
Recommending Personalized Query Revisions

Henry Blanco
Faculty of Computer Science

Free University of Bolzano
Bolzano, Italy.

Center of Medical Biophysics
University of Oriente

Santiago de Cuba, Cuba.

Francesco Ricci
Faculty of Computer Science

Free University of Bolzano
Bolzano, Italy.

fricci@unibz.it

Derek Bridge
Department of Computer

Science
University College Cork

Cork, Ireland.
d.bridge@cs.ucc.ie

ABSTRACT
Observing the queries selected by a user, among those sug-
gested by a recommender system, one can infer constraints
on the user’s utility function, and can avoid suggesting queries
that retrieve products with an inferior utility, i.e., dominated
queries. In this paper we propose a new efficient technique
for the computation of dominated queries. It relies on the
system’s assumption that the number of possible profiles
(or utility functions), of the users it may interact with, is
finite. We show that making query suggestions is simplified,
and the number of suggestions is strongly reduced. We also
found that even if the system is not contemplating the true
user profile, among the above mentioned finite set of profiles,
its performance is still very close to the optimal one.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—information filtering

General Terms
Experimentation, Theory.

Keywords
Recommender system, conversational system, user model.

1. INTRODUCTION
Conversational recommender systems offer flexible sup-

port to users as they browse a product catalogue, and help
them to better understand and elicit their preferences. In-
stead of requiring users to specify their preferences at the
outset, these are acquired and revised over a series of in-
teraction steps. At each step the system makes some rec-
ommendations to the user, or invites her to indicate further
preferences, e.g., by critiquing a recommendation [6].

In [3, 9] the authors introduce and evaluate a new con-
versational technique for helping the users to select items of

Paper presented at the 2012 Decisions@RecSys workshop in conjunc-
tion with the 6th ACM conference on Recommender Systems. Copyright
c©2012 for the individual papers by the papers’ authors. Copying permit-

ted for private and academic purposes. This volume is published and copy-
righted by its editors.

largest utility to the user. In order to accomplish this goal,
when a user is querying a product catalogue the proposed
technique suggests to the user new queries that: a) extend
the user’s current query, and b) retrieve products with higher
utility. For example the user of a hotel catalogue may have
submitted the following query: “I want an hotel with AC
and parking”. The system, rather than retrieving immedi-
ately the products that satisfy this query, hypothesizes that
the user may have also other needs and makes recommenda-
tions by suggesting queries that are revisions of the original
query. These new queries may add one or more additional
features to the query, e.g., the system may say: “are you
interested also in a sauna?”. Products with more features,
if available, will surely increase (or, at least, not decrease)
the user utility. But not all features are equally important
for the user. So, the system’s goal is to make “informed”
suggestions, i.e., to suggest those features that are likely to
produce the largest increase to the user’s utility. In fact,
observing the user’s previously submitted queries, the sys-
tem can deduce that certain features are more important
than others, i.e., it can infer constraints on the user’s utility
function, even without knowing that function.

The major limitations of the previous work on this pro-
posed technique were: a) a limited number of query editing
operations, i.e., the system could suggest only two types of
new queries to the user (add a feature and trade one feature
for two), b) a computationally expensive method for com-
puting the next best queries (undominated queries), c) a
long list of query suggestions could be possibly presented to
the user, making it hard for her to evaluate them and select
her preferred one. In this paper we propose a new effective
technique for the computation of the dominated queries, i.e.,
the queries that should not be suggested to the user because
the system can deduce that they have a lower utility. The
proposed technique relies on the system assumption that the
set of profiles (or utility functions) of the users it may inter-
act with is finite. This is a meaningful assumption as not all
the possible profiles are likely to ever be observed in prac-
tice, and users tend to have similar profiles. We show that
the computation of the query suggestions is simplified, and
more importantly, the number of queries that are suggested
at each conversational step is greatly reduced. We also show
that the query suggestions can be further filtered by estimat-
ing the utility of each query suggestion using those profiles
that are compatible with the queries previously selected by
the user. The proposed approach has also another advan-
tage, it enables a system designer to freely select the types



of query editing operations that he or she would like to use
to generate new query suggestions to the user.

We also show that even if the system is not contemplat-
ing the true user profile, among the above mentioned finite
set of profiles, its performance is still very close to the opti-
mal one, i.e., at the end of the dialogue the user can select
the best products, given her true profile and the available
products in the data set. Hence the finally recommended
items are close to the optimal ones. In fact, we show in this
paper that progressively expanding the number of profiles
contemplated by the system one can increase the utility of
the final recommended products, and with a large number
of contemplated profiles the recommended products have a
utility that is not practically distinguishable from that of
the best products.

The rest of the paper is structured as follows. The query
language used in this approach is described in Section 2.
Section 3 describes our model for representing user prefer-
ences. Section 4 explains the concept of “dominated query”
and our query suggestion method. The experimental design
is shown in Section 5. Results and discussion are reported
in Section 6. Finally the related work and conclusions are
given in Sections 7 and 8 respectively.

2. QUERY LANGUAGE
In our model a product p is represented by an n-dimensional

Boolean feature vector p = (p1, . . . , pn). pi = 1 means that
the i-th feature (e.g., Air Conditioning) is present in the
product, whereas pi = 0 means that p does not have fea-
ture i. A catalogue is a set of products {p(1), . . . , p(k)}. The
Boolean features could be keywords or tags found in the
product description, and searching for products with these
features can be viewed as kind of facet search.

Queries are represented similarly as Boolean vectors: q =
(q1, . . . , qn). qi = 1 means that the user is interested in prod-
ucts that have the i-th feature. On the other hand qi = 0
does not mean that the user is not interested in products
with that feature, but simply that she has not yet declared
her interest on it. A query is said to be satisfiable if there
exists a product in the catalogue such that all the features
expressed in the query as desired (qi = 1) are present in
that product. For example if the product p = (1, 1, 0, 1, 0)
is present in the catalog then query q = (0, 1, 0, 1, 0) is sat-
isfiable.

We are considering a scenario where the user is advised
about how to refine her queries. Moreover, we assume that
the system GUI offers to the user a limited number of eas-
ily understood editing operations (as in critiquing-based ap-
proaches). In the following we list the query editing opera-
tions that, in this paper, we assume the user can make when
revising the current query. But we observe (as will be clear
in the ensuing description) that the proposed approach is
not constrained by this particular choice.

• add1(q, i), i ∈ idx0(q);

• trade1,2(q, i, j, k), i ∈ idx1(q) and j, k ∈ idx0(q);

• add2(q, i, j), i, j ∈ idx0(q);

• trade1,3(q, i, j, k, t), i ∈ idx1(q) and j, k, t ∈ idx0(q).

Here idx0(q) and idx1(q) are the set of indexes with value
0 and 1 in q respectively. The first two operations gener-
ate a new query by adding to the current query a request
for one additional feature. For example, in (1, 1, 0, 0, 1) =

add1((1, 1, 0, 0, 0), 5) the query q = (1, 1, 0, 0, 0) (where the
first two features are requested) is extended by requesting
also the fifth feature. The second operation (trade one fea-
ture present for two not present) generates a new query by
discarding a feature, the i-th, in favor of two new ones,
the j-th and k-th features. For example, (0, 1, 0, 1, 1) =
trade1,2((1, 1, 0, 0, 0), 1, 4, 5).

The last two operations extend a query with two addi-
tional features. For example, given the query q = (1, 1, 0, 0, 0),
the fourth and fifth features can be requested in the new
query generated by the operation add2(q, 4, 5) = (1, 1, 0, 1, 1).
The second “trade” operation (trade one feature present for
three not present) generates a new query by discarding the
i-th feature, but now in favor of three new ones, the j-th,
the k-th and t-th features. For example, (0, 1, 1, 1, 1) =
trade1,3((1, 1, 0, 0, 0), 1, 3, 4, 5).

Using the above-mentioned operators the system can gen-
erate a set of next queries and ask the user to select her pre-
ferred one, and this step can be repeated several times (see
Section 6.1 for an example of such an interaction). However,
the goal of the proposed system is not to suggest all these
possible next queries, as a standard “query by example” in-
terface might, but only those that would retrieve products
with the largest utility for the user. Hence, the goal of the
proposed system is to make inferences on the true user util-
ity function, and remove from the suggestions it makes at
every step those queries that appear to the system to have
an inferior utility. This reasoning process is clarified in the
following sections.

3. USER UTILITY FUNCTION
A user’s utility function, also called her user profile, is

represented here as a vector of weights: w = (w1, . . . , wn),
0 ≤ wi ≤ 1. wi is the importance that the user assigns to
the i-th feature of a product. So if wi = 0, then the user
has no desire for the i-th feature. If wi > wj , then the i-th
feature is preferred to the j-th one. If wi ≥ wj then the i-th
feature is at least as desired as the j-th one. If wi = wj ,
i 6= j then the user is indifferent between these two features.
The user’s utility for a particular product p = (p1, . . . , pn)
is given by the following:

Utilityw(p) =
n∑

i=1

wipi (1)

A product p with a higher utility than another product
p′ is always assumed to be preferred by the user, i.e., we
assume that users are rational. A user may have any of the
possible utility functions that can be defined by varying the
feature weights wi. So, the set of all possible utility functions
is infinite. But observing the queries selected by the user
among those suggested by the system the system can infer
constraints on the definition of the true user utility function.
Generally speaking, features that are present in a query that
the user selects can be inferred to be more desirable for that
user than features that are present in the alternative queries
that the user could have tried but did not select.

More precisely let us assume that the system recommends
to the user a set of new queries, which we will call the Ad-
viceSet. The queries in the AdviceSet will, in general, be a
subset of the queries that can be generated by applying the
query editing operations described in the previous section
to the query that was selected by the user at the previous



interaction step. When the user selects one of these rec-
ommended new queries, as the new best query for her, the
system can deduce that the utility of the one she selects is
greater than or equal to the utility of the other queries that
were included in the AdviceSet. If we define Utilityw(q), the
utility of query q for a user with profile w, as the utility of
a product p with the same definition as q, i.e., q = p, then,
if the user selects qs ∈ AdviceSet, we can infer that:

Utilityw(qs) ≥ Utilityw(q), ∀q ∈ AdviceSet. (2)

For example: Let’s assume that the previous query se-
lected by the user is q0 = (0, 0, 1, 1, 0, 0, 0), i.e., there are
seven features in this data set and the user would like to
retrieve products having the third and fourth feature. As-
sume that the system suggests that the user edits the current
query and specifically recommends that she select one of the
following four queries:

AdviceSet = {(1, 0, 1, 1, 0, 0, 0),

(0, 1, 1, 1, 0, 0, 1),

(0, 0, 1, 1, 1, 0, 0),

(0, 0, 1, 0, 0, 1, 1)}

Let us further assume that the query that the user selects
from these recommended ones is qs = (0, 0, 1, 1, 1, 0, 0), i.e.,
she is interested in products that additionally have the 5-
th feature. Then, the inferred constraints, based on not
choosing other members of the AdviceSet, are:

1. w5 >= w1

2. w5 >= w2 + w7

3. w4 + w5 >= w6 + w7

We must also explain what constraints on the true user
profile w can be deduced when the user issues the very first
query in any interaction. In this case, if q is the initial
query, the advisor will infer that wi ≥ wj , ∀i ∈ idx1(q) and
∀j ∈ idx0(q), unless qs, which is identical to q except that
its i-th feature is set to 0 and its j-th feature is set to 1,
is unsatisfiable. This means that features requested in the
initial query are at least as desired as features not initially
requested. But, the system must “play safe”. In the case
where qs, identical to q but with the i-th feature set to 0
and the j-th feature set to 1, is unsatisfiable, it should not
deduce a constraint of the type wi ≥ wj . This is because
there is the possibility that the user already knew this query
to be unsatisfiable and for this reason she did not try it as
her initial query, even though she preferred it. A longer
discussion of this “play safe” rule is given in [3].

4. THE QUERY ADVISOR
The advisor is the recommender system in charge of sug-

gesting to the user how to extend the current query to ob-
tain better products, i.e., it generates the AdviceSet. The
true user’s preferences, in her profile, are not known by the
advisor. Moreover, we assume that the advisor does not ex-
plicitly ask the user for her preferences. Nevertheless, right
after the user’s first query, the advisor will generate a set
of candidate queries and will recommend only the undom-
inated candidates, i.e. those with a utility that cannot be
proved to be inferior to one of the other candidates. Each
time the user chooses one of the recommended queries, the

advisor makes new recommendations. It does this repeat-
edly until the user is happy with her current query or no
additional suggestions can be made by the system.

At each interaction step, the advisor accumulates con-
straints on the true user utility function (as described in
Section 3). We denote this set of constraints by Φ. More-

over, given a set of next possible queries C = {q(1), . . . , q(k)},
i.e., those that can be generated by applying the operations
described in Section 2, and that are satisfiable, the advisor
will not suggest queries that have a lower utility than an-
other one: these queries are called here “dominated”. A
query q ∈ C is dominated if there exists another query
q′ ∈ C such that for all the possible weight vectors that
are compatible with the set of constraints Φ this relation
holds: Utilityw(q′) > Utilityw(q). A weight vector w is said
to be compatible with the set of constraints in Φ if and only
if all the constraints in Φ are satisfied when the variables
w1, . . . , wn take the values specified in w.

Removing the dominated queries is meaningful because
their utility is lower than the utility of another candidate
query for all the possible user utility functions that are com-
patible with the preferences that have been induced by ob-
serving the user’s behavior.

In our previous work, the problem of finding dominated
queries was cast as a linear programming problem, allowing
an infinite number of user profiles to be considered. The
problems with this are discussed in Section 7. In this paper
we assume that the set of user profiles contemplated by the
system is finite. Initially, at the beginning of the interaction
with a user, the set of all the possible utility functions or
user profiles is P = {w(1), . . . , w(m)}. We will consider in the
experiments sets of user profiles ranging from some dozens
to thousands.

With this finite assumption, having the set of deduced
constraints Φ we can prune from the set P the“incompatible
profiles”, i.e., those not satisfying the constraints in Φ. Then,
the computation of the undominated queries proceeds as
follow. Let’s assume that the set of user profiles compatible
with the accumulated constraints is P ′ = {w(1), . . . , w(t)} ⊂
P and C = {q(1), . . . , q(k)} is the set of next possible queries,
i.e., queries that are satisfiable and are generated from the
last issued query of the user by the query editing operations.
Then the AdviceSet is given by the following method:

1. A query q ∈ C is labelled as dominated if and only if
there exists another query q′ ∈ C, q′ 6= q, such that
∀w ∈ P ′, Utilityw(q′) > Utilityw(q). , i.e.,∑n

i=1 wiq
′
i >

∑n
i=1 wiqi.

2. Build the AdviceSet (undominated queries) by remov-
ing from C the dominated queries.

Example. Assume that Φ = {w1 ≥ w3, w2 + w3 ≥ w4},
P ′ = {w(1), w(2), w(3)} and C = {q(1), q(2), q(3), q(4)},
w(1) = (0.35, 0.1, 0.25, 0.3), w(2) = (0.1, 0.35, 0.3, 0.25),

w(3) = (0.3, 0.35, 0.1, 0.25), q(1) = (1, 1, 0, 1),

q(2) = (1, 0, 1, 1), q(3) = (0, 1, 1, 1), q(4) = (1, 1, 1, 0).

In this example the profiles w(1) and w(3) satisfy the con-
straints in Φ. While, w(2) is an “incompatible profile”, since

w
(2)
1 < w

(2)
3 , and must be pruned from P ′. Table 1 shows

the query utilities for these two compatible profiles. q(1) has
a higher utility than q(3) and q(4) for every profile in P ′,
thus q(3) and q(4) are dominated by q(1). These dominated



Table 1: Query utilities for the profiles w(1) and w(3).
q(1) q(2) q(3) q(4)

w(1) 0.75 0.9 0.65 0.7

w(3) 0.9 0.65 0.7 0.75

1. Φ = ∅, P =set of profiles, AdviceSet = empty set

2. do {
3. Present the AdviceSet to the user.

4. sq = initial query or one in the AdviceSet;

5. Infer constraints analyzing sq, and add them to Φ;

6. Remove incompatible profiles from P ;

7. Compute candidate queries;

8. Remove dominated queries from candidate ones and
generate AdviceSet;

9. (optional) Filter the AdviceSet;

10. } while ((AdviceSet 6= null) and (user wants advice))

Figure 1: Interaction process

queries must be removed from the set C and not included in
the AdviceSet. Note that the remaining queries q(1) and q(2)

do not dominate each other, thus they represent meaningful
next queries that the advisor can recommend to the user.

The full algorithm for query suggestions is described in
Figure 1. At the first step there are no query suggestions,
and the user is free to enter the first query. Then, the advisor
infers the constraints to be added to Φ according to the rules
mentioned in Section 3. The advisor then removes the user
profiles that do not satisfy these constraints. Afterwards,
the set of candidate queries is generated from the current
query, by applying the operators mentioned in Section 2 and
discarding any queries that are not satisfiable. Subsequently,
the advisor builds the AdviceSet by removing the dominated
queries, and optionally filters the AdviceSet to keep it small.
The filtering strategy that we have applied will be presented
in the next section. Finally, the advisor recommends the
remaining queries to the user as potential next ‘moves’. If
the AdviceSet is not empty, and the user selects one from
this advice set, then the selected query becomes the current
query and the process is repeated. If the user does not want
further advice then the system will display the products that
satisfy the last query selected by the user.

5. EXPERIMENTS DESIGN
We performed several experiments by simulating interac-

tions between a virtual user and the advisor according to
the algorithm described in the previous section. For each
experiment we varied the following independent variables:
product database, number of predefined user profiles, and
whether the undominated queries were filtered or not in or-
der to reduce the number of suggestions in the AdviceSet
(step 9 of the algorithm). We measured: the average num-
ber of queries issued per dialogue (interaction length), the
average size of the AdviceSet(number of queries suggestions
at each step), the utility shortfall, and the Jaccard simi-
larity between the last selected query and the optimal one.
The utility shortfall (or “regret”) is the difference between
the utility of the best product available in the data set, i.e.,

Table 2: Product databases. (Dist. Hotels = Dis-
tinct Hotels)

Name Features Hotels Dist. Hotels

Marriot-NY 9 81 36
Cork 10 21 15

Trentino-10 10 4056 133

the one with the highest utility for the user, and the util-
ity of the products satisfying the last query selected by the
user. This measure indicates if the advisor’s suggestions do
converge on the best product according to the true utility
function, hence if the final product recommendations are op-
timal. Moreover, in order to understand how many features
differ between the user’s best product and the products sat-
isfying the last query considered by the user, which in a real
scenario would be the products actually shown to the user,
we measured their Jaccard similarity. This is the ratio of
the number of features common to the best product and the
last query, over the number of features in their union. In
practice, the utility shortfall can be very small (if the fea-
tures that differ in the best product and in the last query
have small weights in the user’s utility function), but the
Jaccard similarity could still be far from 1.0.

Three different product databases were used, each one de-
scribing real hotels by their amenities expressed as Boolean
features. Details of the data set are given in the Table 2; here
a hotel may have the same description in terms of features as
another; that’s why the number of distinct hotels is smaller.
Moreover, we considered for each experiment four different
sizes of the set of predefined user profiles: small (25 profiles),
medium (250 profiles), large (2500 profiles) and very large
(25000 profiles). We wanted to measure the effect of the size
of the profiles set on the user-advisor interaction length, and
on the size of the advice set.

In each experiment a set of predefined user profiles is cre-
ated by first generating one totally random initial user pro-
file (weights vector), sampling each random feature weight
from a uniform distribution in [0,1], and then normalizing
the user profile vector so that the sum of the weights is 1.
Then, the other profiles are created by random permuta-
tions of the feature weights of the initial user profile. Note
that with 10 features there are 3.6× 106 ∼ 10! possible user
profiles.

For step 9 of the algorithm, i.e., the optional filtering of
the query suggestions in the advice set to produce an Advice-
Set that has at most a small number of suggested queries (5
in our case), we used one strategy. We considered the strat-
egy that selects the top K queries in the AdviceSet, with the
largest expected utility. The expected utility of each query
in the AdviceSet is computed by averaging the utility of the
query for all the profiles compatible with the inferred con-
straints. This approach assumes that the compatible profiles
have equal probability to be the true profile of the user.

In addition to the user profiles contemplated by the ad-
visor, in each simulated interaction we randomly generated
the true profile of the virtual user and it was not revealed
to the advisor. Note that the true virtual user profile is
very unlikely to be among the predefined set of advisor user
profiles. Moreover, the initial query submitted by the vir-
tual user is created in accordance with her true utility func-



tion; thus, the initial query includes the t most important
features for the user (t = 2 in our experiments). The ad-
visor’s deductions about the true user utility function are
based only on the observation of the queries submitted by
the user at each interaction step. We also assumed that the
virtual user is “Optimizing” [3], that is, one who confines her
queries to the advice set provided by the advisor and always
tries the query with the highest utility. Twenty-four experi-
ments were performed corresponding to all the combinations
of the variables mentioned before (product database, num-
ber of user profiles, filtering strategy). In every experiment
we ran 100 dialogues between a virtual user and the advisor
and then averaged the observed measures.

6. RESULTS AND DISCUSSION

6.1 Example of Simulated Interaction
Before describing the results of the system evaluation we

want to illustrate with one example a typical user-advisor
interaction. In this example we are considering the Marriott
catalogue, and the system is using the utility-based filtering
strategy, hence no more than 5 queries will be recommended
at each step. Some of the details are in Table 3.

The features, numbered from 0 to 8 are: 0=Internet ac-
cess point, 1=Restaurant on site, 2=Room service, 3=Pets
allowed, 4=Meeting room, 5=Airport shuttle, 6=Swimming
Pool, 7=Golf camp, 8=Tennis camp. The five most im-
portant features for the simulated user in this example are
{0,1,2,5,8}, but there is no hotel with exactly these features
in the dataset, and the best available hotel is {0,1,2,3,5}.

The user starts the interaction with the query which, ac-
cording to her preferences, contains the two most important
features: {1,2}. The system infers some initial constraints
from the initial query, i.e., that these features are more im-
portant that the others not requested (see Section 3), and
discards the profiles that do not satisfy these constraints.
In this case it discovers that 10 out of 250 initial predefined
profiles satisfy the inferred constraints (compatible profiles).
These profiles are considered by the system as those po-
tentially containing the true user profile and thus will be
examined to make new query suggestions. The system com-
putes the next candidate queries and discards those that
are not satisfiable: (58 are candidates) Then the advisor
removes those that are dominated, the remaining queries
(10 undominated) are ranked by computing their expected
utility, and the top 5 are suggested. Note that the queries
suggested extend the previous one with extra features. The
query selected by the user is {1,2,5,6}, since it is the one
that maximizes her utility. At this point the utility short-
fall is 0.136 and the Jaccard similarity with the best hotel,
{0,1,2,3,5}, is 0.5 (3 common features out of 6 in the union).
The system infers 4 new constraints: these constraints state
that the utility of the selected query is greater than or equal
to the utility of the other queries that were suggested. The
number of compatible profiles is now 2, and only 1, that
is {0,1,2,5,6}, out of the 7 satisfiable queries, is undomi-
nated, and thus suggested to the user. It is interesting to
note that the best (and satisfiable) query {0, 1, 2, 3, 5} =
trade({1, 2, 5, 6}, 6, 1, 3) was (erroneously) considered by the
system to be dominated by the suggested query {0,1,2,5,6},
and therefore not included in the advice set. This results
from the fact that the dominated queries are computed us-
ing the compatible profiles (2 in this case) not the true user

model, which is unknown to the system. These two compat-
ible profiles (erroneously) assign a higher weight to feature
6 (Swimming Pool) instead of feature 3 (Pets allowed) as
it is stated in the true user profile. In the third interac-
tion step the user is forced to select the unique query that
is suggested. At this point it is not possible to extend the
current query with a satisfiable one any further, the system
cannot make new query recommendations, and the interac-
tion ends. The utility shortfall and the Jaccard similarity
are 0.0018 and 0.67 respectively. In this example it is clear
that reasoning with a finite set of profiles causes some loss in
recommendation accuracy, which is compensated by a speed
up in system performance and a reduction in the sizes of the
AdviceSet compared with the approach introduced in [3] (see
discussion later).

6.2 Interaction Length
Table 4 shows the results of our experiments. The query

suggestion strategy based on the utility filtering, as well as
the baseline approach (not filtering the query suggestions),
produce interaction sessions with average length ranging be-
tween 2 and 4.

When the size of the user profiles set is small (25 profiles),
the interaction length is even shorter, ranging between 2 and
2.6; this is because it is more likely to fall into a situation
where no user profile is compatible with the inferred con-
straints and the system cannot suggest a new query.

In general, the interaction length is dependent on the num-
ber of product features and the available products in the
data set. Firstly, the higher the number of product fea-
tures, the longer will be the interaction. This is because the
user, at each interaction step, when she is selecting one of
the query editing operations, extends the previous query by
one or two additional features. Secondly, the smaller the
number of products, the more likely the process is to stop,
because the current query cannot be further extended with-
out building a failing query. It is important to note that the
interaction length is typically low and fairly acceptable for
an online application.

6.3 AdviceSet Size
The average size of the advice set ranges between 0 and

12 when no filtering is applied. In this case, inspecting the
experiments’ log data, we detected that in the initial steps of
the user-system interaction, i.e., when the system has poor
knowledge about the user preferences, the average number
of suggested queries could be as high as 20 (when the system
is contemplating a large number of profiles). On the other
hand, when the system is filtering the AdviceSet, obviously,
the size of the advice set is never greater than K = 5. Ta-
ble 4 shows the average number of queries suggested and,
as expected, the filtering strategy (utility-based) produces
smaller AdviceSets compared to the not-filtered case. In
general, when the size of the set of predefined user profiles is
small (25 profiles), the number of query suggestions ranges
between 0 and 1.5; this is caused (as we discussed above
for the interaction length) by the lack of compatible user
profiles, resulting in the difficulty of identifying queries to
suggest to the user.

6.4 Utility Shortfall
We expected to observe a higher utility shortfall when

filtering the advice set. In fact, in this case, the system



Table 3: An example of the user-system interaction
hotel features: 0 1 2 3 4 5 6 7 8

true user profile: 0.134 0.264 0.188 0.025 7.0e-4 0.141 0.023 0.06 0.164
best hotel: {0, 1, 2, 3, 5} number of initial profiles: 250

User Advisor

* Issues the initial query = {1, 2}

* Number of inferred constraints = 11
* Number of compatible profiles = 10
* Number of satisfiable queries = 58
* Undominated queries = 10. Top K=5 suggested:
{{1,2,4,6}, {1,2,5,6}, {1,2,3,6}, {1,2,4,5}, {1,2,3,4}}

* Selects the query: {1, 2, 5, 6}

* Number of inferred constraints = 4
* Number of compatible profiles = 2
* Number of satisfiable queries = 7
* Undominated queries = 1: {{0,1,2,5,6}}

* Selects the query: {0, 1, 2, 5, 6}

* No new constraints inferred.
* The same number of satisfiable profiles remains.
* Number of satisfiable queries = 0.
* The system cannot make more query suggestions.

Utility shortfall = 0.0018, Jaccard Similarity = 0.667

Table 4: Averaged values of the observed measures for 100 runs in the 24 experiments performed. (DB
= Product Database; # Prof. = Number of predefined user profiles; IL = Interaction Length; AdvSS =
AdviceSet Size; USh = Utility Shortfall; JSim = Jaccard Similarity)

DB # Prof.
Not filtering Utility filtering

Cork

IL AdvSS USh JSim IL AdvSS USh JSim

25 2.57 0.65 0.177 0.575 2.57 0.61 0.177 0.575
250 3.09 8.32 0.063 0.778 3.6 2.98 0.031 0.895
2500 3.69 8.43 0.005 0.968 3.81 3.40 0.0 0.991
25000 3.81 7.69 0.0 1.0 3.84 3.43 0.0 0.993

Marriott

25 2.13 1.12 0.167 0.594 2.13 1.12 0.167 0.594
250 2.61 8.66 0.033 0.857 2.93 3.33 0.037 0.825
2500 2.98 7.93 0.0 0.994 3.0 4.25 0.003 0.965
25000 2.99 7.82 0.0 0.996 3.0 4.22 0.004 0.965

Trentino

25 2.11 0.51 0.324 0.462 2.11 0.5 0.324 0.462
250 2.95 11.31 0.163 0.626 3.65 2.95 0.080 0.761
2500 3.65 12.67 0.060 0.797 3.96 3.66 0.018 0.876
25000 3.99 11.55 0.015 0.890 4.01 3.62 0.012 0.891

may not include in the AdviceSet the best next query, caus-
ing, at that step, a loss in the user utility compared with
the best query and thus an increase of the utility shortfall.
What mitigates this problem is the fact that the system
may still suggest the best query at a subsequent interaction
step. For instance, if the current query contains two features
and the best query contains two additional features, the sys-
tem, when filtering the suggestions, may not recommend the
query using the best of the two missing features at the first
step, but it could do it at the next suggestion step.

In general the utility shortfall decreases when the number
of user profiles increases. This is true regardless of whether
filtering is used or not. When the number of user profiles
is small (25 profiles) the utility shortfall values are higher,
ranging between 0.2 and 0.3. This is essentially due to the
fact that very often the user profiles do not satisfy the con-
straints inferred by the system. This causes the interruption
of the interaction at an early stage. In this case there is not a

big difference in the utility shortfall whether filtering query
suggestions is used or not, because the size of the advice set
never exceeds the threshold K = 5.

When the system filters the query suggestions and the user
profiles set size is medium (250 profiles) or even larger (2500
profiles), the utility shortfall is very close to that of the not-
filtered case. Moreover, in some cases (e.g., Trentino and
2500 profiles) the utility-based strategy may even perform
better than the not-filtering approach (0.018 vs. 0.060). This
could happen for a very simple reason. When the system
suggests fewer queries, the selection of one of these queries
by the simulated user causes the system to infer fewer con-
straints on the user utility function. In fact the system can
only deduce that the selected query does not have a lower
utility (for the user) than the other suggested queries. Infer-
ring fewer constraints causes the system to eliminate fewer
profiles and hence enables the system to make a larger num-
ber of interaction steps before arriving at the possibly failing



situation that no profile is compatible with the inferred con-
straints. This is confirmed by the fact that in these cases
(e.g., Trentino and 2500 profiles), where the utility-based
approach behaves better than the not-filtering one, the in-
teraction length is on average a bit larger (3.96 vs. 3.65).

In the case where the system is contemplating a large num-
ber of user profiles (25000 profiles), filtering the query sug-
gestions has a very small effect. The difference in the util-
ity shortfall with the not-filtering approach is still smaller
than 0.0041 (e.g., Marriott 25000, 0.0 vs. 0.004), and there
is never a gain in utility. In general the Jaccard similarity
between the best hotel and the last selected query increases
when the number of predefined profiles increases as well.
The Jaccard similarity is higher than 89% when the sys-
tem is contemplating 25000 profiles. Moreover, this value is
better (96%) for the smallest data sets (e.g. Cork and Mar-
riott). These results confirm the previous conclusions on the
utility shortfall; it is more likely that better system query
suggestions are obtained when the number of predefined user
profiles is higher. In fact, it is not important to have many
profiles, but rather to have an optimal set of predefined user
profiles covering the true user profiles of the subjects access-
ing the system. This is a topic of further research.

6.5 Infinite Profile Set Model
Finally, in Table 5 we compare the interaction length, the

advice set size, and the average utility shortfall obtained in
our experiments with those measured in our previous work,
where an infinite number of profiles was considered [3]. In
this comparison we use 25000 profiles and we confine the
system to use only the add1 and trade1,2 operators to gen-
erate new candidate queries: because in [3] the results were
obtained by considering only these two editing operations.

We can observe that the interaction length in the two
systems is more or less equivalent. The utility shortfall in
the proposed finite profiles model is always a bit larger than
in the infinite model. This is what has to be paid for the
constraining assumption that the number of possible user
profiles is finite. The major beneficial effect of the proposed
approach is the significant reduction of the advice set size by
more than 10 times. Moreover, computing the advice in our
implementation, took just some miliseconds, even if 25000
profiles were used, while with the infinite model it required
on average some seconds.

In conclusion, we believe that in real scenarios approxi-
mating the set of all possible user’s utility functions with a
finite set is a reasonable assumption, and the small cost paid
in terms of increased utility shortfall is compensated by the
strong reduction in the size of the advice set and computa-
tional complexity, making it feasible for the user to browse
the advice set and pick her best query.

7. RELATED WORK
Recommending personalized query revisions was first pro-

posed in [3] and then extended in [9]. This approach has
proved to be effective, and provides good query recommen-
dations and final product recommendations. It guides the
user to the query that selects the products with maximal
utility in a short number of query revision interactions. The
cited papers describe the details of this approach: the query
language, the user model, and the inferences made by the
system, observing the user’s query revisions and finally the
computation of the query suggestions for the user. [3, 9]

Table 5: Comparison of the system performance be-
tween the current finite set of profiles model and the
infinite model.

DB Averaged measures Infinite
model

Finite
model

Interaction length 6.09 5.63
Cork Advice set size 69.88 4.81

Utility shortfall 0 0.003

Interaction length 4.67 3.98
Marriott Advice set size 45.96 5.08

Utility shortfall 0 0.001

Interaction length 5.55 6.31
Trentino Advice set size 59.02 5.17

Utility shortfall 0 0.037

left open some questions mostly related to the efficiency of
computing the query suggestions and the size of the advice
set. That approach uses linear programming extensively and
require too much computation time to be exploited in an on-
line application. Moreover, the average number of queries
suggested to the user at each interaction step is in many
cases too large to be presented to a user.

These problems were initially tackled in a preliminary
workshop paper [2] by assuming that the user utility func-
tion is not an arbitrary one (i.e., coming from an infinite
set) but is drawn from a finite set of user profiles that are
known by the system. This set represents the possible dif-
ferent users that the system considers that it may interact
with. This assumption simplifies the computation of query
suggestions (as was also shown here). Moreover, the average
number of query suggestions made at each interaction step
is also dramatically reduced (by a factor of 10). However,
it remained the case that, during the initial steps of query
suggestion (when the system knowledge about the user pref-
erences is poor), the number of queries suggested can still
be high. Moreover, the authors artificially assumed that the
true user utility function is included among the finite set of
user profiles contemplated by the system. This is a crude
simplification since a totally unknown user approaching the
system may have an arbitrary profile and the system has
no knowledge about that. We have lifted that assumption
in this paper and we have also extended the type of query
editing operations, showing that this set can be arbitrarily
defined by the system designer.

Critiquing is a conversational recommendation approach
that is related to our technique [6]. In critiquing the user is
offered query revisions in the form of critiques to the cur-
rent selected product. The main difference with our pro-
posed approach to building conversational recommender sys-
tems is that the query processing in critiquing is based on
similarity-based retrieval, while here we are using a logic
based approach. Interestingly, in [12, 8] the authors use a
multi-attribute utility-based preference model and critiquing
suggestion technique that has similar objectives to our ap-
proach. They maintain for each user an estimated profile
(utility function). Then, they generate the best critiques
using the estimated user utility and update the estimated
profile by increasing the importance of a feature (weight) if
the selected product has a larger feature value compared to



the previously selected one.
Similarly to the “dominated query” concept considered in

our work, in [11, 10] the authors consider a conversational
recommender system based on example-critiquing that sug-
gest the top K options with highest likelihood to be “not
dominated” by others options (Pareto optimality) [4]. The
suggestions are based on an analysis of the user’s current
preference model (adapted in each interaction) and the user’s
reaction to the suggestions. In our case we take into account
the query submitted by the user (user’s reaction) in order
to generate new queries, and only those that prove to have
the highest utility according to the user model inferred so
far are considered as not dominated, and thus suggested to
the user.

Reducing the number of user-system interaction in find-
ing the target products has been approached in critiquing-
based systems through the use of compound critiques [7, 12]
which enable the user to express her preferences on multi-
ple attributes at the same time, potentially shortening the
interaction cycles. In our approach we enable the user to
express implicitly her preferences requesting more than one
feature at a time, which reduces the number of cycles needed
to reach the best product for the user and making inferences
on the true user model is kept simple.

8. CONCLUSIONS AND FUTURE WORK
In this paper we have described and analyzed the perfor-

mance of a new type of conversational recommender system
that suggests query revisions to help the user to find prod-
ucts with the largest utility. We assume that the system
contemplates only a finite set of possible user profiles, and
interacts with a user who has an unknown profile (probably)
close to one of those that the system contemplates.

The results of our experiments show that the finite user
profiles set assumption has a strong effect on the process of
computing the best query suggestions that guide the user
to the products that maximize her utility. In particular the
number of user-advisor interaction steps (number of queries
issued by the user), and the utility shortfall are low. We
have observed a significant reduction in the number of pieces
of advice (suggested next queries) provided at each user-
advisor interaction step. We have also shown that having a
relatively large number of predefined user profiles, and ex-
ploiting even simple techniques for filtering the suggestions,
is an important ingredient for improving the system perfor-
mance and producing effective support.

In the current model we consider only Boolean features.
But, the proposed approach can be extended to ordinal and
numerical features (e.g. hotel category and room price). We
plan to develop such an extension in the future. It is also
important to note that the user’s utility function is assumed
to be linear. We plan to investigate the use of more general
integral aggregation functions such as Choquet and Sugeno,
or Ordering Weighted Averaging functions [1]. This will also
be useful for modeling interactions between product features
(redundancies, complementarities, contradictions).

Moreover, in this work we have assumed that the user
preferences do not change during the interaction with the
system and the user is perfectly rational (always selects the
best option). In fact, the user may change her preferences or
not select the best available option (given her current util-
ity function), and this may generate an inconsistent set of
inferred constraints that the system cannot use to produce

new query suggestions. We are planning to tackle these is-
sues using relaxation techniques for over-constrained prob-
lems [5]. Finally, we must observe that to fully evaluate the
proposed approach we must perform live user experiments.
Therefore, we are implementing a mobile application for ho-
tel recommendation that exploits the proposed technique.

9. REFERENCES
[1] G. Beliakov, T. Calvo, and S. James. Aggregation of

preferences in recommender systems. In Recommender
Systems Handbook, pages 705–734. 2011.

[2] H. Blanco, F. Ricci, and D. Bridge. Conversational
query revision with a finite user profiles model. In
Procs. of the 3rd Italian Information Retrieval
Workshop. CEUR-WS, 2012.

[3] D. Bridge and F. Ricci. Supporting product selection
with query editing recommendations. In RecSys ’07:
Proceedings of the 2007 ACM conference on
Recommender systems, pages 65–72, New York, NY,
USA, 2007. ACM Press.

[4] B. Faltings and P. Pu. The lookahead principle for
preference elicitation: Experimental results. In In
Seventh International Conference on Flexible Query
Answering Systems (FQAS, pages 378–389, 2006.

[5] U. Junker. Quickxplain: Preferred explanations and
relaxations for over-constrained problems. In
Proceedings of the 19th National Conference on
Artificial Intelligence, pages 167–172. AAAI Press /
The MIT Press, 2004.

[6] L. McGinty and J. Reilly. On the evolution of
critiquing recommenders. In F. Ricci, L. Rokach,
B. Shapira, and P. B. Kantor, editors, Recommender
Systems Handbook, pages 419–453. Springer Verlag,
2011.

[7] J. Reilly, K. McCarthy, L. McGinty, and B. Smyth.
Dynamic critiquing. In Advances in Case-Based
Reasoning, 7th European Conference, ECCBR 2004,
Madrid, Spain, August 30 - September 2, 2004,
Proceedings, pages 763–777, 2004.

[8] J. Reilly, J. Zhang, L. McGinty, P. Pu, and B. Smyth.
Evaluating compound critiquing recommenders: a
real-user study. In EC ’07: Proceedings of the 8th
ACM conference on Electronic commerce, pages
114–123, New York, NY, USA, 2007. ACM.

[9] W. Trabelsi, N. Wilson, D. Bridge, and F. Ricci.
Comparing approaches to preference dominance for
conversational recommender systems. In E. Gregoire,
editor, Procs. of the 22nd International Conference on
Tools with Artificial Intelligence, pages 113–118, 2010.

[10] P. Viappiani, B. Faltings, and P. Pu. Preference-based
search using example-critiquing with suggestions. J.
Artif. Intell. Res. (JAIR), 27:465–503, 2006.

[11] P. Viappiani, P. Pu, and B. Faltings. Conversational
recommenders with adaptive suggestions. In
Proceedings of the 2007 ACM conference on
Recommender systems, pages 89–96. ACM, 2007.

[12] J. Zhang and P. Pu. A comparative study of
compound critique generation in conversational
recommender systems. In Procs. of 4th Intl. Conf. on
Adaptive Hypermedia & Adaptive Web-Based Systems,
pages 234–243. Springer-Verlag, 2006.


