
Conversational Query Revision with a Finite
User Profiles Model

Henry Blanco1,2, Francesco Ricci1, and Derek Bridge3

1 Faculty of Computer Science
Free University of Bozen-Bolzano

Bolzano, Italy
fricci@unibz.it

2 Center of Medical Biophysics
Universidad de Oriente

Santiago de Cuba, Cuba
3 Department of Computer Science

University College Cork
Cork, Ireland

Abstract. Information Recommendation is a conversational approach
aimed at suggesting to the user how to reformulate his queries to a prod-
uct catalogue in order to find the products that maximize his utility. In
previous work, it was shown that, by observing the queries selected by
the user among those suggested, the system can make inferences on the
true user utility function and eliminate from the set of suggested queries
those retrieving products with an inferior utility (dominated queries).
The computation of the dominated queries was based on the solution of
several linear programming problems, which represented a major com-
putational bottleneck for the efficiency of the proposed solution. In this
paper we propose a new technique for the computation of the dominated
queries. It relies on the assumption that the set of possible user utility
functions is finite. We show that under this assumption the computation
of the query suggestions is simplified and the number of query sugges-
tions is strongly reduced.

Keywords: Recommender system, conversational system, user prefer-
ence model.

1 Introduction

Recommender Systems (RS) are intelligent tools and applications designed to
support users in finding information, products or services that suit their needs
and preferences [8]. Recommender system technologies are rooted in Machine
Learning and Information Retrieval [4]. The core computational problem of a
RS is to predict the user’s preferences, e.g. expressed as ratings for items, and
recommend the items with maximal predicted preference [8]. Classical RS tech-
niques, such as collaborative and content-based filtering, collect the user’s pref-
erences in the form of ratings for items to meet the goals mentioned before. Their



major limitation is that they present the recommendations in a single shot, and
the user can either accept one of these recommendations or enter new prefer-
ences and restart the process. Conversely, Conversational Recommender Systems
(CRS) [2, 5, 6] not only rank and suggest products to users, but also guide them
during the human-computer interaction to finally select the products that they
may like. This guidance process is composed of several actions that depend on
the underlying conversational technology (e.g., critiquing [7, 6]).

In [1, 9] the authors first introduce and then extend a new conversational tech-
nique relying on the idea of “Information Recommendation”. In this approach
the user is supposed to query a product catalogue by issuing simple queries, such
as “I want an hotel with AC and parking”. The system, rather than recommend-
ing immediately the products that satisfy this query, assumes that the user may
have also other needs and suggests some query revisions. These new queries, for
instance, may add an additional feature to the query, e.g., the system may say:
“are you interested also in a sauna?”. Products with more features, if available,
will surely increase the user utility. But not all features are equally important
for the user. So the goal of the system is to make “informed” suggestions, i.e.,
to suggest features that are likely to increase more the user utility. In fact, the
system, observing the user queries, can deduce that certain features are more
important than others, i.e., can infer constraints on the definition of the user
utility function, even without knowing it. Hence, using this knowledge, it can
suggest that the user try a query from a well-selected and small set of candidate
queries . A similar idea, i.e., using a utility function estimation to select the more
user relevant critiques (new queries), is described in [10].

In [1][9] it is shown that this approach is effective and provides good query
suggestions and final recommendations. It guides the user to the query that
selects the products with maximal utility in a short number of query revision
interactions. The quoted papers describe the details of the approach: the query
language, the possible preference models of the user, the inferences made by
the system on observing the user’s query revisions, and the computation of the
query suggestions for the user. Nevertheless some questions mostly related to
the efficiency of the query suggestions computation and the size of the advice
set are still open and require further investigation. In fact, the computational
cost of query suggestion is playing a critical role in this approach. In [1] linear
programming techniques were used for computing the query suggestions. Even if
the computational complexity of that algorithm is polynomial, it must be invoked
numerous times (to compare each pair of candidate queries), and in practice it
takes too much time for a real online application. Moreover, the average size
of the advice set, i.e., the queries suggested by the system to the user at each
interaction step, remains large in many cases (more than 20). This is a critical
issue for implementing a real application based on the proposed technique.

In this paper we refine the proposed model by making the assumption that
the user utility function is drawn from a set of finite possibilities. This set of
“user profiles” represents the possible “different” users that the system may
interact with. We will show that this assumption has a strong effect: it simplifies



the search process for the query suggestions and reduces the average number of
query suggestions made at each interaction step. This finite model assumption
is realistic, as users tend to cluster in groups with similar preferences. Moreover,
considering an increasingly large number of user profiles one can approximate
all the possible ones.

2 Query Language

In our model a product p is represented by an n-dimensional Boolean feature
vector p = (p1, . . . , pn). pi = 1 means that the i-th feature (e.g., Air Condi-
tioning) is present in the product, whereas pi = 0 means that p does not have
feature i. A catalogue is a set of products {p(1), . . . , p(k)}. The Boolean features
could be keywords or tags found in the product description, and searching for
products with these features can be viewed as kind of facet search [3].

Queries are represented similarly as Boolean vectors: q = (q1, . . . , qn). qi = 1
means that the user is interested in products that have the i-th feature. On the
other hand qi = 0 does not mean that the user is not interested in products with
that feature, but simply that he has not yet declared his interest on it. A query
is said to be satisfiable if there exists a product in the catalogue such that all the
features expressed in the query as desired (qi = 1) are present in that product.
For example if the product p = (1, 1, 0, 1, 0) is present in the catalog then query
q = (0, 1, 0, 1, 0) is satisfiable.

We are considering a scenario where the user may be interested in refining an
initial query. Moreover, we assume that the user is not likely to radically modify
this query. This may also be a constraint imposed by the GUI of the query sys-
tem, where the user can be offered with only a small number of easily understood
editing operations. In the following we list the query editing operations that we
assume the user can make when revising the current query:

– add(q, i), where i ∈ idx0(q)
– trade(q, i, j, k), where i ∈ idx1(q) and j, k ∈ idx0(q)

where idx0(q) and idx1(q) are the set of indexes with value 0 and 1 in q respec-
tively. The first operation generates a new query by requesting one additional
feature. For example, (1, 1, 0, 0, 1) = add((1, 1, 0, 0, 0), 5) is extending a query
where only the first two features were requested by adding also the fifth feature
to the set of requested ones. The second operation generates a new query by dis-
carding a feature, the i-th, in favor of two new ones, the j-th and k-th features.
For example, (0, 1, 0, 1, 1) = trade((1, 1, 0, 0, 0), 1, 4, 5)

Using the above-mentioned operators the system can generate a set of next
queries and ask the user to select the preferred one. In our approach, the goal of
the system is not to suggest all these possible next queries, as a standard “query
by example” interface may implement, but rather only queries that could retrieve
products with the largest utility. Hence, first of all, the unsatisfiable queries
must not be suggested. This can be easily implemented with standard query
processing techniques. But, as it will be shown later, also other types of queries



can be discarded: those that can be proved to retrieve products with a smaller
utility than those retrieved by another query in the suggestion list (dominated
queries).

3 User Utility Function

User preferences for products are represented here as a vector of weights:

w = (w1, . . . , wn), 0 ≤ wi ≤ 1 (1)

wi is the importance that a particular user, one having that set of preference
weights, assigns to the i-th feature of a product. So if wi = 0, then the user has
no desire for the i-th feature. If wi > wj , then the i-th feature is preferred to the
j-th one. If wi ≥ wj then the i-th feature is at least as desired as the j-th one. If
wi = wj , i 6= j then the user is indifferent between these two features. The user
utility for a particular product p = (p1, . . . , pn) is given by the following:

Utilityw(p) =

n∑
i=1

wi × pi (2)

A product p with a higher utility than another product p′ is always assumed
to be preferred by the user, i.e., we assume that users are rational. We also define
the potential utility of a query q = (q1, . . . , qn) for the user as: Utilityw(q) =∑n
i=1 wi×qi. We call this utility “potential” if we do not know wether a product

with the features specified in the query does exist, i.e., if the query is satisfiable.
In case such a product exists, this potential utility is also a true utility.

A user accessing the system may have any of the possible utility functions
that can be defined by varying the feature weights wi. So, in principle, the set
of all possible utility functions is infinite. But observing the queries selected by
the user among those that he can make (i.e., those suggested by the system),
the system can infer constraints on the definition of his utility function. Gener-
ally speaking, features present in the selected query can be considered as more
desired by the user than features that are present in the alternative queries. The
constraints deduced by the system on the user utility function w = (w1, . . . , wn)
are illustrated below.

Initial query. If the current query q is the initial query, then the advisor
may infer that wi ≥ wj , ∀i ∈ idx1(q) and ∀j ∈ idx0(q), unless q, with the i-th
feature set to 0 and the j-th feature set to 1, is unsatisfiable. This means that if
the user issued a query that requests the presence of a feature then the potential
utility of this query is assumed to be larger than or equal to that of another
query where this feature is not requested. But only if this “alternative query” is
satisfiable.

Adding a feature. If the current query q′ results from an add() operation on
the previous query, that is, q′ = add(q, i), then the advisor infers wi ≥ wj , ∀j ∈
idx0(q), i 6= j, unless add(q, j) results in an unsatisfiable query. The rationale
of this deduction is similar to the previous one. We assume that the user has



extended the query by selecting a new query that includes an additional feature
that brings a larger increase of his utility, compared to the other possible features
that he may have included.

Trading one feature for two. If the current query results from a trade
operation on the previous query, i.e., q′ = trade(q, i, j, k), the advisor may infer:

1. wj + wk ≥ wi,
2. wj+wk ≥ wj′+wk′ , ∀j′, k′ ∈ idx0(q), {j, k} 6= {j′, k′} unless trade(q, i, j′, k′)

is unsatisfiable.

The first constraint says that the current query does not have a utility inferior
to the previous one. While the second constraint says that the selected trade
operation must obtain a utility that is not inferior to that of alternative trade
operations that the user may have applied (and are satisfiable).

We note that unsatisfiable queries are never suggested, and therefore we never
deduce that a query has a potential utility larger than that of a failing query. In
the previous work [1], we called this “play safe” because we considered that the
user might know that a query will fail and therefore he does not try it, hence we
cannot assume that the potential utility of the query that was actually tried is
larger than that of a query that the user did not try because he knew it would
fail. In the current work we generalize and rephrase it by saying that the system
can deduce only that the potential utility of the query that is tried is greater than
or equal to the (potential) utility of the other queries that were suggested, or
equivalently that the user could have tried (either because the system suggested
them or because the user knows they are satisfiable).

4 Advisor

The advisor is the intelligent entity in charge of observing the interaction pro-
cess, the user movements (queries issued), and making inferences on the user
preferences. As mentioned before, the user preferences are not known at the be-
ginning of the interaction between the user and the advisor. The advisor, after
the user’s first query, will generate a set of next candidates queries and will sug-
gest only those with a utility that cannot be proved to be inferior to one of the
other queries (undominated queries).

At each user-system interaction step, the advisor accumulates some con-
straints on the user utility function (see Section 3). We denote this set of con-
straints by Φ. Moreover, given a set of next possible queries C = {q(1), . . . , q(k)},
i.e., those that can be generated by applying the operations described in Sec-
tion 2, and that are satisfiable, the advisor needs to understand which queries
are worth suggesting to the user. These are the queries having a utility not in-
ferior to the utility of another query that may also be suggested. These queries
are obtained by removing from C all the dominated queries.

A query q ∈ C is dominated if there exists another query q′ ∈ C such that for
all the possible weight vectors that are compatible with the set of constraints Φ
this relation holds: Utilityw(q′) > Utilityw(q). A weight vector w is said to be



Table 1. Query utilities for the profiles w(1) and w(3).

q(1) q(2) q(3) q(4)

w(1) 0.75 0.9 0.65 0.7

w(3) 0.9 0.65 0.7 0.75

compatible with the set of constraints in Φ if and only if all the constraints in Φ
are satisfied when the variables w1, . . . , wn take the values specified in w.

Removing the dominated queries is meaningful because their utility is lower
than the utility of another query (that is suggested) for all the possible user
utility functions that are compatible with the preferences induced by observing
the user behavior. In this paper we solve this problem under the assumption
that the user’s true utility function is defined by one (unknown) vector among
a finite set of weights vectors considered by the system. We call this finite set of
all the possible utility function or “user profiles” P = {w(1), . . . , w(m)}. We will
consider in the experiments m ranging from some dozens to hundreds.

With this assumption, having the set Φ we can prune from the set P the
“incompatible profiles”, i.e., those not satisfying the constraints Φ. Then, the
computation of the undominated queries proceeds as follow. Let’s assume that
the set of user profiles compatible with the accumulated constraints is P ′ =
{w(1), . . . , w(t)} ⊂ P and C = {q(1), . . . , q(k)} is the set of next possible queries,
i.e., queries that are satisfiable and are generated by the considered operators
starting from the last issued query of the user. The final set of queries that
are recommended are computed using a linear time procedure in the number of
queries in C and utility functions in P ′, as follows:

1. A query q ∈ C, is labelled as dominated if and only if we can find another
query q′ ∈ C, q′ 6= q, such that ∀w ∈ P ′, Utilityw(q′) > Utilityw(q), i.e.,∑n
i=1 wi × q′i >

∑n
i=1 wi × qi.

2. Build the Advice set - undominated queries - by removing from C the dom-
inated queries.

Example. Assume that Φ = {w1 ≥ w3, w2 + w3 ≥ w4}, P ′ = {w(1), w(2), w(3)}
and C = {q(1), q(2), q(3), q(4)}, w(1) = (0.35, 0.1, 0.25, 0.3), w(2) = (0.1, 0.35, 0.3, 0.25),
w(3) = (0.3, 0.35, 0.1, 0.25), q(1) = (1, 1, 0, 1), q(2) = (1, 0, 1, 1), q(3) = (0, 1, 1, 1),
q(4) = (1, 1, 1, 0). In this example only the profiles w(1) and w(3) satisfy the con-
straints in Φ, so w(2) is an “incompatible profile”, and must be pruned from P ′.
Table 1 shows the query utilities. q(1) has a higher utility than q(3) and q(4) for
every profile in P ′, thus q(3) and q(4) are dominated by q(1). These dominated
queries are removed from the set C. Notice that the remaining queries q(1) and
q(2) do not dominate each other, thus they represent meaningful advice that the
advisor can provide to the user.

Finally, the algorithm for query suggestions using a finite set of user profiles
is described as follows:



1. Φ = ∅, P = all possible profiles, AdviceSet = all possible queries
2. Do
3. Present AdviceSet to the user;
4. currentQuery = query selected by the user in AdviceSet;
5. Infer constraints analyzing the currentQuery and add them to Φ;
6. Remove incompatible profiles from P ;
7. Compute candidate queries;
8. Remove dominated queries from candidate ones and generate AdviceSet;
9. while ((AdviceSet 6= null) and (user wants advice))

The advisor presents to the user a possible set of queries. At the beginning
these are all the possible ones, i.e., the user is free to enter the first query. Then
the advisor infers the constraints Φ according to the rules mentioned in section 3.
The advisor then removes the user profiles that do not satisfy these constraints.
Afterwards the set of candidate queries are generated from the current query,
applying the operators mentioned in Section 2 and those that are not satisfi-
able are removed. Finally, the advisor identifies the AdviceSet by removing the
dominated queries and suggests the remaining ones to the user as potential new
moves. If the user selects one from this advice and the AdviceSet is not empty
then the selected query becomes the current query and the process is repeated. If
the user does not want further advice then the system will suggest the products
that satisfy the last query selected by the user.

5 Experiments

We performed some experiments in order to compare the performance of the
proposed approach with the results obtained in [1]. We simulated several inter-
actions between a user and the advisor. We varied the following parameters in
the simulations: the product database and the number and format of the user
profiles. Three different product databases were used, each one describing real
hotels by their amenities expressed as Boolean features. Details of the product
databases are given in the Table 2; here an hotel may have the same product
description in terms of features as another, which is why the number of distinct
products is smaller than the number of hotels.

We considered two kinds of user profiles as typical models of user preferences:
“random-shape user profiles” and “exponential-shape user profiles”. A “user’s
profile shape” refers to the distribution of the weights of the features in a user
profile. Random-shape user profiles are created by first generating one initial
user profile (weights vector) sampling the weights from a uniform distribution
in [0,1]. Then the other profiles, in the same set P , are created by a random
permutation of the feature weights of the initial user profile. Note that if the
weights are sorted into decreasing order, the resulting sequence will decrease
near linearly. This is because there is no special ‘preference’ for any number
when you randomly select them. Conversely, the set of exponential-shape user
profiles is created by generating first one initial user profile with an exponentially
decreasing importance for the weights: e−αi, with a selected α ∈ [1, 4] and i =



Table 2. Product databases

Name Features Hotels Products

Marriot-NY 9 81 36

Cork 10 21 15

Trentino-10 10 4056 133

1, . . . , n. The other user profiles are again obtained with random permutations
of the initial user profile. Here we wanted to simulate users with a few important
features and many less important ones. For each experiment, we generated three
sets of user profiles P : small (24 profiles), medium (120 profiles) and large (720
profiles). We wanted to observe the effect of the assumed variability of the user
profiles on the user-advisor interaction length and the size of the advice set.

We assumed that the user is “Optimizing” [1], that is, one who confines his
queries to the advice set provided by the advisor and he will always try the query
with the highest utility in the advice set. The simulated interaction between a
virtual user and the advisor is done considering the algorithm described in the
previous section. One element of the set of predefined user profiles is randomly
selected and considered as the user’s true profile (user’s utility). This is not re-
vealed to the advisor, which interacts with the simulated user using the proposed
methodology. The advisor deductions about the user’s true utility function are
based only on the observation of the user queries submitted at each interaction
step. The initial query submitted by the simulated user is created in accordance
to his true utility function; thus, the initial query includes up to the k most
important features for the user.

In total, 18 experiments were performed corresponding to the combination of
the variables mentioned before (product database, user profile shape and number
of user profiles). In every experiment we ran 50 dialogues between a simulated
user and the advisor. The observed measures were: the average number of queries
issued per dialogue, the average size of the advice set and the average utility
shortfall. The utility shortfall is the difference between the utility of the best
query (selecting the product with the highest utility for the user) and the last
query suggested by the system to the user. In this way we could measure if the
system suggestions are close to the best query according to the user’s true utility
function.

Table 3 shows the values of the observed measures. We can observe that
the average number of queries issued by the virtual user (interaction length)
ranges between 3 and 7 almost independently from the “User Profile shape” and
“User Profile set size”. The interaction length seems to be related to the number
of product features and the available products in the data set. The higher the
number of product’s features the longer will be the interaction. This happens
because the user at each query editing step adds one feature to the previous
query. In fact, the query suggestions are generated by the add() and trade()
operations that extend the previous query by setting one additional feature to



Table 3. Averaged values of the observed measures for 50 runs in the 18 experiments
performed.

Product
D.B.

User Prof.
shape

User
Prof.
set size

Queries
issued

Queries
in Adv.
set

Utility
Shortfall

Cork

Random
24 5.58 1.21 0.00281
120 5.21 2.83 0.00491
720 5.64 4.71 0.00622
24 5.66 1.28 0.0082

Exponential 120 5.52 3.05 0.0062
720 5.31 3.37 0.0051

Marriott

Random
24 4 1.59 0
120 4 3.41 0.00031
720 4 4.33 0.00083
24 3.67 1.67 0.00636

Exponential 120 4 3.01 0.00097
720 4 5.73 0

Trentino

Random
24 6.62 1.08 0.00315
120 6.58 2.06 0.00319
720 6.32 2.93 0.00757
24 6.38 1.14 0.00019

Exponential 120 6.18 1.72 0.00197
720 6.48 2.89 0.00833

1. Hence, assuming that the best query has a certain number of features set to
1, then the user needs to pass through that number of steps (minus the number
of features set to 1 in the initial query) in order to reach it, or to reach another
query that does not provide the maximal utility but still cannot be further
extended without reaching a failing query. Another factor to take into account
is the number of products in the database. The smaller the number of products
is, the more likely the process is to stop, because the current query cannot be
further extended without building a failing query. The most important aspect of
these values is that the interaction length is typically low and quite reasonable
for real online applications.

The “Average size of the advice set” is sub-linearly correlated to the profile set
size, that is, to the number of predefined user profiles. The higher the number of
predefined user profiles, the (slightly) higher is the number of query suggestions
in the advice set on average. In fact, if there are more user profiles, the more
difficult it is to find dominated queries, thus the set of undominated queries (the
advice set) is more likely to be larger. In general the average advice set size ranges
between 1 and 6. This number of query suggestions represents an acceptable
value for real applications. The “Average size of the advice set” doesn’t seem
to be related to the variables “User Profile shape” and “Product database”. In



Fig. 1. Size of the Advice Set at different interaction steps.

general the “User profile shape” doesn’t seem to influence either the “Interaction
length” or the “Average size of the advice set”.

The utility shortfall is very close to 0 on average. This cannot be 0 because the
query suggestions are searched in a greedy way (always expanding the previous
query), hence the advisor can fall into local maxima paths while searching for
the best query suggestion [1]. Thus we cannot assure that the Advice Set will
always contains the query with the largest utility that can be obtained by using
the current query editing operations. Hence, limiting the query editing to the
add(. . .) and trade(. . .) operators does not assure the user to reach the best
query. Nevertheless at the end of the process the final query is very close to the
best attainable given the user preferences.

Figure 1 shows the evolution of the Advice Set size (averaged over 50 dia-
logues) in the experiment that produces the highest number of average advices
per suggestion (5.73 queries in table 3). That experiment corresponds to: Prod-
uct Database = Marriott NY, Profile Shape = Exponential, and User Profile set
size = 720. The curve labeled as “average” shows the average number of advices
given to the user at the first three interaction steps. At the first step, the number
of queries suggested is on average 10.4±8.2(avg.±stdv.); at the next interaction
step, it is 5.3±3.9; and finally the system suggests only 1±0.7 queries (the best).
The curves labeled as “Maximum” and ”Minimum” correspond to the maximum
and minimum number of queries suggested at each interaction step to the user.
In general we can see that the number of advices falls quickly in a short number
of interactions. Still, it is clear that there are certain dialogues with a rather
large number of advices, and this is an issue to consider in the application of
this technique.

We now compare our results with those presented in [1]. Table 4 shows the
values of the variables “Average number of queries issued per Dialogue”, “Aver-
age size of the Advice Set”, “Average Utility shortfall” obtained in the previous
work, where an infinite number of profiles was considered and the query dom-



Table 4. Comparison between the current (finite model) and previous work (infinite
model) on the observed measures.

Database Averaged measures Infinite model Finite model

Marriott-NY
Queries issued 4.67 3.58
Numb. Advices 45.96 4.33
Utility shortfall 0 0.0008

Cork
Queries issued 6.09 6.32
Numb. Advices 69.88 2.93
Utility shortfall 0 0.0075

Trentino
Queries issued 5.55 5.64
Numb. Advices 59.02 4.71
Utility shortfall 0 0.0062

inance relation was computed using linear programming techniques. It is clear
that the average number of queries per dialogue is low in both approaches and
very similar. This is due to the fact that the actual query editing operations are
the same in the two approaches, and the dialogues converge to optimal queries
with similar operations. The utility shortfall in the current approach is a bit
larger than that measured previously. This is what one has to pay for the lim-
iting assumption that the number of possible user utility functions (profiles) is
finite. The major beneficial effect of the proposed approach is the significant
reduction in the number of queries suggested by the advisor to the user by more
than 10 times. This makes it much more suitable in real applications. Obviously
this is again related to the assumption that the variability of the user utility func-
tions is assumed to be smaller. We believe that in real scenarios approximating
the set of all possible utility functions with a smaller, finite set, is a reasonable
assumption and the small cost paid in terms of increased utility shortfall is com-
pensated by the strong reduction in the size of the advice set, making it feasible
for the user to browse the advice set and pick up his best query.

6 Conclusions and Future Work

In this paper we have described and analyzed the performance of a new
type of conversational recommender system that suggests query revisions to
a user searching for products in a catalogue. The products are described by
Boolean features. They can be for instance tags or keywords found in the product
descriptions. In this paper we assume that the user utility function is one among
a finite set of possible functions that are known to the system, but the system
does not know which is the true utility function of the user.

The results of our experiments showed that this assumption has a strong
effect on the process of finding the best query suggestions that guide the user
to the products that maximize his utility. In particular the number of user-
advisor interaction steps (number of queries issued by the user) and the utility



shortfall are low (as in our previous work where the user profiles were not limited
to be finite). But, differently from the previous case, we have now observed a
significant reduction in the number of advices provided at each user-advisor
interaction step. We have also showed that having a good number of predefined
user profiles is an important ingredient for improving the system performance
and producing an effective support.

In future work we will consider the case when the true utility function of
the user is not one of those assumed by the system. This is the true general
situation when a totally unknown user is approaching the system and the system
has no knowledge about his preferences. In particular, we will measure how this
impacts on the utility shortfall. Additionally we will implement this approach
on a real online and mobile application, which will undoubtedly help to give a
better understanding of user behavior and the true effectiveness of the proposed
approach.

References

1. D. Bridge and F. Ricci. Supporting product selection with query editing recommen-
dations. In RecSys ’07: Proceedings of the 2007 ACM conference on Recommender
systems, pages 65–72, New York, NY, USA, 2007. ACM Press.

2. M. H. Göker and C. A. Thomson. Personalized conversational case-based recom-
mendation. In Advances in case-based reasoning: 5th European workshop, EWCBR-
2000, Trento, Italy, September 6–9, 2000: proceedings, pages 99–111. Springer,
2000.

3. M. A. Hearst. Search User Interfaces. Cambridge University Press, 2009.
4. P. Lops, M. de Gemmis, and G. Semeraro. Content-based recommender systems:

State of the art and trends. In F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor,
editors, Recommender Systems Handbook, pages 73–105. Springer Verlag, 2011.

5. T. Mahmood and F. Ricci. Learning and adaptivity in interactive recommender
systems. In ICEC ’07: Proceedings of the ninth international conference on Elec-
tronic commerce, pages 75–84, New York, NY, USA, 2007. ACM.

6. L. McGinty and J. Reilly. On the evolution of critiquing recommenders. In F. Ricci,
L. Rokach, B. Shapira, and P. B. Kantor, editors, Recommender Systems Handbook,
pages 419–453. Springer Verlag, 2011.

7. Q. N. Nguyen and F. Ricci. User preferences initialization and integration in
critique-based mobile recommender systems. In Proceedings of the 5th Interna-
tional Workshop on Artificial Intelligence in Mobile Systems, AIMS’04, pages 71–
78, Nottingham, UK, 2004.

8. F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors. Recommender Systems
Handbook. Springer, 2011.

9. W. Trabelsi, N. Wilson, D. Bridge, and F. Ricci. Comparing approaches to prefer-
ence dominance for conversational recommender systems. In E. Gregoire, editor,
Procs. of the 22nd International Conference on Tools with Artificial Intelligence,
pages 113–118, 2010.

10. J. Zhang and P. Pu. A comparative study of compound critique generation in
conversational recommender systems. In Proceedings of the 4th International Con-
ference on Adaptive Hypermedia and Adaptive Web-Based Systems, AH 2006, pages
234–243, 2006.


