Defining and Combining Symmetric and
Asymmetric Similarity Measures

Derek G. Bridge*

Department of Computer Science,
University College, Cork,
Ireland
d.bridge@cs.ucc.ie
http://www.cs.ucc.ie/dbridge.html

Abstract. In this paper, we present a framework for the definition of

similarity measures using lattice-valued functions. We show their strengths
(particularly for combining similarity measures). Then we investigate a

particular instantiation of the framework, in which sets are used both

to represent objects and to denote degrees of similarity. The paper con-

cludes by suggesting some generalisations of the findings.

1 Introduction

There are many different ways of computing the similarity of object representa-
tions. These include:

— the feature-based approach, in which objects are represented by sets of fea-
tures, and similarity is based on feature commonality and difference (e.g.
[13]);

— the geometric approach, in which objects are represented by points in an n-
dimensional space (usually specified by sets of pairs of attributes and atomic
values), and similarity is based on the inverse of the distance between objects
in the space (e.g. [12]); and

— the structural approach, which uses graphical representations, in which nodes
denote objects and edges denote relations between objects, and similarity is
based on graph matching (e.g. [3]).

This tri-part classification is an over-simplification. It may omit distinctive ap-
proaches. And it may seemingly drive wedges between related approaches. For
example, work on the similarity of first-order terms ([4], [5]) and feature struc-
tures ([10]) has elements of both the geometric and the structural approaches.
We include the classification merely in order to indicate the huge variety of
approaches to be found in the CBR literature and elsewhere.

This paper discusses a general mathematical framework in which a wide
variety of similarity measures can be defined and combined. Having reported

* This paper develops earlier work on lattice-based functions done with Hugh Osborne,
to whom my thanks.

examples that are in the spirit of the geometric approach in previous papers [7],
[8], in this paper we focus more on some feature-based and structural approaches.
Furthermore, where our previous papers focussed on defining the framework’s
operators, this paper mentions axiomatisation (although it does not aim to give
a full axiomatisation) and shows that even seemingly reasonable axiomatisations
reported in the literature (e.g. [6]) may be too restrictive.

2 Lattice-Valued Functions

We will be explaining what we mean by similarity functions, difference functions
and excess functions. We will denote an arbitrary similarity function by ~, an
arbitrary distance function by «~, and an arbitrary excess function by <.

2.1 Similarity Functions

A similarity function takes in two object representations and delivers a value that
denotes the similarity of the two representations. Similarity functions reported in
the literature have typically delivered values of type boolean or of some numeric
type. (For example, there are only boolean-valued and real-valued functions in
Richter’s classification of similarity functions [11].) We refer to boolean-valued
similarity functions, ~:: a — a — Bool, as absolute similarity functions: two ob-
jects are judged to be either similar or not similar. While absolute similarity
functions are simple, they do not correspond particularly well to people’s intu-
itive concept of similarity, in which there is the notion of degrees of similarity.

To overcome this disadvantage of absolute measures, most similarity func-
tions are numeric-valued, e.g. ~:: @ — a— R, often the result-type being re-
stricted to some interval, e.g. ~:: @ = a —[0, 1]. We call these relative similarity
functions. These seem to serve many purposes well, but there are reasons to
be dissatisfied with them. In particular, on occasion, the numbers used are arbi-
trary. This occurs when similarity function designers need something richer than
absolute similarity, i.e., they need degrees of similarity, but they do not need to
quantify, or cannot properly quantify, the degrees. Any numbers used in these
circumstances will be contrived.

In earlier work [7], [8], [9], we generalised over absolute and relative similarity
functions giving what we called metric similarity functions. These are lattice-
valued functions, ~:: a — a— L. A lattice, £, is a partially-ordered set of values,
(S,C), that satisfies certain properties. In fact, we require complete lattices.
A complete lattice satisfies further properties, a consequence of these further
properties being that the set has unique largest and smallest elements.! We will
not give any further characterisation of lattices or complete lattices. A good
understanding of this paper is possible for those who know what a partial order

! The requirement for complete lattices can be weakened but only by outlawing certain
operators, such as prioritisation (see later), which require complete lattices. (In fact,
to be more accurate, an axiom that excess functions must satisfy (Table 1) will only
be provably satisfied if excess functions have complete lattices as their return-types.)

is, even if they do not know what a (complete) lattice is, and we proceed on this
basis. See [2] for mathematical definitions.

Ours is not the first use of lattices in CBR. But, in our framework and in
the work reported in [6] and [10], it is the degrees of similarity (the values of
the result-type of the similarity function) that form a lattice, whereas, in earlier
work such as [1] (and also in machine learning work), it is the cases in the case
base (the values of the arguments of the similarity function) that form a lattice.

We claim that the advantages of our metric framework are that: it subsumes
absolute and relative measures (i.e., these are instantiations of the framework);
it introduces (again as instantiations) many other ways of measuring similarity
(only a few of which other researchers have reported in the literature); and it
allows the easy combination of similarity functions. We exemplify these points
below.

Consider an absolute similarity function, ~:: @ — a — Bool. Its counterpart
in our framework is simply ~':: a = a—(Bool,Cgyo)), Which has a lattice as
its return-type, where Cg), for example, ranks False less than True.? The
function ~' basically computes the same boolean as ~, but its result values are
now ordered. Similarly, a relative similarity function, ~:: @ = a —[0, 1], might
have as its counterpart ~':: @ = a —([0, 1], <) (assuming small numbers denote
lower similarity than higher numbers).3

Our claim that our framework subsumes many other ways of measuring sim-
ilarity is exemplified by the set-valued functions that we discuss in Section 3 and
by the following example. Suppose we let A be the set of linguistic hedges {very,
quite, fairly, barely} and we let Ty denote the ordering depicted as a Hasse
diagram in Fig. 1,* then we can construct a new kind of similarity function,
one that is linguistic-hedge-valued: ~:: a — a —(H,C4). This is a four-valued
function, whose values are only partially ordered; it might be useful to a system
designer who needs something richer than absolute similarity, but would find it
difficult or misleading to quantify degrees of similarity.

very

/ N
quite fairly

barely

Fig. 1. The ordering Cy

2 In other words, ERool==

3 Where we have ~:: & = a — R, the counterpart would need to be a function returning
values from a lattice defined on, e.g., ® U {00, —co}. The special values co and —oco
are needed to give a complete lattice, having topmost and bottommost elements.

4 Cy4 is intended only by way of a simple example. We have no investment in, or
commitment to, the particular ordering shown.

Finally, consider the combination of two similarity functions. For concrete-
ness, and to illustrate the advantages of our approach, let one be numeric-valued,
~ia—a—([0,1,<), and the other be linguistic-hedge-valued,
~oit = B —(H,Cy). We want a similarity function defined on pairs drawn
from « x (. But what should the return-type be? It is dealing with this prob-
lem that leads others to inter-convert similarity functions (e.g. see [14] for ways
of combining boolean-valued and numeric-valued functions, all of which involve
converting the boolean-valued function to a numeric one). But, in our framework,
a similarity function may have as its result-type any type on which a (complete)
lattice is defined. We can have a function that has as its result-type number-
hedge pairs, ([0,1] x H), so the degree of similarity between two objects might
be, e.g., (0.2, very), (0.67, quite), (0.2, barely), etc. These pairs are the degrees of
similarity. All that is additionally required is to know how the pairs are ordered,
i.e., is (0.2, very) less than, greater than or incomparable with (0.67, quite)?

In principle, we can define any ordering on these pairs that we want (provided
we obtain a complete lattice). In practice, it often makes sense to define the new
ordering from the orderings on the constituents of the pair. We show two (of
many) ways of doing this: product and prioritisation.

Consider lattices £, = (S1,C1) and Lo = (S2,C2). The product is the lattice
(S1 % S2,C«) where

(z1,22) T (Y1,y2) 221 C1 y1 Az Co 4o

Using product, (0.2, barely) is less than (0.2, very) and it is less than (0.67, quite).
The prioritisation of £y over Lo is the lattice (S; x Sa,Css), where

(z1,22) Cos (y1,92) S 21 Ty V(21 = y1 Azz T g)

i.e., the first ordering takes priority but, in the event of ties in the first ordering,
the second ordering is used. Using prioritisation in this way, (0.2, barely) is less
than (0.2, very) which is less than (0.67, quite).

This ability to combine different kinds of similarity function, without inter-
conversion, is one of the most striking aspects of our framework. We should also
add that product and prioritisation are not our only ways of combining and
manipulating lattice-valued functions. Some other operators for manipulating
such functions are defined in [7], [8].

Unaddressed by our discussion so far is whether the similarity functions we
define in this (or other) frameworks must satisfy any axioms. Giving full axioma-
tisations is not an aim of this paper, but some discussion of axioms is needed
because any ways we define for building new functions from existing ones (such
as using products and prioritisations, above) should ensure that the new func-
tions will satisfy the axioms. (For example, an operator similar to product, but
based on disjunction rather than conjunction, is unlikely to violate any axioms
we might place on similarity functions but will not necessarily respect the axiom
that we give in Table 1 for excess functions.)

Many authors claim that similarity functions must be reflezive [11], which, in
our framework, would be stated as x ~ y = T, where T is the topmost element

in the lattice. Tversky [13] argues that this is too strong: there may be different
degrees of similarity for different ‘identical’ objects. Consequently, in [9] and here
(see Table 1), we use a weaker axiom: x ~ x J x ~ y, i.e., an object is at least
as similar to itself as it is to any other object.

Even more controversial is symmetry, © ~ y = y ~ x. Richter argues for it
[11]; Jantke argues against it (but, ironically, he does so in a paper in which the
new similarity function he introduces is symmetric) [5]; Tversky argues against
it [13]; in [9], we took symmetry as an axiom and defined similarity measures in
a way that guaranteed symmetry. But, in this paper, we do not adopt symmetry
as an axiom, and it is a contribution of this paper that we show that we can
define both asymmetric and symmetric similarity measures in our framework.
This is quite rare in CBR and so we believe it to be a strength of our framework.

In accord with much work on similarity, we do not require transitivity. How-
ever, there may be a need for further axioms to apply in certain instantiations
of our framework. For example, for similarity measures defined on structured
object representations, such as those discussed in Sections 3 and 4 of this paper,
a monotonicity axiom might be needed.

2.2 Difference Functions

While this discussion has focused on similarity functions, our generalisation to
lattice-valued functions can be applied to other kinds of function too. Difference
functions,® for example, can be boolean-valued, are more often numeric-valued
and might justifiably be generalised to being lattice-valued, with the same mo-
tivations as for similarity functions.

It is interesting to note the relationship in our framework between difference
functions and similarity functions. It is not uncommon to invert difference func-
tions to give similarity functions. In our formalisation, inversion is arguably more
straightforward than in other frameworks. Given a difference function «~ with
result lattice (S, C), we do not try to find some inverse operator «~ ! (based on
reciprocals or the like). We simply invert the lattice: (S,C1) or (S, 3). What
this function computes will remain unchanged; the way we interpret its results
will differ. What was denoting a large difference will now denote a small simi-
larity. We will see concrete examples of this later in this paper.

Everything else we said about lattice-valued similarity functions applies to
lattice-valued difference functions, e.g. they are easily combined by producting
or prioritising their result lattices. Their axioms are as for similarity functions.

2.3 Excess Functions

It is also common to use orderings in Computer Science and AL (Within AI,
they are used, for example, to model an agent’s preferences, in which case they
are referred to as ‘preference relations’.) These are boolean-valued functions,
<: a—a— Bool. But we can easily imagine wanting to use numeric-valued

% Elsewhere difference functions are sometimes called ‘distance functions’ (e.g. [11]).

counterparts to these, <:: @ - a — R, where we want to quantify the degree by
which one object is exceeded by (or preferred over) another. And so we can also
use our generalisation to give lattice-valued functions, < :: @« — a— L: a value
from a lattice denotes the degree by which the second object exceeds the first.
We have used such functions in our work [7], [8], and will use them in this paper,
referring to them as excess functions. If x <y = d, we say ‘y exceeds x by d’.
(This now means that, in AI, we can generalise preference relations so that they
deliver the degree to which one object is preferred over another.)

Combining different excess functions is therefore as straightforward as com-
bining similarity and difference functions, e.g. using product and prioritisation.
But where this discussion differs from the two above is that there is an important
axiom to be satisfied. The axiom is inspired by triangle inequality. It is given,
along with other axioms, in Table 1.

|Type |Axi0ms |

Similarity a > a—(S,C)jlz ~xz Jx ~y

Difference a — a —(S,C) |z evvx D x o y

Excess a—=a—=(50)|(zdyCydz)A(ydzE2dy))=> (¢dzC2dx)
Table 1. Types and axioms

We leave open the question of whether excess functions should (like prefer-
ence relations) be expected to satisfy (generalised versions of) reflexivity and
antisymmetry. We have not found a mathematical motivation for imposing such
axioms. For example, our definition of the maxima of a set under an excess func-
tion [7] satisfies the properties we expect of maxima without imposing reflexivity
and antisymmetry.

In the rest of this paper, we apply our framework to particular object repre-
sentations, specifically to structured object representations that have a natural
partial ordering. For concreteness and simplicity, we look at sets first, and then
we generalise our findings.

3 Set-Based Object Representations

Consider representing objects as sets of features or properties which those ob-
jects possess. For concreteness, suppose that the set of all possible (or rele-
vant) features is {a, b, ¢,d} and that we have three objects O1, O2 and O3 where
Oy 2 {a,b,c},02 = {a,b,d} and O3 = {a, d}.

Clearly, one way of computing the similarity of two such objects would be
to compute the intersection of their set representations, giving the features they
have in common. The cardinality of the intersection (or a form of member-
counting that is sensitive to the identity of the members of the set, so that some
features can be more important than others) might then be used to denote the
degree of similarity. We can do all this in our framework since the result-type of

a function can be a lattice on some set of numeric values. But here we investigate
an alternative.

We can instead let the set intersections themselves denote the degrees of
similarity. Hence, not only will objects be represented by sets, but their degrees
of similarity will be denoted by sets. The similarity of Oy and O is {a, b}, that
of O; and O3 is {a}, and that of Oy and Os is {a,d}. But which is the most
similar pair? In other words, of the degrees of similarity we have computed,
{a,b}, {a} and {a,d}, which is (or are) the highest? We need an ordering on
sets. Since larger sets denote more commonality and so more similarity, the
obvious ordering is the usual subset ordering, C. This means that O; and O,
are more similar than are O; and O3. However, Oy and O, are neither more nor
less similar than O, and Os.

Given a universal set, in the example this being {a, b, ¢, d}, we clearly have
another instance of our framework. The ordering C defined on the power set
of {a,b,c,d} gives us a (complete) lattice, having {a,b,c,d} as its topmost
element and () as its bottommost element. The similarity function has type
~:: P({a,b,c,d}) = P({a,b,c,d}) —=(P({a,b,c,d}),C) and is defined by = ~ y =
z Ny. (Obviously, a corresponding difference function, «~, can be defined in
which z «w y 2 £ Ny but where the lattice used is (P({a, b, ¢, d}), D).)

This idea, of using a structured object to denote the degree of similarity of
two other structured objects, and its applications to sets (as well as to other
structured representations) is proposed by Matuschek & Jantke [6]. Their con-
cern, however, is axiomatisation and so they separate a Common Substructure
axiom (r ~y C x Az ~ y C y, i.e., the object that denotes the degree of
similarity should somehow respect the common substructure) from an optional
Maximality axiom ((z Cz Az Cy) = 2 C z ~y).5 Clearly, set intersection is a
similarity function that satisfies both these axioms.

What is of more interest is to go beyond their work by showing some natural
similarity functions for sets which do not satisfy their axioms. We will show one
that does not satisfy the Common Substructure axiom, and one which does not
use simple sets at all to denote degrees of similarity (but does not resort to using
numbers). We will also show one which is not symmetric.”

Not Respecting the Common Substructure Axiom. Before defining a
similarity function that does not respect the Common Substructure axiom, let’s
look at some other functions that could usefully be set-valued.

We can define an excess function that takes in two sets and delivers a set as
its result-type. For example, we could base the definition on relative complement
(set difference). In this case, < :: P({a,b,c,d}) = P({a,b,c,d}) =(P({a,b,c,d}), C)
and z 4y 2 y\z. The degree to which O; exceeds O3 is {b,c}, O3 exceeds O; by

® Matuschek & Jantke present their axioms in a form that is more general than that
used here. Furthermore, we have included here only one of two competing maximality
axioms that they discuss.

" We should make clear that symmetry is not an axiom in [6].

{d}, and so on. This definition satisfies the generalised ‘triangle equality’ axiom
(Table 1).

A difference function can also be defined, the obvious definition being the
disjoint union, W, of the two sets (i.e., the elements they do not have in com-
mon). The type is «w :: P({a,b,c,d}) = P({a,b,c,d}) =(P({a,b,c,d}),C); the
definition is «~y £ 2 & y. The difference between O, and Os, for example, is
{b,c,d}.

We can obtain difference functions by bringing together two excess functions.
The difference between x and y is some combination of the excess of = over y
and the excess of y over x. Specifically, disjoint union is the union of the two
excesses (where excess is computed using relative complement in each case):
rWy 2 r\yUy\z.

From this difference function, we get another way to measure similarity. Fol-
lowing a tradition in CBR and elsewhere, we invert the difference function. And,
as we saw earlier in this paper, this is easily done: we simply invert the result lat-
tice. This gives us a similarity function whose type is
~:: P({a,b,c,d}) = P({a,b,c,d}) =(P({a,b,c,d}), D), and where z ~ y = zwy.
(Equivalently, z ~ y 2 x\y Uy\z.) Thus the similarity of O; and O is {c,d}
and that of O; and O3 is {b,c,d}, which means (remembering that the result
lattice is ordered such that smaller sets denote higher similarity) that O; and
O, are more similar, by this measure, than O, and Os.

Not Using Sets to Denote Degrees of Similarity. In the paper by Ma-
tuschek & Jantke [6], the axioms require the degree of similarity to be expressed
using the same structured representation as is used for the objects. This is too
restrictive. Natural similarity functions can be defined that do not observe this
requirement (without resorting to conversion to numeric-valued functions and
the like).

For example, suppose we want a similarity function that combines the two
similarity functions we have defined so far (the one based on shared features,
and the one based on the inverted distance function using non-shared features).
We exploit the flexibility of our framework by defining a similarity function that
has as its result-type pairs of sets (much as we combined numeric-valued and
linguistic-hedge-valued functions earlier, also resulting in a function whose result-
type was pairs). The type of the similarity function will be
~:P({a,b,c,d}) >P({a,b,c,d}) >(P({a,b,c,d}) x P({a,b,c,d}),C) and the
definition of ~ will be £ ~ y £ (z Ny,z Wy). Oy and Oy are similar to de-
gree ({a,b}, {c,d}) (their intersection paired with their disjoint union); O; and
Os are similar to degree ({a}, {b, c,d}). How is the ordering on these pairs, C,
defined? As when we combined similarity functions earlier, it makes sense to
define the new ordering from the constituent orderings. The ordering for the
first element of the pair is C. The ordering for the second element is D, since
this is where large sets denote big difference and so low similarities. Then, if
shared and non-shared features are equally important, we might use product,
C2C x D (ie., (w1, 22) T (y1,y2) iff &1 C y1 A xy D yo); if shared features are

more important than non-shared ones, we might prioritise C over D, C2C>>D
(i.e, (z1,22) C (y1,y2) iff z1 Cy1 V (x1 =y1 Aza D y2)); if non-shared features
are more important than shared ones, we might prioritise D over C.

Asymmetric Similarity. The three similarity functions we have shown so far
in this section (based on intersection, disjoint union with inverted lattice, and the
two combined) have been symmetric. Using Tversky’s paper [13] for inspiration,
we can also show a way of building up asymmetric similarity functions in our
framework. One example is = ~ y 2 (z Ny,z\y,y\z). This function is not
symmetric. The similarity of O; and Oz is ({a, b}, {c}, {d}) but that of O2 and
O is ({a,b},{d},{c}).® We need to place an ordering on these triples and it
should be clear by now, without giving details, that we will probably combine
the constituent orderings, C,D and D, using products, prioritisations and the
like.

Tversky’s Model. In [13], Tversky was also axiomatising similarity functions
for set-valued object representations. His first axiom (the Matching axiom) is
that ¢ ~ y = F(z Ny,z\y,y\z). For the most part, his remaining axioms
constrain the function F, aiming to guarantee that F' will deliver a suitable
numeric-valued similarity function. One way of thinking about this is to regard
Tversky as trying, in some sense, to inter-convert from one way of denoting
degrees of similarity (triples of sets) to another (numbers).

Of course, there is no reason why we should not do the same, if we so desire it.
Our framework accommodates both functions that deliver triples of sets and also
functions that deliver numbers. We could define a function that takes a lattice
defined on triples of sets and produces another lattice defined on numbers, thus
allowing us to map from one kind of similarity function to another.’

This section has focused on sets. In our Concluding Remarks, we generalise
this section’s findings to apply to other structured representations.

4 Concluding Remarks

Nothing hinges on our use of sets to exemplify the previous section of this pa-
per. The main ideas are the use of lattice-valued functions, and specifically their
use on structured representations. Just as Matuschek & Jantke [6] present their
axioms in a form that is not restricted to sets but applies to any structured
representation that has a natural partial ordering, we ought to generalise our
similarity measures for sets to other representations (in our case, ones that form

8 Another way of getting possibly asymmetric functions is to compute the excess of y
over z differently from the way we compute the excess of = over y (e.g. by weighting
one more highly than the other). Then, a measure that combines the two may not
be symmetric.

? See the definition of ‘right composition’ in [7], [8], which has precisely this purpose
(although it is defined there in a form that is specific to excess functions).

complete lattices). The generalisation continues to assume that the object rep-
resentation has a natural partial ordering (forms a complete lattice) and can
therefore also be used to denote the degrees of similarity.

Suppose we have an arbitrary complete lattice, £ £ (S,C). Let T € S denote
the topmost element in the ordering and L € S denote the bottommost. The
meet, greatest lower bound (glb) or infimum of z € S and y € S, x My, is the
unique element z € S such that

2CaAzCyAYS(Z CaxAZ Cy) =2 C2)

The join, least upper bound (lub) or supremum of z € S and y € S, zUy, is the
unique element z € S such that

TC2AYyC2AY((zxCE2'AyC2)=>2C2)

(In the case of sets where S 2 P({a,b,c,d}) and C2C, then T = {a,b,c,d},
1 =0,m=nand U=U.) In a complete lattice, we are guaranteed that the glb
and lub will exist.

Since several of the ways of defining similarity make use of excess functions,
a useful early step is the definition of an excess function. In general, the object
representation type and the result-type may be different, < :: a— a—(S,E),
a # S, and we can only advise that the excess function satisfy the axiom in
Table 1. However, where the argument and result-types are the same (as we
are assuming for now), it may be that some analogue of relative complement
(set difference) will form a useful definition for an excess function. One possible
general schema for this is:

cdy2n{z|zCyAzNz=1}

(the greatest lower bound of the substructures of y that exclude information
that is in z). (Instantiating this for sets gives z Ay = y\z, as desired.)

Once excess functions are defined, we can define at least four similarity func-
tions that correspond to the four developed in the previous section. They are
given in Table 2, in which f; and fs denote functions for combining orders, such
as product or prioritisation. (Obviously, corresponding difference functions can
be defined by inverting the lattices.)

[Definition [Lattice |
a;Nyéarglyl_lyglx (s,3)

r~y 2Ny e<dyUy<a)|(S xS, A(C,0))
r~y2(eny ey, y<dz) [(SxS xS, f(C,3,3)

Table 2. Similarity functions

The similarity function schemata in the Table may not be useful in all cases.
They should not be used blindly. They may apply usefully only to certain object

representations. For certain representations (e.g. first-order terms/feature struc-
tures), vy = {2 | 2 CyAzMz = L} might give a non-singleton set of results,
which is why we take the glb: <y 2 M{z | 2 Cy A zMz = L}. But, taking
the glb in these cases, may lose information. Indeed, it may even be the case
that the result will (often or always) be L. We would not have a satisfactory
definition of an excess function in these cases and, therefore, the three similarity
functions based on excess functions would be equally unsatisfactory.

Even when useful excess functions can be so-defined, it may be that z <y U
y <z gives L. This will be the case when < has been defined in a way that means
that z <y and y <z give conflicting information; then, their combination using
U will give L. In these cases (which include first-order terms/feature structures),
the second and third similarity functions in the Table would be unsatisfactory.

There remain many options not covered by the table, e.g. using a different
excess function for the excess of y over z from that used for = over y, or applying
functions to convert the lattice to one defined on numbers, and so on. It should
also be remembered that these are definitions for the case where the object
representation is also suitable for use as the representation of the degrees of
similarity. This is what allows 2My (or some substructure of My) to be suitable
as (part of) the definition of similarity. It is important to remember that our
framework is not confined to such scenarios: there is no reason why the object
representation and the degree of similarity should be the same. Even then, the
Table is suggestive of ways of building symmetric and asymmetric similarity
functions.

References

1. Ashley, K.D.: Reasoning with cases and hypotheticals in HYPO, International Jour-
nal of Man-Machine Studies, vol.(34), pp.753-796, 1991

2. Birkhoff, G.: Lattice Theory, American Mathematical Society, 1967

3. Bunke, H. & Messmer, B.T.: Similarity Measures for Structured Representations,
in S.Wess, K.-D.Althoff & M.M.Richter (eds.), Topics in Case-Based Reasoning
(Procs. of First European Workshop on Case-Based Reasoning), LNAI-837, pp.106-
118, Springer-Verlag, 1994

4. Emde, W. & Wettschereck,D.: Relational Instance-Based Learning, in L.Saitta (ed.),
Procs. of Thirteenth International Conference on Machine Learning, pp.122-130,
1996

5. Jantke, K.P.: Nonstandard Concepts of Similarity in Case-Based Reasoning, in H.-
H.Bock, W.Lenski & M.M.Richter (eds.), Information Systems in Data Analysis:
Prospects — Foundations — Applications (Procs. of Seventeenth Annual Conference
of GfKl), pp.28-43, Springer-Verlag, 1994

6. Matuschek,D. & Jantke,K.P.: Axiomatic Characterization of Structural Similarity
for Case-Based Reasoning, in D.D.Dankel (ed.), Procs. of Florida AI Research Sym-
posium, Florida AI Research Society, pp.432-436, 1997

7. Osborne. H. & Bridge, D.G.: Similarity Metrics: A Formal Unification of Cardinal
& Non-Cardinal Similarity Measures, in D.B.Leake & E.Plaza (eds.), Case Based
Reasoning Research € Development, pp.235-244, Springer, 1997

10.

11.

12.

13.

14.

Osborne, H. & Bridge, D.G.: We're All Going on a Summer Holiday: An Exercise
in Non-Cardinal Case Base Retrieval, in G.Grahne (ed.), Frontiers in Artificial
Intelligence and Applications (Procs. of Sizth Scandinavian Conference on Artificial
Intelligence), pp.209-219, I0S Press, 1997

Osborne, H. & Bridge, D.G: Models of Similarity for Case-Based Reasoning, Procs.
of the Interdisciplinary Workshop on Similarity and Categorisation, pp.173-179,
1997

Plaza, E.: Cases as terms: A feature term approach to the structured representa-
tion of cases, in M.Veloso & A.Aamodt (eds.), Case-Based Reasoning Research and
Development (Procs. of First International Conference on Case-Based Reasoning),
LNAI-1010, pp.265-276, Springer, 1995

Richter, M.M.: Classification and Learning of Similarity Measures, in Opitz, Lausen
and Klar (eds.), Studies in Classification, Data Analysis and Knowledge Organiza-
tion, Springer-Verlag, 1992

Shepard,R.N.: Toward a Universal Law of Generalization for Psychological Science,
Science, vol.237, pp.1317-1323, 1987

Tversky, A: Features of Similarity, Psychological Review, vol.84(4), pp.327-352,
1977

Wilson, D.R.. & Martinez, T.R.: Improved Heterogeneous Distance Functions, Jour-
nal of Artificial Intelligence Research, vol.6, pp.1-34, 1997

