
Recap

Grammars

BNF Grammars for . . .

Module Home Page

Title Page

JJ II

J I

Page 1 of 12

Back

Full Screen

Close

Quit

Lecture 8:

Programming Languages: Syntax

Aims:

• To look at how to define the syntax of programming languages using
grammars in Backus-Naur Form.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Recap

Grammars

BNF Grammars for . . .

Module Home Page

Title Page

JJ II

J I

Page 2 of 12

Back

Full Screen

Close

Quit

8.1. Recap

• A language is a set of strings. There are many ways of defining a language.

– Since it’s just a set, we could give an extensional definition, e.g.:

L1 =def {0, 10, 110, 1110}

. . . but only if the language is finite and, preferably, small.

– Equally, we can give an intensional definition, e.g.:

L2 =def {w ∈ {0, 1}∗ | w = 1∗0}

– Then again, we might use a recursive definition, e.g.:

Base case: 0 is in L3.
Recursive case: If w is in L3, then 1w is in L3.
Closure: Nothing else is in L3

– And the last approach we saw was the use of syntax diagrams, e.g.:

1

0

These are often used in textbooks and manuals, since they are easily understood
by humans. However, they are not very compact, and they’re not easy to enter
into a computer.

– In this lecture, we see another way: grammars. This approach is used when
describing languages to machines.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Recap

Grammars

BNF Grammars for . . .

Module Home Page

Title Page

JJ II

J I

Page 3 of 12

Back

Full Screen

Close

Quit

8.2. Grammars

8.2.1. Backus-Naur Form (BNF)

• Backus-Naur Form (BNF) is a way of writing a grammar to define a language.

• A BNF grammar uses some symbols, specifically ::= , 〈 and 〉. These are metasymbols.
It is crucial that you realise that these are part of the metalanguage; they are not
part of the object language.

It is also crucial that you realise that ::= is a BNF symbol and is completely different
from :=, which is the DECAFF and MOCCA symbol used in assignment commands. In
this lecture, we are writing grammars (using ::= ), not algorithms/programs (using
:=)!

• Here is a very simple BNF grammar:

〈S〉 ::= a〈S〉
〈S〉 ::= ε

– Symbols inside metalanguage brackets 〈 and 〉 are called nonterminals. These
correspond to the names inside rectangles in syntax diagrams.

– One of the non-terminals must be designated the start symbol. In this case, the
start symbol is 〈S〉. (It is the only non-terminal in this example!).

– Object language symbols are called terminals. These correspond to the names
inside circles in syntax diagrams.

– The metalanguage symbol ::= stands for ‘is defined as’ or ‘rewrites as’.

– Each line of the grammar is called a grammar rule.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Recap

Grammars

BNF Grammars for . . .

Module Home Page

Title Page

JJ II

J I

Page 4 of 12

Back

Full Screen

Close

Quit

8.2.2. Derivations

• To determine whether a particular string of terminals is a member of the language
defined by a grammar, we try to find a sequence of rewrites that leads from the start
symbol to the string in question.

• In the lecture we will show that aaaa is a member of the language defined by the
grammar from above.

• In some cases, one string may have more than one derivation.

• E.g. consider this grammar with start symbol 〈S〉:
〈S〉 ::= 〈X〉〈Y〉
〈X〉 ::= a
〈Y〉 ::= b

• There are two ways to derive the string ab.

8.2.3. The language defined by a grammar

• The language defined by a grammar is the set of all strings of terminals that can be
derived from the start symbol.

• The language defined by this grammar:

〈S〉 ::= a〈S〉
〈S〉 ::= ε

is {ε, a, aa, aaa, aaaa, aaaaa, . . .}, i.e. a∗.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Recap

Grammars

BNF Grammars for . . .

Module Home Page

Title Page

JJ II

J I

Page 5 of 12

Back

Full Screen

Close

Quit

• The language defined by this grammar:
〈S〉 ::= 〈X〉〈Y〉
〈X〉 ::= a
〈Y〉 ::= b

is just {ab}.

Class Exercise

• Here is a grammar, whose start symbol is 〈S〉:
〈S〉 ::= 〈X〉aa〈X〉
〈X〉 ::= a〈X〉
〈X〉 ::= b〈X〉
〈X〉 ::= ε

1. Is bab a member of the language defined by this grammar?

2. What about baab?

3. baaa?

4. Describe in words the language defined by this grammar.

8.2.4. Parse Trees

• Parse trees are a graphical representation of the grammar rules used to derive a string.
Parse trees have the advantage that they make explicit the hierarchical structure of
the strings.

• To draw a parse tree,

– put the start symbol of the grammar at the root of the tree;

http://www.cs.ucc.ie/~dgb/courses/toc.html


Recap

Grammars

BNF Grammars for . . .

Module Home Page

Title Page

JJ II

J I

Page 6 of 12

Back

Full Screen

Close

Quit

– each time you use a rule 〈A〉 ::=α to replace nonterminal 〈A〉 by a sequence of
terminals and/or nonterminals α, then install the members of α as children of
〈A〉.

• E.g. consider this grammar with start symbol 〈S〉:
〈S〉 ::= a〈S〉
〈S〉 ::= ε

• aaa is a member of the language defined by this grammar, and in the lecture we will
draw the parse tree.

Class Exercise

• The following grammar has start symbol 〈S〉:
〈S〉 ::= 〈X〉aa〈X〉
〈X〉 ::= a〈X〉
〈X〉 ::= b〈X〉
〈X〉 ::= ε

• Draw a parse tree for string baab.

8.2.5. Ambiguity

• A grammar is ambiguous if the language it defines contains at least one string that
has two or more possible derivations which correspond to different parse trees.

• We’ll first revisit an example where there isn’t ambiguity!

http://www.cs.ucc.ie/~dgb/courses/toc.html


Recap

Grammars

BNF Grammars for . . .

Module Home Page

Title Page

JJ II

J I

Page 7 of 12

Back

Full Screen

Close

Quit

• We saw earlier that we can derive string ab from the following grammar in two ways.

〈S〉 ::= 〈X〉〈Y〉
〈X〉 ::= a
〈Y〉 ::= b

• However, both derivations give us the same parse tree. Hence, the grammar is un-
ambiguous.

• But now consider this grammar (start symbol 〈S〉):
〈S〉 ::= a〈S〉
〈S〉 ::= 〈S〉a
〈S〉 ::= a

• There are four derivations of aaa and each one gives a different parse tree.

• This grammar is ambiguous.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Recap

Grammars

BNF Grammars for . . .

Module Home Page

Title Page

JJ II

J I

Page 8 of 12

Back

Full Screen

Close

Quit

8.3. BNF Grammars for Programming Languages

• We can define the syntax of a programming language use a BNF grammar.

• Here is a BNF grammar for MOCCA corresponding to the syntax diagrams we saw
in the previous lecture.

• The start symbol is 〈program〉.

〈program〉 ::= 〈block〉
〈block〉 ::= { 〈command-list〉 }

〈command-list〉 ::= ε
〈command-list〉 ::= 〈command〉 〈command-list〉

〈command〉 ::= 〈block〉
〈command〉 ::= 〈assignment〉
〈command〉 ::= 〈one-armed-conditional〉
〈command〉 ::= 〈two-armed-conditional〉
〈command〉 ::= 〈while-loop〉

〈assignment〉 ::= 〈var〉 := 〈expr〉
〈one-armed-conditional〉 ::= if 〈expr〉 〈command〉
〈two-armed-conditional〉 ::= if 〈expr〉 〈command〉 else 〈command〉

〈while-loop〉 ::= while 〈expr〉 〈command〉
etc.

Class Exercise

• Syntax diagrams and BNF grammars have equivalent power: whatever languages
you can describe with one, you can describe with the other.

• But my syntax diagrams and BNF grammar for MOCCA are not equivalent. The
BNF grammar allows something that the syntax diagrams do not.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Recap

Grammars

BNF Grammars for . . .

Module Home Page

Title Page

JJ II

J I

Page 9 of 12

Back

Full Screen

Close

Quit

– What is it?

– How would you make them equivalent?

Parse Trees and Ambiguity

• For the purposes of illustration, here is a MOCCA program:

{ x := 0
while x < 10

x := x + 1
}

The BNF grammar tells us that this is a syntactically well-formed program.

• The following parse tree confirms that the program above is syntactically well-formed.
It also shows the rules used to derive the program and the program’s hierarchical
structure.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Recap

Grammars

BNF Grammars for . . .

Module Home Page

Title Page

JJ II

J I

Page 10 of 12

Back

Full Screen

Close

Quit

<while−loop>

while <command>

<assignment>

<var> := <expr>

x x + 1

<expr>

x < 10

<program>

<block>

<command>

<assignment>

<var> :=

x 0

{ }<command−list>

<command−list>

<expr>

<command> <command−list>

ε

• Here’s another fragment of a MOCCA program:

if x > 0
if y < 0

x := x + 1
else

y := y + 1

This MOCCA program is well-formed according to our grammar.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Recap

Grammars

BNF Grammars for . . .

Module Home Page

Title Page

JJ II

J I

Page 11 of 12

Back

Full Screen

Close

Quit

• But it has two parse trees:
<command>

<one−armed−conditional>

if

if <expr>

<command>

<two−armed−conditional>

y < 0

<expr>

x > 0

<command>

x := x + 1

else <command>

y := y + 1

<two−armed−conditional>

<command>

if <expr>

x > 0

<command> else <command>

<one−armed−conditional>

if <expr> <command>

y < 0 x := x + 1

y := y + 1

• You should recall that this is an example of a dangling-else .

• For programming languages, ambiguity is generally undesirable. What should we
do?

– Either: abandon this grammar and come up with an unambiguous grammar.

– Or: stick with this grammar but devise some disambiguation conventions that
tell us which parse trees to discard.

Acknowledgements

Some of the grammars come from [Coh91].

Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Recap

Grammars

BNF Grammars for . . .

Module Home Page

Title Page

JJ II

J I

Page 12 of 12

Back

Full Screen

Close

Quit

References

[Coh91] D. I. A. Cohen. Introduction to Computer Theory. John Wiley, 2nd. edition, 1991.

http://www.cs.ucc.ie/~dgb/courses/toc.html

	Recap
	Grammars
	Backus-Naur Form (BNF)
	Derivations
	The language defined by a grammar
	Parse Trees
	Ambiguity

	BNF Grammars for Programming Languages

