it in detail since our new weight learning algorithm
is based on it. Section 4 contains a description of our new classifier, which uses
a pair of weight vectors. An algorithm for learning the pair of weight vectors is
given in Section 5. In Section 6, we discuss some experimental results.

2 k-Nearest Neighbours Classification

We assume each case © = (x1,... ,Z,,2.) is defined by n descriptive attributes
and a target class, z. € C. In some cases, the values of one or more attributes
x; may be missing, for which we write ; = L. A case base CB is a set of cases.
Given a query ¢ = {(q1,-.-,¢n) and a case base CB, a k-NN classifier retrieves
the k least distant cases to predict the class of g.

Total distance is a weighted sum of local (attribute-specific) distances:
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You can see that we are using Manhattan distances. You can also see that, in
this paper, we are looking only at global, per-attribute weights. The ideas that
we introduce might extend naturally to finer-grained, local weighting schemes
[3], [7], but this has not been explored yet.

In the experiments reported in Section 6, we compute normalised local dis-
tances differently for symbolic (including Boolean) attributes
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and for continuous numerical attributes
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1 : otherwise

(range; is used to normalise the distance and is defined as the difference between
the maximum and minimum values observed in the data set for attribute .)
There are, of course, many other ways of defining distance (see, e.g., [10])
and many other ways of handling missing attribute values (see, e.g., [6]).
The distance function and query g define an ordering over cases in the case
base: case x is higher in the ordering than case y iff the distance between x and
q is less than the distance between y and g:

x >y iff dist(z,q) < dist(y, q) (4)

Let Maz, where | Maz| = k, be the k highest cases in this ordering of the case
base. The class of ¢ is predicted from Maz. Here are two, among many similar,
approaches for doing this:

— A majority vote can be used, i.e. the class occurring most often among the
cases in Max is predicted to be the class of ¢.

— Alternatively, this voting can be weighted so that cases closer to ¢ have a
higher vote. In this case, the vote for each class ¢ € C' is computed as follows:

EzEMaz/\zczc K(.’I}, q)
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where the kernel function K is defined as follows:
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K(z,q) (6)
In our experiments, reported in Section 6, we will use the second of these ap-
proaches as we found it to give equal or marginally better performance on all
data sets.

By default, k-NN classifiers use equal, non-zero weights: Yw;Vw;(w; > 0 A
w; = wj). If we allow the weights to differ, we can increase the contribution of
more predictive attributes and decrease the contribution of less relevant, includ-
ing redundant, attributes. We look now at one way of learning such a weight
vector.

3 Learning a Weight Vector

There are many weight learning algorithms. We choose to use an online opti-
mizer [9]. An early example of such a learner is Salzberg’s EACH algorithm [8].
This influenced Aha’s IB4 [1]. And this, in turn, influenced Kira’s and Rendell’s
RELIEF algorithm [5], which removed IB4’s assumption of a uniform distribu-
tion of irrelevant attribute values. Kononenko experimented with variants of the
RELIEF algorithm [6]. A minor variant of Kononenko’s RELIEF-F algorithm
was adopted for use in Wettschereck et al’s classic lazy learner study [9], and it
is this that we use here (although we make one further small change, reported
below). This algorithm is also the basis for our new algorithm (Section 5).



Assume to begin with that there are only two classes, |C'| = 2. This simplifies
the presentation, and we will lift this assumption shortly.

In the RELIEF algorithm, each weight is initially 0.5. A training set T' of
size |T'| is used for supervised learning of the weights. Each training case t € T
is used to query a case base. The algorithm retrieves the closest positive case
(the one that is least distant and has the same class as the training case) and
the closest negative case (the one that is least distant and has a different class
from the training case). Call these the nearest hit and nearest miss and denote
these cases by h and m, respectively.

Weights are updated using the following rule:

_ disti (ti, hl) disti (ti, ml) (7)
2|T| 2T

Ww; = W;

(Given that weights are initialised to 0.5 and that distances are normalised to
[0,1], division by 2|T| ensures that, even after weights have been updated |T'|
times, they will remain in [0, 1].1)

The rationale behind this update rule is to change the weights to decrease
distances to cases having the same class, and increase distances to cases having
the other class.

The original RELIEF algorithm selects training examples from the training
set at random. We follow [9] in choosing each training example only once, as
shown in Figure 1.

fori:=1ton
w; = 0.5

CB:=T

for each ¢t in T
h :=¢’s nearest hit in CB\ {¢}
m := t’s nearest miss in CB\ {t}
fori:=1ton

dist;(t;,h;) + disti(t;,m;)

Wi =i = T 2[T

Fig. 1. Sequential RELIEF Algorithm

Kononenko investigates variants of the original RELIEF algorithm, which he
refers to as RELIEF-A through RELIEF-F [6]. Kononenko’s RELIEF-B through
RELIEF-D provide alternative ways of handling missing attribute values. We do
not adopt any of his methods here. We indicated in the previous section the
rudimentary treatment we give to undefined attributes. Investigating the best
ways of handling undefined attributes is not a focus of our paper. Instead, we
take ideas from Kononenko’s RELIEF-A and RELIEF-F.

In RELIEF-A, Kononenko proposes that the reliability of the learned weights
can be improved if the system retrieves the k (k > 1) nearest hits and misses,
instead of a single hit and miss. Average distances are then used to update

! In fact, in the original RELIEF algorithm, weights are initially 0.0 and the weight
update rule divides only by |T'|, not 2|T'|. Hence, weights in that algorithm are in
[-1,1].



weights. So, let H be t’s k nearest hits and let M be t’s k nearest misses, then
the weight update rule becomes:

_ anheH diSti (ti, hl) avgmeM diSti(ti, mz) (8)
2|T| 2|T|

W; ‘= W;

In RELIEF-E and RELIEF-F, Kononenko removes the assumption that there
are only two classes, |C| = 2. Only RELIEF-F is of interest, since Kononenko
found that it outperformed RELIEF-E.

To handle more than two classes in RELIEF-F, the nearest miss for each
class is retrieved. Weights are updated using the average distance between ¢ and
each different nearest miss, weighted by the prior probability of the class of the
miss, Prob(c). But note that RELIEF-F, as Kononenko defines it, uses only one
nearest hit and only one nearest miss per class.

We take this a stage further. In our implemented learning algorithm, we
retrieve H, the k nearest hits and, for each class ¢ € C that is different from ¢’s
class, we retrieve M., the k nearest misses. Our update rule averages over the k
retrieved case distances, weighted by prior probabilities for the different misses.

AvVEhecH dist; (ti, hl) ZcEC/\tC;éc(PrOb(c) X aAVEme M. diSti (ti’ ml))
2T 2T

(9)

(In the experiments reported in Section 6, estimates of the prior probabilities
are computed from the datasets.)

Henceforth, we refer to this learning algorithm as Sequential k-RELIEF-F
Learning (SKRFL), and we will refer to a k-NN-classifier whose weights have
been learned using SKRFL as a SKRFL-classifier.

Let us now turn to our new classification algorithm and our new weight
learning algorithm.

4 Classification using a Pair of Weight Vectors

Our new classifier is a case-based classifier and so the idea, as usual, is to compute
distances between queries and cases in a case base; to use these to define an
ordering over the case base; to retrieve the maxima of this ordering of the case
base; and to predict the class of the query from these maxima. Where we differ
substantially from methods in the literature is in the way we define the ordering.
The novel consequence of the way we do this is that we do not need to supply a
value k.

Our classifier uses two weight vectors, v = (vq,... ,v,) andw = (wy, ... ,wy).
We require that for all i, v; < w;. Hence, we will refer to v as the lower weight
vector and w as the upper weight vector. The difference between a pair of weights,
w; — v;, can reflect our uncertainty about the predictive power of attribute 3.

Case x will be higher in the ordering than case y iff the distance between x
and ¢ using the upper weights, dist” (z,q), is less than the distance between y
and q using the lower weights, dist®(y, q):

z >y iff dist"(z,q) < dist’(y, q) (10)



Equation 10 is ‘conservative’ in the following sense. For case z to be higher than
case y requires that case z’s total distance using the upper weights, which are
the larger of the weights, nevertheless be small enough to fall below case y’s total
distance using the lower (smaller) weights.

A crucial observation about this ordering is that it is a partial order, whereas
Equation 4 defines a total order. This is illustrated with an example. Suppose
three cases, x, y and z, are compared to query ¢. Assume that the cases have two
Boolean-valued attributes; local distances will either be 0 (equal) or 1 (different):

¢TI [T

Using a single weight vector, w = (0.8,0.6), we get the following distances be-
tween g and the cases:

dist"(z,q) = 0.8 x 0+ 0.6 x1=0.6
dist™(y,q) = 0.8 x 1+ 0.6 x 0 = 0.8
dist¥(z,q) =08 x1+06x1=14

So Equation 4 induces a total ordering on x, y and z based on closeness to g:

N e =R

Suppose instead we use two weight vectors, v = (0.5,0.4) and w = (0.8,0.6):

dist’(xz,¢) =0.5x0+04x1=04
dist"(z,q) = 0.8 x 0+ 0.6 x1=0.6
dist’(y,¢) =0.5x14+04x0=0.5
dist™(y,q) = 0.8 x 1+ 0.6 x 0 = 0.8
dist”(z,q) =05 x 1+ 0.4 x 1 = 0.9
dist”(z,q) =08 x1+06x1=14

A partial order is induced. Case x is higher in the ordering than case z because
x’s distance from ¢ using the upper weights is less than z’s distance from g using
the lower weights (0.6 < 0.9). Similarly, case y is higher in the ordering than
case z (0.8 < 0.9).

However, case z is neither higher, lower nor equal to case y. They are simply
incomparable. Case z’s distance from ¢ using the upper weights is not less than
case y’s distance from ¢ using the lower weights (0.6 £ 0.5). But case y’s distance
from ¢ using the upper weights is not less than case z’s distance from ¢ using the
lower weights (0.8 £ 0.4). They are incomparable, and, in some sense, equally
good. Both are in the maxima of this ordering;:
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Call the maxima of this partial ordering Maz. Maz will comprise cases that
are judged to be equal or incomparable in the ordering. The ‘conservativeness’ of
Equation 10 increases the likelihood that cases will be incomparable. Therefore,
our classifier does not use a value k. The fact that the maxima is a set introduces,
we believe, the same kind of robustness that use of k¥ > 1 introduces to k-NN.

The class of ¢ is predicted from Maz. For consistency with our k-NN-classifier,
we use a weighted majority vote, as per the penultimate paragraph of Section 2,
in which cases that are closer to the query get bigger votes. But there is a
problem with this: because we have a pair of weight vectors, we do not have a
single notion of distance to use in the kernel function. So what we have done is
to compute distances using the lower weights and also using the upper weights.
Their average is then used in the kernel function.

5 Learning a Pair of Weight Vectors

We have designed an algorithm, based on the one presented in Section 3, for
learning the pair of weight vectors.

We initialise the weight vectors, v; = w; = 0.5. Then, as before, for each
training case t € T', we retrieve a set of nearest hits and, for each class different
from t’s class, we retrieve a set of nearest misses. Of course, in retrieving these
sets, we do not use a value k. We plug the current values of v and w into
Equation 10 and retrieve the maxima of the partial order that this induces on
the case base.

We need two update rules, one for the lower weights and one for the upper
weights. To update the lower weights, we subtract the maximum distance among
the nearest hits and, for each class different from ¢’s class, we add the minimum
distance, weighted by the class probability, among the nearest misses.

maxpep dist;(ti, hi) | 2cecont.ze(Prob(c) x mingen dist; (i, m;))
2T 2T

Vi ‘= U —
(11)

To update the upper weights, we use minimum hit distances and maximum miss
distances:

minpep dist;(t;, hi)  2cecnt.ze(PTOD(C) X maxyenr dist;(t;,m;))
2|T| 2|T|

W; ‘= w; —
(12)

After these two rules are applied, it is still guaranteed that for all 4, v; < w;. The
lower weights have as much subtracted from them and as little added to them
as possible; the upper weights have as much added and as little subtracted as
possible.

Henceforth, we refer to this learning algorithm as Sequential Weight Interval
Learning (SWIL) and we will refer to a classifier whose pair of weight vectors
has been learned using SWIL as a SWIL-classifier.



6 Experimental Results

We compare our new SWIL-classifier to both a k-NN-classifier (whose weights are
equal) and a SKRFL-classifier. These comparisons are the most meaningful ones
we can carry out: the strong conceptual similarities between the three classifiers
minimise the number of independent variables that might otherwise contribute
to differences in the results.

The datasets come from the UCI repository [2], and their characteristics are
show in Table 1. For all datasets, we used 70% of the cases as the training set
and 30% as the test set.

Dataset Training| Test Number |Missing| Number

Set Size [Set Size|of Attributes| Values |of Classes
Ecoli 235 101 7C| No 8
Glass 149 65 9C| No 7
Hepatitis 108 47 13B, 6C| Yes 2
Iris 105 45 4C| No 3
LED-7 (10% noise) 252 108 7Bl No 10
LED-7 (20% noise) 252 108 7Bl No 10
LED-24 (10% noise) 252 108 7B| No 10
LED-24 (20% noise) 252 108 7Bl No 10
Votes 304 130 16B| Yes 2

B = Boolean; C = Continuous

Table 1. Dataset Characteristics.

Dataset kE-NN |SKRFL|SWIL
Ecoli 0-80+0-02 0-8 | 08

Glass 0-69+0-02 0-69| 0-69
Hepatitis 0-80+0-02 0-8 | 0-82
Iris 0-94£0-02 0-94| 0-94

LED-7 (10% noise) |0-6310-02 0-63| 05

LED-7 (20% noise) |0-37=+0-02 0-35| 0-29
LED-24 (10% noise)|0-38=+0-02 0-47| 0-47
LED-24 (20% noise)|0-24+0-02 0-26| 0-27
Votes 0-911+0-0 0-93| 093

Table 2. Experimental Results: Classification Accuracy

The classification accuracy results are shown in Table 2. The accuracies are
averaged over 20 cross-validation runs. The same training sets and test sets
were used for each algorithm. In the case of the k-NN-classifier, 95% confidence
intervals are shown.

In the case of the k-NN-classifier, a value of k must be selected. An ‘optimal’
value was estimated by leave-one-out-cross-validation (LOOCV), where accuracy
ties were broken in favour of smaller values of k. LOOCV might recommend a



k-NN SKRFL SWIL
Dataset Min. Max. Mean Mode|Min. Max. Mean Mode|Min. Max. Mean Mode
Ecoli 1 1 1-0 1 1 1 1-0 1 1 4 1-14 1
Glass 1 1 1-0 1 1 1 1-0 1 1 3 1-12 1
Hepatitis 1 2 1-3 1 1 2 1-35 1 1 18 287 1
Iris 1 1 1-0 1 1 1 1-0 1 1 4 1-:04 1
LED-7 (10% noise) 1 2 1-65 2 1 2 1-6 2 1 31 943 1
LED-7 (20% noise) 1 3 1-6 2 1 3 1-85 2 1 20 508 1
LED-24 (10% noise)| 1 1 1-0 1 1 1 1-0 1 1 10 147 1
LED-24 (20% noise)| 1 1 1-0 1 1 1 1-0 1 1 8 1.35 1
Votes 1 2 1-3 1 1 2 145 1 1 304 476 1

Table 3. Experimental Results: Retrieval Set Sizes

different k on each of the 20 validation runs and so some data about the values
of k is given in Table 3. Specifically, the minimum, maximum, mean and mode
values are shown. (Where the distribution has more than one mode, the lower
value is shown.)

Similar considerations apply in the case of the SKRFL-classifier. Table 3
shows the values estimated by LOOCV. However, there is an additional consid-
eration here. As well as needing a value of k for classification (Table 3), SKRFL
needs a value of k for use during learning (see Section 3). The optimal value
for learning need not be the same as the optimal value for classification. This
required us to use the training set to estimate optimal values of k both for learn-
ing and then for classification. The Table reports data only about the k& used for
classification.

The SWIL-classifier, of course, does not need a value of k, either for learning
or for classification. As we have discussed in Section 4, the result of a query is,
quite naturally, a set (the maxima of the partial order), whose size will vary from
one query to the next. Table 3 shows the minimum, maximum, mean and mode
values for the sizes of the retrieved sets for SWIL-classification.

In looking at Table 3, some care must be taken when comparing the values of
k for the k-NN-classifier and SKRFL-classifier with the set sizes reported for the
SWIL-classifier. For k-NN-classification and SKRFL-classification, k£ might differ
between validation runs, but the value of k used for each query within any one
run remains fixed: the same value is used for each query. So the Table reports
the minimum, maximum, mean and mode values over the different validation
runs.

However, for SWIL-classification, the set size can be different for each query:
each query in the test set may have a different number of nearest neighbours.
The Table reports the minimum, maximum, mean and mode values over the
different queries, irrespective of validation run.

Looking at Table 2, there is no reason to expect the classification accuracy
from our new SWIL-classifier to be better than that of the SKRFL-classifier.
There is nothing in our new learning or classification algorithms that would lead
us to expect higher accuracy. (The advantages lie elsewhere: in particular, the
fact that we do not need to set a value of k.) Indeed, the fact that SKRFL-
classification is optimised (by estimating ‘optimal’ k), but there is no equivalent



optimisation step in SWIL-classification, might lead us to expect lower accuracy
values.

In fact, we see that SWIL performs as well as SKRFL on all but two of the
datasets (LED-7 with 10% and 20% noise). Given the lack of optimisation, this
is surprising and reassuring. Its lower performance on the two LED-7 datasets
might be explained by the fact that these datasets are noisy. It is possible that our
new weight update rules (Equations 11 and 12) are overly sensitive to this noise.
They use minimum and maximum values where the original SKRFL update rule
(Equation 9) uses averages. SWIL may therefore be overly sensitive to outliers
in the noisy data.

This does not explain why SWIL’s performance on the two other noisy
datasets, LED-24 with 10% and 20% noise, is as good as that of SKRFL. The
difference between the LED-7 and LED-24 datasets is the addition in LED-24
of 17 totally irrelevant attributes. SKRFL and SWIL outperform k-NN on these
datasets because they learn smaller weights for these redundant attributes. Dep-
recating these redundant attributes seems to be the most important factor for
predictive accuracy on these datasets (after all, much of the noise is dispersed
into these redundant attributes).

The fact that SKRFL and SWIL rarely outperform k-NN is not too sur-
prising. Except in the case of the LED-24 datasets, where we know that some
attributes are much more predictive than others (due to these ‘others’ being spu-
rious attributes), there are not stark differences in the relevances of the different
attributes in the other datasets. Furthermore, Holte observes that for some of
the datasets in the UCI Repository, even simple-minded schemes can perform
well, and improvements on these already good results tend to be small [4].

Table 3 is also of interest. It shows that, on these mostly simple datasets,
most of the time the optimised values of k used by k-NN and SKRFL are 1, and
the sets sizes retrieved by SWIL are also 1.

The mean set sizes are higher for SWIL because, every now and then, a query
gives rise to a much larger set of results. The starkest example of this is in the
Votes dataset, where, on at least one occasion, the maxima, is the whole dataset.
In fact, this is explicable. This dataset records the voting histories of U.S. House
of Representatives Congressmen on 16 key votes, and classifies the congressmen
as Republican or Democrat. One of the congressmen has an unknown disposition
recorded for all votes, and so the case records missing values (L) for all attributes.
With our simple-minded treatment of missing values, this case will be equidistant
from all other cases in the case base. In this situation, £-NN and SKRFL will,
of course, still only retrieve k cases; SWIL will, arguably more correctly, retrieve
all cases.

In fact, this example reveals another possible advantage of the SWIL-classifier.
When SWIL makes a classification, it can give the user some indication of the
certainty of the classification, based, in part, on the size of the retrieved set.
For example, for most congressmen, SWIL’s result set is of size 1 and we can
have confidence in its classification. For our indolent and indecisive congressman,
the result set is the whole case base: SWIL is showing that a nearest neighbour
approach does not help it to make a classification. (Of course, this is a bit sim-
plistic: the number of different classes within the result set, as well as its size,
is of relevance to ascertaining SWIL’s certainty about any classification.) k-NN



and SKRFL do not have this feature because they have a value of k which is
fixed for all queries.

7 Conclusions

We believe that this paper introduces a promising line of research. Our accuracy
results are, for the most part, as good as those for the conceptually closest com-
petitor algorithms. We have the advantages of not needing to estimate a value of
k for learning and of not needing to estimate a value of k for classification. We
have the potential, when classifying any particular new instance, to give some
information about the certainty of that classification, based on the size of the
retrieved set and the number of distinct classes within that set.

We are not yet satisfied with the SWIL weight update rules (Equations 11
and 12). They lack proper motivation and they may make the system overly
sensitive to outliers. We would hope to find a better-motivated way of learning
the two weight vectors. If this is done, we can then proceed to bring in more
sophisticated ways of defining distance (especially for symbolic attributes); more
sophisticated treatments of missing attribute values; and local, as opposed to
global, forms of weighting.
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