
Semantics

Programs that Eat . . .

Interpreters

Compilers

Combinations of . . .

Module Home Page

Title Page

JJ II

J I

Page 1 of 16

Back

Full Screen

Close

Quit

Lecture 9:

Programming Languages: Semantics

Aims:

• To look at some subtle issues in the semantics of languages such as Java;

• To discuss the role of compilers and interpreters.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Semantics

Programs that Eat . . .

Interpreters

Compilers

Combinations of . . .

Module Home Page

Title Page

JJ II

J I

Page 2 of 16

Back

Full Screen

Close

Quit

9.1. Semantics

• Grammars define syntactically correct programs. But what do the programs mean?

• Semantic rules define the meaning of syntactically correct programs. These rules
must also be precise and unambiguous.

We shouldn’t have to guess what a fragment of program means. If we do, we’ll
probably get some guesses wrong. Even if we were capable of guessing correctly, the
computer cannot make guesses.

I’ve seen lots of student programs, for example, where what is needed is an if command,
e.g. to test whether a button on the screen has been pressed:

i f (event . getSource () == startButton)
{ . . .
}

but what the student has written is a while command:

while (event . getSource () == startButton)
{ . . .
}

These students have the wrong semantics in their heads!

• To illustrate the issues further, we will look at a few fragments of Java and ask
what they mean. Specifically, we’ll ask what happens when they are executed. The
examples I have chosen are again ones where I have found that students have picked
up wrong or incomplete semantics.

• Example 1.

What happens here. . .

http://www.cs.ucc.ie/~dgb/courses/toc.html

Semantics

Programs that Eat . . .

Interpreters

Compilers

Combinations of . . .

Module Home Page

Title Page

JJ II

J I

Page 3 of 16

Back

Full Screen

Close

Quit

int x = 0 ;
double y = . . . ;

x = (int) y ;

when

– y = 3.2

– y = 3.7

– y = −3.5

• Example 2. Assume marks is an array of integers. Would you be happy with this
way of computing your average mark?

public double getAverage (int [] marks)
{ int t o t a l = 0 ;

for (int i = 0 ; i < marks . l ength ; i++)
{ t o t a l += marks [i] ;
}
return t o t a l / marks . l ength ;

}

• Example 3. In maths

x =
(

x

y

)
× y

In Java, does

x == (x / y) ∗ y

http://www.cs.ucc.ie/~dgb/courses/toc.html

Semantics

Programs that Eat . . .

Interpreters

Compilers

Combinations of . . .

Module Home Page

Title Page

JJ II

J I

Page 4 of 16

Back

Full Screen

Close

Quit

If x and y are variables of type int, is it true?

If x and y are variables of type double, is it true?

• Example 4.

– What happens when we execute this:
int x = 4 / 0;

– What happens when we execute this:
double x = 4.3 / 0.0;

• Example 5.

– What happens when we execute this:
int x = Integer.MAX VALUE ∗ 2;

– What happens when we execute this:
double x = Double.MAX VALUE ∗ 2.0;

• Example 6. Given an array a, what are the differences between this

for (int i = 0 ; i < a . l ength ; i++)
{ . . .
}

and this

int l en = a . l ength ;
for (int i = 0 ; i < l en ; i++)
{ . . .
}

http://www.cs.ucc.ie/~dgb/courses/toc.html

Semantics

Programs that Eat . . .

Interpreters

Compilers

Combinations of . . .

Module Home Page

Title Page

JJ II

J I

Page 5 of 16

Back

Full Screen

Close

Quit

• To help you decide, suppose we consider this:

for (int i = 0 ; i < a . l ength ; i++)
{ . . .

a = new int [a . l ength ∗ 2] ;
. . .

}

and this

int l en = a . l ength ;
for (int i = 0 ; i < l en ; i++)
{ . . .

a = new int [a . l ength ∗ 2] ;
. . .

}

• OK, OK. So I’ve made my point. We need a precise and unambiguous semantics.

• You may be surprised to learn that for most languages, a precise semantics has never
been specified!

Instead, language designers supply language manuals that describe the semantics
informally or semi-formally. It’s not unusual to find that, when a programming
language is extended with new features, the new features interact with the existing
ones supported by the language in strange ways.

In the rare cases where a formal semantics has been defined, it is usually the case that
the semantics was defined by some researcher, long after the language was originally
designed.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Semantics

Programs that Eat . . .

Interpreters

Compilers

Combinations of . . .

Module Home Page

Title Page

JJ II

J I

Page 6 of 16

Back

Full Screen

Close

Quit

9.1.1. Static vs Dynamic Semantics

• This leads us to the following distinction.

Static Semantics: Semantic rules that can be checked prior to execution.
In many languages, type checking is part of the static semantics. For example,
according to the BNF grammars we wrote in the previous lecture, the condition
in an if or while command can be any expression. But the semantics of the
language might require that these expressions return Booleans. If we check the
type of these expressions in advance of execution, then this type checking is
part of the static semantics of the language (otherwise, it is part of the dynamic
semantics).
(In Java, in case you’re interested, most type-checking is done prior to execution.
So people refer to Java as a statically-typed language. In fact, for subtle reasons,
some type-checks can only be done at run-time in Java. So people sometimes
refer to Java as a mostly statically-typed language. There are other languages
which are dynamically-typed, and there are some that don’t care much about
type checks at all!)
These rules are specified by hanging extra information off the BNF grammar
rules.

Dynamic Semantics: Semantic rules that describe the effect of executing pro-
grams.
If someone uses the word “semantics” on its own, then you can assume s/he is
referring to dynamic semantics: what happens at run-time.
Unlike syntax diagrams or BNF grammars for syntax, there is no widely-accepted
metalanguage for dynamic semantics.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Semantics

Programs that Eat . . .

Interpreters

Compilers

Combinations of . . .

Module Home Page

Title Page

JJ II

J I

Page 7 of 16

Back

Full Screen

Close

Quit

9.2. Programs that Eat Programs

• Now that we’ve discussed how to specify the syntax and semantic of programming
languages, we should briefly discuss how the machine makes sense of a program that
you have written.

• As you know, you submit your program to another piece of software whose job it is
to check its syntax and either execute it or prepare it for execution.

• Interpreters are used for the execution of programs.

• Compilers are used for the translation of programs.

• Interpreters and compilers are programs which take in other programs!

There is nothing strange about such programs. One of their parameters is just a
piece of text: a program.

• Here’s another program that can take in programs.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Semantics

Programs that Eat . . .

Interpreters

Compilers

Combinations of . . .

Module Home Page

Title Page

JJ II

J I

Page 8 of 16

Back

Full Screen

Close

Quit

import java . i o . ∗ ;
public class CharCount
{ public stat ic void main (St r ing [] a rgs)

throws IOException
{ St r ing f i leName = args [0] ;

F i leReader reader =
new Fi leReader (f i leName) ;

int count = 0 ;
while (reader . read () != −1)
{ count++;
}
System . out . p r i n t l n (count) ;

}
}

This program reads in a file and counts how many characters it contains. Don’t worry
if you don’t understand all the Java. You may not yet have been taught how to do
input from a file. But the algorithm is pretty simple: keep reading and counting
characters until you reach the end of the file (when read returns -1).

Of course, we don’t really need to write such a program. We can do the same thing
in Unix, simply by typing

wc -c fileName

When we run the program above, we can feed in any file we like. So, if wombat.txt
contains a joke someone sent you or me.html contains your web page, then we can
find out how many characters each contains:

java CharCount wombat.txt

java CharCount me.html

http://www.cs.ucc.ie/~dgb/courses/toc.html

Semantics

Programs that Eat . . .

Interpreters

Compilers

Combinations of . . .

Module Home Page

Title Page

JJ II

J I

Page 9 of 16

Back

Full Screen

Close

Quit

And we can feed it its own source (i.e. the program above):

java CharCount CharCount.java

or its own bytecode:

java CharCount CharCount.class

So this is a program that can take in itself or other programs as data. Interpreters
and compilers are also programs that take in programs. They could in principle take
in themselves, although chances are that this would give an error message (why?).

The point I want to make here is just this: there is nothing strange about one program
taking in another as data. And there is nothing strange about a program taking in
itself as data.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Semantics

Programs that Eat . . .

Interpreters

Compilers

Combinations of . . .

Module Home Page

Title Page

JJ II

J I

Page 10 of 16

Back

Full Screen

Close

Quit

9.3. Interpreters

• An interpreter is a program which executes another program.

interpreter

program

parameters return values

while true
{ get next command;

determine the type of command;
execute corresponding procedure;

}

• An interpreter will have a set of ready-made procedures, e.g. written in machine code,
corresponding to each type of high-level command. So the command is examined to
see what type it is and this determines which procedure to call.

(In principle, the procedures could be written in some language other than machine
code. In this case, these procedures will themselves have to be given to another
interpreter to be executed.)

• The pseudocode above ignores the possibility of error. It may be that the command
has a syntax error or a static semantics error; this will be discovered when reading
it in and trying to determine its type. Or, it may be that the command gives rise to
a dynamic semantics error, when it is executed.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Semantics

Programs that Eat . . .

Interpreters

Compilers

Combinations of . . .

Module Home Page

Title Page

JJ II

J I

Page 11 of 16

Back

Full Screen

Close

Quit

9.4. Compilers

• A compiler translates a program from one programming language, the source lan-
guage, to another programming language, the target language.

More usually, the target language is called the object language. But, we have al-
ready used the phrase ‘object language’, with a different meaning in our lecture on
programming language syntax, so we’ll use ‘target language’ here.

The source language is usually some high-level language, and the target language
is some low-level language (machine code, assembly language or intermediate code),
although it is quite possible for the target language to be another high-level language
(or even the same high-level language — why might that be useful?).

program

compiler

program

source

target

while there remain untranslated commands
{ get next command;

translate the command;
}

• A real compiler is far more complicated than the pseudocode suggests. A compiler
may need to read through the program multiple times. For example, it might collect

http://www.cs.ucc.ie/~dgb/courses/toc.html

Semantics

Programs that Eat . . .

Interpreters

Compilers

Combinations of . . .

Module Home Page

Title Page

JJ II

J I

Page 12 of 16

Back

Full Screen

Close

Quit

information on a first pass, and then do its translation on a second pass, with the
benefit of the information it collected on the first pass. It will also try to carry out as
much error-checking as it can, although, of course, it is limited to checking the syntax
and the static semantics. It can’t check for problems with the dynamic semantics:
they will only be discovered when the program is executed.

• You can see that, using a compiler, the whole source program gets translated; then
we can arrange for execution of the target program. By contrast, when you use an
interpreter each command is decoded and immediately executed, one by one.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Semantics

Programs that Eat . . .

Interpreters

Compilers

Combinations of . . .

Module Home Page

Title Page

JJ II

J I

Page 13 of 16

Back

Full Screen

Close

Quit

9.5. Combinations of Compilation and Interpretation

• Our explanation so far has described two ends of a spectrum. At one end is pure
interpretation. At the other end is pure compilation (the compiler produces machine
code and this is later executed by the hardware). In practice, many languages are
handled by various combinations. We’ll describe one combination whose popularity
has grown because it is the approach used by Java.

• A Java program is compiled (using the compiler, javac) to a program in an in-
termediate code called bytecode. Then the bytecode program is interpreted (by an
interpreter, java):

compiler
(javac)

program
Java source

(e.g. foo.java)

bytecode
(e.g. foo.class)

(java)
interpreterparameters return values

• This approach has a nice advantage over compiling directly to machine code. If
you compile directly to machine code, then your target program can only run on
computers with the same machine code.

But these days portability and mobility are goals. We want to write and compile
programs on one machine, but be able to run them on a variety of machines, e.g.
machines connected to the Internet. In Java circles, this is summarised by the slogan
“Write once; run anywhere!”.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Semantics

Programs that Eat . . .

Interpreters

Compilers

Combinations of . . .

Module Home Page

Title Page

JJ II

J I

Page 14 of 16

Back

Full Screen

Close

Quit

The Java solution, as we have seen is to compile to bytecode, an intermediate code, a
machine code for an abstract computer. Once compiled, the bytecode can be moved
to any machine and executed on that machine, provided a suitable interpreter has
been installed on that machine.

• While this gives portability, the concern of many is that it is an approach that is
insufficiently efficient. Interpreting bytecode is much slower than directly executing
machine code.

• One option for better performance is to develop hardware that can in fact directly
execute the bytecode. Remember, bytecode was designed as the machine code for an
abstract machine, a pretend machine, a virtual machine. But why not build these
machines for real? Then the bytecode can be executed directly by the hardware.
Java chips have been designed and manufactured, but (last time I looked) they are
not available commercially.

• Another option is to use what is called a Just-In-Time compiler (a JIT compiler) in
place of the interpreter. In other words, we use another compiler which has bytecode
as its source language and machine code as its target language. So first Java is
compiled to bytecode then, immediately prior to execution, the bytecode is compiled
to machine code. The machine code is then directly executed (efficiently) by the
hardware. The compiler that translates bytecode to machine code is reasonably
simple (much simpler than the Java compiler) and quick, and so this is an approach
that can still give portability. Once the Java compiler has produced the bytecode,
the bytecode can be moved to any machine and, just prior to execution, the bytecode
is compiled to native machine code.

Acknowledgements

This lecture was influenced to a small degree by Section 2.2 of [GJ97].

http://www.cs.ucc.ie/~dgb/courses/toc.html

Semantics

Programs that Eat . . .

Interpreters

Compilers

Combinations of . . .

Module Home Page

Title Page

JJ II

J I

Page 15 of 16

Back

Full Screen

Close

Quit

Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Semantics

Programs that Eat . . .

Interpreters

Compilers

Combinations of . . .

Module Home Page

Title Page

JJ II

J I

Page 16 of 16

Back

Full Screen

Close

Quit

References

[GJ97] C. Ghezzi and M. Jazayeri. Programming Language Concepts. Wiley, 3rd. edition,
1997.

http://www.cs.ucc.ie/~dgb/courses/toc.html

	Semantics
	Static vs Dynamic Semantics

	Programs that Eat Programs
	Interpreters
	Compilers
	Combinations of Compilation and Interpretation

