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Abstract

In this paper, we describe precedent-based explanations
for case-based classification systems. Previous work
has shown that explanation cases that are more marginal
than the query case, in the sense of lying between the
query case and the decision boundary, are more con-
vincing explanations. We show how to retrieve such
explanation cases in a way that requires lower knowl-
edge engineering overheads than previously. We eval-
uate our approaches empirically, finding that the expla-
nations that our systems retrieve are often more con-
vincing than those found by the previous approach. The
paper ends with a thorough discussion of a range of fac-
tors that affect precedent-based explanations, many of
which warrant further research.

Introduction
You are drinking in a bar with a friend. She tells you that, in
her view, you are drunk: you areover-the-limitand should
not drive home. To explain her judgement, she likens your
situation to that of someone whose recent successful prose-
cution for drink driving was reported in the national press.
Explanations of this kind, where a judgement is supported
with reference to related cases, are calledprecedent-based
explanations.

What properties should the precedent possess to make
your friend’s explanation convincing? A precedent that is
identical in all relevant aspects to your own situation might
sway you: someone of the same gender and weight, who had
eaten as little as you and consumed as many units of alcohol
as you. In the absence of an identical case, your friend might
settle on asimilar instance. But what she actually needs is
a similar but more marginalinstance: for example, some-
one of the same gender and weight, who had eaten as little
as you but had consumed fewer units of alcohol; or some-
one of the same gender, who had eaten as little as you and
consumed the same number of units of alcohol, but whose
weight is greater than yours. You would reason that such
people would be less likely than you to be over-the-limit,
and yet they were.

Similarly, if you wanted to convince your friend of the
opposite judgement, that you areunder-the-limit, you would
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seek as precedent someone lighter, who had eaten less, or
who had consumed more units of alcohol and yet who was
found to be under-the-limit.

In general, we can imagine cases as points in a multi-
dimensional space defined by their attribute values. A hyper-
plane, referred to as thedecision boundary, separates cases
of different classes (e.g. over-the-limit and under-the-limit).
To support a judgement that query caseQ has a particular
class, the idealexplanation case, EC , other than an identi-
cal case, will have the same class asQ but will be situated
betweenQ and the decision boundary:

Previous work, which we will summarise in this paper, de-
scribes how to find explanation cases of this kind (Doyleet
al. 2004). But the approach described in (Doyleet al. 2004)
has knowledge engineering overheads. New ideas, reported
for the first time in this paper, show how to find explanation
cases without any additional knowledge engineering.

Case-Based Classification
Before discussing how to find queryQ’s explanation case
EC , we need to discuss how to predictQ’s class: predicting
for example whether someone is over- or under-the-limit.
This is the task ofclassification.

There are many classification technologies (rules, deci-
sion trees, neural nets, etc.) but we are using a case-based,
or instance-based, approach, which is more compatible than
most with precedent-based explanation.

For each attributea in set of attributesA, let caseX ’s
value for attributea be denoted byX.a and letX ’s class be
denoted byX.c. Given a queryQ and a case baseCB, a
k-NN classifier retrieves thek most similar cases toQ and
predictsQ’s classQ.c from thek cases using a similarity-
weighted vote.

The retrieval of thek cases uses a global similarity mea-
sure, which is a weighted sum of (attribute-specific) local



similarities:

Sim(X, Q) =def

∑
a∈A wa × sima(X.a,Q.a)∑

a∈A wa
(1)

For the local similarity of symbolic-valued attributes, we use
the following:

sima(X.a,Q.a) =def

{
1 if X.a = Q.a
0 otherwise (2)

(but see theDiscussionsection later). For numeric-valued
attributes, we use:

sima(X.a,Q.a) =def 1−
(
|X.a−Q.a|

rangea

)
(3)

whererangea is the difference between the maximum and
minimum values allowed for attributea.

Case-based classification lends itself to precedent-based
explanation: “the results of [case-based reasoning] systems
are based on actual prior cases that can be presented to the
user to provide compelling support for the system’s conclu-
sions.” (Leake 1996) Research has shown that precedent-
based explanations are favoured by the user over rule-based
explanations (Cunningham, Doyle, & Loughrey 2003).

But it should not näıvely be assumed that the best expla-
nation case is the nearest neighbour. In theIntroduction, we
have already argued that, in the absence of an identical case
to the query, a more marginal case is a better explanation
case. This has been confirmed empirically by (Doyleet al.
2004). In the next section, we describeexplanation oriented
retrieval, which implements this idea.

Explanation Oriented Retrieval
After Q’s classQ.c has been predicted by case-based classi-
fication, Explanation Oriented Retrieval (Doyleet al. 2004),
henceforth EOR, retrieves an explanation caseEC using a
global explanation utility measure:

Exp(X, Q, Q.c) =def (4){
0 if Q.c 6= X.cP

a∈A wa×expa(X.a,Q.a,Q.c)P
a∈A wa

otherwise

As you can see, the local explanation utility measures,expa,
are sensitive toQ’s class,Q.c. Each would be defined by a
domain expert. For example, possible local explanation util-
ity measures (one for each predicted class) for the attribute
that records the number of units of alcohol someone has con-
sumed are plotted below:

Over-the-limit Under-the-limit

Along the x-axis is Q.a − X.a; the y-axis measuresX ’s
explanation utility.

SupposeQ is predicted to be over-the-limit: the left-hand
plot is used. The more negativeQ.a−X.a is (i.e. the greater
the excessX has consumed over whatQ has consumed) the
lower the utility ofX as an explanation. WhenQ.a−X.a is
positive (i.e.X has consumed less thanQ), utility is high: X
andQ are both over-the-limit, butX is less likely to be over-
the-limit, which makesX a good explanation case. (The
graph also shows utility falling off asX becomes more re-
mote fromQ.) If Q is predicted to be under-the-limit, the
right-hand plot is used and this gives higher utilities to peo-
ple who have consumed more alcohol thanQ.

These class-specific local explanation utility measures are
inspired by the asymmetric more-is-better and less-is-better
local similarity measures often used in case-based recom-
mender systems (Bergmannet al. 1998).

In an experiment, in eight out of nine cases, an expert
preferred as explanation an EOR explanation case (i.e. a
more marginal case) over the nearest neighbour (Doyleet
al. 2004). The only time that the expert preferred the near-
est neighbour was when the nearest neighbour was identical
to Q.

However, EOR, while billed as knowledge-light, has a not
inconsiderable knowledge engineering cost. A knowledge
engineer must specify the utility measures. If cases havem
attributes and there aren different classes, then, in principle,
m× n local utility measures are needed.

In the next section, we describe Knowledge Lite Expla-
nation Oriented Retrieval, which seeks the same kind of ex-
planation cases as EOR, but usesSim andsima, the same
similarity measures we use for case-based classification. It
therefore has no additional knowledge engineering costs.

Knowledge Lite Explanation Oriented
Retrieval

Knowledge Lite Explanation Oriented Retrieval (KLEOR)
has three variants (Sim-Miss, Global-Sim and Attr-Sim). We
describe each variant in turn in the following subsections;
for each variant, we identify its main limitations; these lim-
itations are then addressed by the subsequent variant.

Each variant is defined with respect to the following two
cases:

• Thenearest hitNH is the case that ismost similarto Q
that hasthe same classasQ.

• Thenearest missNM is the case that ismost similarto Q
that hasa different classfrom Q.

(In fact, we will argue below for using a case we refer to
asNMOTB in place ofNM . But it aids the exposition to
begin our treatment withNM .)

KLEOR-Sim-Miss
We reason that the decision boundary is somewhere between
Q andNM and therefore, equally,EC lies betweenQ and
NM :



Hence, Sim-Miss definesEC as follows:

Definition of EC for KLEOR-Sim-Miss: the case that

1. has the same class asQ;
2. is most similar toNM .

Here, and in all our KLEOR definitions, cases such asNM
and thusEC can be retrieved using the same similarity mea-
sures used by case-based classification to predictQ.c.

If there are two or more cases betweenQ andNM , Sim-
Miss will find the case that is most similar toNM , and so
will find the case on the same side of the decision boundary
asQ that is closest to the boundary.

KLEOR-Global-Sim
Sim-Miss makes an implicit assumption which does not al-
ways hold true. It assumes the problem space is divided
near-linearly into two by the decision boundary. However,
some problem spaces are not like this. The space occupied
by cases of a particular class may have concavities or be dis-
continuous:

Applied to a space like the one depicted above, Sim-Miss
will not retrieve the best explanation case. The case found
asEC does not lie betweenQ andNM but it is the case that
best satisfies the Sim-Miss definition: it has the same class
asQ and is closer toNM than the idealEC is.

Global-Sim overcomes the above problem with the fol-
lowing definition:

Definition of EC for KLEOR-Global-Sim: the case that

1. has the same class asQ;
2. is located, according toSim, betweenQ andNM :

Sim(Q,EC) > Sim(Q,NM)

3. is most similar toNM .

This rules out the problem depicted above by forcingQ to
be closer toEC than it is toNM .

KLEOR-Attr-Sim
However, there is a naı̈vety in Global-Sim, fostered by
our one-dimensional diagrams. Cases typically have more
than one attribute; the problem space has many dimensions.
Global-Sim uses global similarity to find anEC that is more
similar to Q than it is toNM . But this allows one or two
of the attributes to satisfy this condition strongly enough to
outweigh other attributes whose values do not lie betweenQ
andNM .

KLEOR-Attr-Sim tries to find anEC each of whose at-
tributes has an appropriate value:

Definition of EC for KLEOR-Attr-Sim: the case that

1. has the same class asQ;
2. has the most attributesa for which:

sima(Q.a,EC .a) > sima(Q.a,NM .a)

3. is most similar toNM .

If several cases have the same number of attributes satisfying
condition 2, we select from these cases the one that is most
similar toNM according to global similarity.

Note that, in the case of a numeric-valued attribute whose
similarity is measured using Equation 3, condition 2 is
equivalent to enforcing the following:

Q.a < EC .a < NM .a if Q.a < NM .a
NM .a < EC.a < Q.a if Q.a > NM .a

In other words,EC ’s value for this numeric-valued attribute
lies betweenQ’s andNM ’s values for this attribute.

In theDiscussionsection at the end of this paper, we will
discuss a variant of KLEOR-Attr-Sim that is sensitive to the
attribute weights used in Equation 1.

KLEOR using the NMOTB
There is another naı̈vety in our approach. TheNM ’s posi-
tion in the problem space may not be where we have been
assuming that it will be. Hence, a case that lies betweenQ
andNM may not be more marginal thanQ and may be a
poor explanation case. How can this be?

Consider using 3-NN to classifyQ:

By a weighted vote ofQ’s 3 nearest neighbours,Q is pre-
dicted to belong to the yellow class (or, for those reading in
black-and-white, the light-grey class). We wantEC to lie
betweenQ and the 3-NN decision boundary. But this is not
obtained by retrieving a case that lies betweenQ andNM .

We propose three alternative remedies, which may suit
different problem domains:

Use 1-NN: Situations such as the one depicted above can
only arise when usingk-NN for k > 1. If k = 1, the class
of Q is predicted fromNH and it is impossible for a case
of a different class to lie betweenQ andNH . While this
may suit some problem domains, in others it may reduce
the accuracy of the case-based classifications.

Use noise-elimination: We can run a noise elimination al-
gorithm over the case base prior to use. These algorithms
‘neaten’ the decision boundary by deleting cases where a
majority of the neighbours are of a different class (Wilson
& Martinez 2000). In the situation depicted above, the
case labelledNM would be deleted and would no longer
wrong-foot KLEOR. While this may suit some problem
domains, it has two problems. First, depending on the ex-
act operation of the noise elimination algorithm, it may
not eliminate all such situations. Second, in some do-
mains it may have the undesirable consequence of delet-
ing correct but idiosyncratic cases.

Use theNMOTB : Instead of seeking an explanation case
EC that lies betweenQ andNM , we can seek one that
lies betweenQ and theNMOTB , the nearest miss that
lies over the boundary. NMOTB is the case that



1. has adifferentclass fromQ;
2. isnot located, according toSim, betweenQ andNH :

Sim(Q,NH ) > Sim(NMOTB ,NH )

3. ismost similarto Q.

This forcesNMOTB to be more distant fromNH thanQ
is.

UsingNMOTB in place ofNM is a generic solution that,
unlike using 1-NN or noise elimination, works in all prob-
lem domains. (A positive side-effect that we have confirmed
empirically is that it increases the number of times anEC
can be found: sometimes no case can be found that lies be-
tweenQ andNM , but a case can be found that lies between
Q andNMOTB .) Henceforth, when we refer to KLEOR in
any of its three variants, we will be usingNMOTB .

Empirical Evaluation
We used data collected in Dublin public houses one evening
in February 2005. For each of 127 people, this dataset
records five descriptive attributes: the person’s weight and
gender; the duration of their drinking and the number of
units consumed; and the nature of their most recent meal
(none, snack, lunch or full meal). On the basis of breath al-
cohol content (BAC), measured by a breathalyzer, each per-
son is classified into one of two classes: over-the-limit (BAC
of 36 or above) or under-the-limit (BAC below 36). We ig-
nored a further nine instances whose data was incomplete.

We implemented the EOR system from (Doyleet al.
2004) and the three KLEOR systems described in this paper
(Sim-Miss, Global-Sim and Attr-Sim), all usingNMOTB .
To give the systems a default strategy, if, by their definitions,
they were unable to find anEC , they returnedNH , the near-
est hit, as explanation.

The first question that we set out to answer is: how often
does each system resort to the default strategy? We took
67% of the data (85 cases) as a case base (training set) and
we treated the remaining 33% (42 cases) as queries (test set).
For each query, we used 3-NN classification to predict the
class and then we retrieved an explanation case using each of
the explanation systems. We used 100-fold cross-validation
and recorded how often (of the total 4200 queries) a system
had to resort to the default explanation:

Defaults
EOR 5%
Sim-Miss 20%
Global-Sim 41%
Attr-Sim 24%

As the table shows, EOR defaults least often. This is be-
cause it places no conditions onEC except that it be of a dif-
ferent class fromQ. Sim-Miss defaults least of the KLEOR
systems because it places the least restrictive conditions on
EC . Counter-intuitively, perhaps, Global-Sim defaults more
often than Attr-Sim. Attr-Sim seeks anEC that has attribute
values that lie between those ofQ andNMOTB . Provided
a case has at least one such attribute, then it is a candidate

EC ; the system defaults only if it finds no cases with at-
tributes betweenQ andNMOTB , and this is a less stringent
requirement than the one imposed on global similarity by
Global-Sim.

In the same experiments, we also recorded how often pairs
of systems’ explanations coincided. (The figures are, of
course, symmetrical.)

Sim-Miss Global-Sim Attr-Sim
EOR 6% 4% 6%
Sim-Miss — 59% 64%
Global-Sim — — 53%

The table shows that pairs of KLEOR variants often find
the same explanations (between 53% and 64% of the time).
In fact, we found that 43% of the time all three KLEOR
systems produced the same explanation. Rarely does EOR
agree with the KLEOR systems (4% to 6% of the time). We
found that the explanations produced by all four systems co-
incided only 4% of the time.

Since the explanations produced by EOR have already
been shown to be good ones (Doyleet al. 2004), we would
probably like it if more of the KLEOR explanations coin-
cided with the EOR ones. However, even though they do
not coincide often, KLEOR systems might be finding expla-
nations that are as good as, or better than, EOR’s. We set
about investigating this by running an experiment in which
we asked people to choose between pairs of explanations.

We used 30 informants, who were staff and students of
our Department. We showed the informants a query case
for which 3-NN classification had made a correct predic-
tion (under-the-limit or over-the-limit). We showed the
correctly-predicted class and two explanation cases retrieved
by two different systems. We ensured that explanations
were never default explanations and we ensured that not only
had the explanations been produced by different systems but
they were also different explanation cases. We asked the in-
formants to decide which of the two explanation cases better
convinced them of the prediction.

We asked each informant to make six comparisons. Al-
though they did not know it, a person’s pack of six contained
an explanation from each system paired with each other sys-
tem. The ordering of the pairs and the ordering of the mem-
bers within each pair was random. For 30 informants, this
gave us a total of 180 comparisons.

The outcomes of these 180 comparisons are shown in the
following table:

Loser

EOR
Sim

-M
iss

Glob
al-

Sim

Attr
-S

im
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ta

l W
ins

EOR — 2 6 6 14
Sim-Miss 27 — 20 14 61
Global-Sim 21 8 — 7 36

W
in

ne
r

Attr-Sim 22 14 21 — 57
Total Loses 70 24 47 27 168



The totals do not sum to 180 because in 12 comparisons the
informants found neither explanation to be better than the
other.

We read the results in this table as follows. Each of the 30
informants saw an EOR explanation paired with a Sim-Miss
explanation, for example. Two of the 30 preferred the EOR
explanation; 27 of the 30 preferred the Sim-Miss explana-
tion; in one case neither explanation was preferred. Sim-
ilarly, six informants preferred an EOR explanation over a
Global-Sim explanation; 21 preferred the Global-Sim expla-
nations; three preferred neither. EOR explanations were pre-
ferred a total of 14 of the 90 times they appeared in these ex-
periments (row total) and were not preferred 70 times (col-
umn total); in six out of the 90 times that an EOR explana-
tion was shown, the informant was unable to choose.

Encouragingly, KLEOR explanations are often preferred
to EOR ones. Among the KLEOR systems, Global-Sim
gives the least convincing explanations. Sim-Miss and Attr-
Sim are barely distinguishable: their explanations are pre-
ferred over Global-Sim ones by 20 and 21 informants re-
spectively; Sim-Miss explanations are preferred over Attr-
Sim ones 14 times but Attr-Sim explanations are preferred
over Sim-Miss ones 14 times also. Sim-Miss does slightly
better overall by beating EOR more often than Attr-Sim
does.

We were aware that not all our informants had the same
backgrounds. We distinguished betweennon-initiates, who
knew nothing of the research, andinitiates, to whom we had
at some time presented the idea of marginal precedent-based
explanations prior to the experiment. There were 14 non-
initiates and 16 initiates. (Some of the 14 non-initiates went
on to repeat the experiment as initiates).

Loser

14 non-initiates EOR
Sim

-M
iss
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EOR — 1 4 4 9
Sim-Miss 13 — 10 8 31
Global-Sim 8 4 — 2 14

W
in

ne
r

Attr-Sim 10 6 11 — 27
Total Loses 31 11 25 14 81

Loser

16 initiates EOR
Sim
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EOR — 1 2 2 5
Sim-Miss 14 — 10 6 30
Global-Sim 13 4 — 5 22

W
in

ne
r

Attr-Sim 12 8 10 — 30
Total Loses 39 13 22 13 87

We do not see any major differences between the two
kinds of informant. A small difference is that for non-
initiates in only three of 84 comparisons was no preference

expressed whereas for initiates the figure was nine of 96
comparisons (6% more).

Looking over all of the results, we were surprised that
KLEOR explanations were preferred over EOR ones. The
quality of EOR explanation cases is likely to be im-
proved had we used richer similarity/utility measures on the
symbolic-valued attributes. These richer measures are dis-
cussed in the next section.

The richer similarity measures are also likely to improve
the quality of Attr-Sim’s explanations, which, contrary to
expectations, we found to be slightly worse than Sim-Miss
explanations. In practice, it might also be desirable in con-
dition 2 of the definition of Attr-Sim to set a lower limit on
how many attribute values must lie between those ofQ and
NMOTB . This will make Attr-Sim default more often but,
when it does not default, its explanation cases will more con-
vincingly lie in the desired region of the problem space. In
the next section, we discuss making this condition sensitive
to attribute weights and even degrees of noise.

Discussion
In this paper, we have presented an approach, KLEOR, that
is even more knowledge light than Explanation Oriented Re-
trieval (Doyleet al. 2004). In all its variants, to find ex-
planation cases KLEOR uses only the similarity measures
that a system would be equipped with for the purposes of
case-based classification. In this section, we discuss some
broader issues that affect precedent-based explanations.

Symbolic-valued attributes: So far, when calculating the
similarities for symbolic-valued attributes, we use an
equality measure (Equation 2). This can be satisfactory
for attributes which have only two values, such as gender,
or where the values have no relationship to each other.
However, sometimes domain knowledge renders some of
the values more similar to others. In this case, alternative,
richer similarity measures are possible. For example, for
some symbolic attributes, there may be an underlying or-
der on the values. This is the case in the breathalyzer
domain for the attribute that records the person’s most re-
cent meal, where the ordering is based on the amount of
food likely to have been ingested:

None < Snack < Lunch < Full
The similarity measure should showNoneandSnackas
more similar thanNoneandLunch. However, using Equa-
tion 2, this will not be the case. Using the ordering, we
can instead define similarity as the inverse of the distance
within the ordering. So, for example,NoneandSnackare
similar to degree23 (their distance is 1 out of a maximum
distance of 3, and this is subtracted from 1 to give the
degree of similarity), whereasNoneandLunchare sim-
ilar to degree1

3 (distance of 2 out of 3, subtracted from
1). For other attributes, distances in trees or graphs that
represent domain-specific knowledge (e.g. taxonomic re-
lationships) can also be used (Osborne & Bridge 1996).
Occasionally, domain experts explicitly define similarity
values for all pairs of values (Bergmannet al. 1998). Re-
cent work takes an evolutionary approach to learning such
similarity measures (Stahl & Gabel 2003).



The failure to use these richer similarity measures may be
affecting some of our empirical results, especially in the
case of EOR and KLEOR-Attr-Sim. Had we used these
richer measures, explanation cases that more plausibly lie
between the query and the decision boundary might be
retrieved. Reassuringly, these richer measures are com-
patible with EOR and all variants of KLEOR.

Missing attribute values: In both queries and cases from
the case base, some attributes may be missing their values.
In the breathalyzer dataset, this was the case for 9 of 136
instances. For simplicity, in our experiments we removed
these 9 and worked with just the 127 complete cases. At
one level, this was not necessary; similarity or distance
functions that handle missing values have been devised,
e.g. (Wilson & Martinez 1997), and these can be extended
to the retrieval of EOR and KLEOR explanation cases.

However, what is more difficult is to ensure that, in the
face of missing values, explanation cases will be inter-
pretable by, and convincing to, the users. For example,
suppose the query case records no value for the person’s
weight. Is it equally convincing to show explanation cases
that are also missing the weight; ones that have an arbi-
trary value for weight; and ones that have a below-average
value for weight for an under-the-limit prediction and an
above-average value for an over-the-limit prediction? Or
consider the inverse: the query has a value for weight.
Is an explanation case with a missing value for weight
as understandable and convincing as one without? These
questions can only be answered through further detailed
empirical investigation. The answers may be domain-
specific and may even differ from attribute to attribute in
the same domain.

Attribute weights: In making classifications, some at-
tributes are moreimportant than others. This is allowed
for by attribute weights in the global similarity measure
(Equation 1), although all are set to 1 in our experiments.
These same weights are used by EOR in its global expla-
nation utility measure (Equation 4) and they will also be
used by Sim-Miss and Global-Sim because both useSim,
the global similarity measure (Equation 1). However, the
weights will not be used in condition 2 of the definition
of Attr-Sim because this condition uses the local similar-
ity measures,sima. The definition of Attr-Sim is easily
modified to take these weights into account: instead of
countingthe number of attributes that satisfy condition 2
and choosing the explanation case with the highest count,
we couldsum the weightsof the attributes that satisfy con-
dition 2 and choose the case with the highest total.

Of course, all of this assumes that the same weights
should be used for both classification and explanation: see
the discussion of fidelity below.

Noise: Noise manifests itself as incorrect attribute values.
Values may be incorrectly reported for any number of
reasons, e.g. where measuring equipment is unreliable or
where values are subjective. Noise may affect values in
queries and in cases in the case base. It may lead to un-
reliable classification (see the discussion of uncertainty

below). But here we discuss how it directly affects expla-
nation.
To the extent that users are aware of relative uncertainties
in values due to noise, it can affect the extent to which
they find an explanation convincing. On an epidemiology
dataset, for example, we have informally observed how an
expert was sensitive to what he knew about the reliability
of certain attribute values when he judged explanations
that we showed him. If the values in an explanation case
that make it more marginal than a query case are ones
known by the user to be unreliable, then the explanation
case (and the classification that it aims to support) may
be treated with skepticism by the user. If the unreliability
can be quantified, e.g. probabilistically, then this could
be taken into account in EOR and KLEOR. In particular,
KLEOR-Attr-Sim could take these probabilities (as well
as attribute weights, above) into account in condition 2 of
its definition.
If not taken into account, noise may be especially dam-
aging to the kinds of explanation cases that EOR and
KLEOR seek to find. Noisy cases are among the most
marginal cases of their class. Noise-free cases will form
class-specific clusters in the problem space; noisy cases
will tend to be on the fringes of these clusters. Indeed,
this is why, as discussed earlier, noise-elimination algo-
rithms delete cases close to decision boundaries. EOR and
KLEOR run the risk that the kinds of cases they retrieve
as explanation cases will be noisy. This risk is greater for
the KLEOR systems as currently defined because, among
the eligible cases, each selects the one that is most sim-
ilar to the NMOTB, i.e. the most marginal eligible case.
It is possible to modify these definitions to lessen this be-
haviour. We discuss this further below under the heading
The role of knowledge engineering.

Uncertainty: On occasion, the case base classifier may be
uncertain of its classification. This may happen, for exam-
ple, if thek nearest neighbours (who vote on the class of
the query) are noisy (discussed above). But it can happen
even when the neighbours are noise-free. If the votes for
competing classes are close, then the classification is un-
certain. For example, suppose a 3-NN classifier retrieves
two cases, both with 0.4 similarity to the query case, that
predict that the query case is over-the-limit, and one case,
with 0.75 similarity to the query case, that predicts that
the query case is under-the-limit. The votes for over-the-
limit sum to 0.8; the vote for over-the-limit is 0.75. Under
these kinds of circumstances, constructing an explanation
for the under-the-limit classification that fails to reveal the
uncertainty of the classification is, arguably, at least mis-
leading and may, in some domains, be dangerous.
Detecting, quantifying and reporting uncertainty is a topic
that has received recent attention in case-based reason-
ing, e.g. (Cheetham & Price 2004; Delanyet al. 2005).
But making the explanation reflect the uncertainty is only
now being seriously tackled, e.g. (Doyle, Cunningham, &
Walsh 2005; Nugent, Cunningham, & Doyle 2005). One
possibility that is compatible with EOR and KLEOR, that
we may investigate in the future, is to retrieve explanation



cases for each of the closely competing outcomes. Ideally,
multiple explanation cases should be presented to the user
in a way that highlights the strengths and weaknesses of
the rationale for each outcome.

Intelligibility: Showing a whole case as an explanation
might overwhelm users to the point where they are unable
to appreciate why and how it explains the classification.
This is particularly so if cases are made up of many at-
tributes. We have informally observed the difficulties an
expert had when judging EOR and KLEOR explanation
cases comprising 14 attributes; in some domains, cases
may have thousands of attributes. It might be appropriate
to highlight important attribute values or even to eliminate
attribute values of low importance from the explanation.
There is a risk, however, that this will undermine the cred-
ibility of the classification to the user: users might fear
that the wool is being pulled over their eyes.
The more attributes there are, the more likely it is that
only a subset of the attributes in an explanation case will
support the classification; others will, singly or in combi-
nation, support a conflicting classification. For example,
the explanation case for someone predicted to be over-the-
limit might describe a person who weighs more and who
consumed fewer units of alcohol than the query case (both
of which support the classification) but who ate a smaller
meal (which does not support the classification). It might
be appropriate to distinguish between the attribute val-
ues in the explanation case that support and oppose the
classification and to find a way of showing why the val-
ues that oppose the classification do not matter; see, e.g.,
(McSherry 2004; Doyle, Cunningham, & Walsh 2005;
Nugent, Cunningham, & Doyle 2005).

The role of knowledge engineering:We have shown that
KLEOR can retrieve convincing precedent-based expla-
nations using the same similarity measures used for case-
based classification. The question is whether there are sit-
uations in which engineered EOR-style explanation utility
measures should be used instead.
One candidate can be seen if we look again at either of the
EOR local explanation utility graphs from earlier:

Over-the-limit

We see that the more negativeQ.a − X.a, the lower the
explanation utility of caseX (left-hand half of the dia-
gram). But we also see that utility, while high, falls off as
Q.a−X.a becomes more positive (right-hand half of the
diagram). The utility measure falls off gently in this part
of the diagram because it has been engineered to respect
the judgements of human domain experts. (An added ad-
vantage relates to the point we made above that expla-
nation cases that are closer to the decision boundary are

more likely to be noisy cases. Making explanation utility
fall off in this way lowers the utility of the most extreme
cases.)
In an altogether different domain, that of bronchiolitis
treatment, human experts required the explanation util-
ity graph for a child’s age to fall off even more sharply
(Doyle, Cunningham, & Walsh 2005). Here again, the
EOR approach easily allowed knowledge engineers to de-
fine utility measures to respect the judgements of human
experts.
Although this is a candidate for the need for engineered
utility measures, it is easy to devise variants of KLEOR-
Global-Sim and KLEOR-Attr-Sim that achieve similar ef-
fects. In the definitions of Global-Sim and Attr-Sim, con-
dition 1 ensures explanation cases have the same class as
the query; condition 2 tries to ensure that the explanation
case lies between the query and the decision boundary;
condition 3 selects from among the cases that satisfy con-
ditions 1 and 2 the case that is closest to the boundary.
Condition 3 can easily be replaced, e.g., by one that se-
lects the eligible case that is closest to the query case or
by a condition that is based on an analysis of the distribu-
tion of the eligible cases (e.g. of the eligible cases, the one
whose similarity toNMOTB is closest to their median
similarity). Such tweaks to the definitions (if desirable
at all, given that, in the domain of our empirical results,
KLEOR’s explanations were often preferred to EOR’s) do
not offer the same easy fine-tuning that EOR’s engineered
approach offers.
If other candidates emerge, it would be interesting to see
whether a hybrid EOR/KLEOR system could be devised
in which EOR’s fine-tuned measures would be layered on
top of KLEOR, which would act as the base strategy.

Non-binary classification: As already noted, form at-
tributes andn classes, EOR requiresm × n local utility
measures. So far, EOR has only been demonstrated for
binary classification, where the number of classesn = 2.
Admittedly, this is by far the most common scenario.
However, KLEOR has the advantage that, with no ad-
ditional knowledge engineering, it can find explanation
cases for arbitraryn. In particular, having predicted that
the query belongs to classQ.c, we can retrieve an expla-
nation case with respect to the decision boundary for each
other class. There remain challenges, however, in present-
ing such a set of explanation cases in an intelligible way
to the user.

Fidelity: Explanations of a decision should, in general, be
true to the reasoning process that lead to that decision.
However, fidelity may sometimes be traded for intelli-
gibility. (Recall the weaknesses of the reasoning traces
used to explain early rule-based expert systems (Clancey
1983).) It could be argued that EOR and KLEOR ex-
planations are not true to the classifications they seek to
explain: the classifications are made using thek nearest
neighbours to the query; the classifications are explained
using other cases, ones that lie between the query and
the decision boundary. (We raised the possibility above
that the weights used for classification and for explanation



could be different: the desire for fidelity suggests other-
wise.) However, this is not a major decrease in fidelity and
informants have found EOR and KLEOR explanations to
be quite convincing. In future work, we will investigate
ways of achieving an even greater degree of fidelity be-
tween classification and EOR/KLEOR.

Conclusion
In this paper, we have presented a number of systems for ex-
planation oriented retrieval that do not have any additional
knowledge engineering overheads. Two of these new sys-
tems in particular, Sim-Miss and Attr-Sim, perform very
well in our empirical investigation.

In a wide-ranging discussion, we have mentioned a num-
ber of issues that affect precedent-based explanation, many
of which give us an agenda for future research.
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