
Formal Languages

Strings

Alphabets

Languages

Recursive Definitions . . .

Syntax Diagrams

Module Home Page

Title Page

JJ II

J I

Page 1 of 13

Back

Full Screen

Close

Quit

Lecture 7:

Formal Languages

Aims:

• To define strings, alphabets and languages; and

• To look at syntax diagrams (being one way to define the syntax of pro-
gramming languages).

http://www.cs.ucc.ie/~dgb/courses/toc.html

Formal Languages

Strings

Alphabets

Languages

Recursive Definitions . . .

Syntax Diagrams

Module Home Page

Title Page

JJ II

J I

Page 2 of 13

Back

Full Screen

Close

Quit

7.1. Formal Languages

• We have been using the DECAFF language to describe algorithms to one another. It
isn’t a real programming language. In DECAFF, we are writing pseudocode. If we
want to instruct a computer, we have to use something much more precise. Languages
with precise syntax and semantics are called formal languages.

• Programming languages are examples of formal languages.

• Formal languages are defined by two sets of rules:

– Syntax: precise rules that tell you the symbols you are allowed to use and how
to put them together into legal expressions.

– Semantics: precise rules that tell you the meanings of the symbols and legal
expressions.

• Consider learning a new language (even a language such as French, say). How are
you taught what words there are and how to put these together to make grammatical
sentences (the syntax)? How are you taught what the words and phrases mean (the
semantics)?

Answer: Someone tells you these rules in a language whose rules you already know.

Object language: the language under discussion e.g. the one you are being taught;

Metalanguage: the language in which the object language is discussed.

For most of us, the usual metalanguage is English. The object language might be
French, German, Japanese or the Java programming language.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Formal Languages

Strings

Alphabets

Languages

Recursive Definitions . . .

Syntax Diagrams

Module Home Page

Title Page

JJ II

J I

Page 3 of 13

Back

Full Screen

Close

Quit

7.2. Strings

• We start with the notion of a symbol. In principle, any object can be a symbol.
But we will only use characters: letters (a, b, c, . . .), digits (0, 1, 2, . . .) and maybe a
few punctuation marks (#, $, . . .). One symbol we might want to use is a space (or
blank). For explicitness, we will show space as .

• A string is a finite sequence of symbols. E.g.

001 abba cat dog

(In Theoretical Computer Science, sentence and word are used interchangeably with
string. I’ll avoid this because students find it confusing: they get confused because
using sentence and word in this way does not tally with their everyday meanings.)

We can give a string a name; common names are u, v and w. To avoid confusion,
the symbols we use to name strings should be different from the symbols that can
appear in the strings themselves.

• There is a string that contains no symbols at all. It is called the empty string and
it is written ε.

Compare these two strings:
u =def
v =def ε

They are different! u contains one symbol; v contains no symbols at all.

• The length of a string w, written |w| is the total number of symbols in the string.
E.g.

|001| = 3 |cat dog| = 7 |ε| = 0

http://www.cs.ucc.ie/~dgb/courses/toc.html

Formal Languages

Strings

Alphabets

Languages

Recursive Definitions . . .

Syntax Diagrams

Module Home Page

Title Page

JJ II

J I

Page 4 of 13

Back

Full Screen

Close

Quit

• If u and v are strings, then the concatenation of u and v, written uv, is the string
formed by the symbols of u followed by the symbols of v. E.g. if u =def abc and
v =def de, then

uv = abcde

• If w is a string, then we will write wi to mean w repeated i times. We take w0 to be
ε for any string w. E.g. suppose w =def ba, then

w0 = ε w2 = baba
w1 = ba w3 = bababa

and so on.

• If w is a string, then we will write wR to mean the reversal of string w. E.g. suppose
w =def ba, then

wR = ab

http://www.cs.ucc.ie/~dgb/courses/toc.html

Formal Languages

Strings

Alphabets

Languages

Recursive Definitions . . .

Syntax Diagrams

Module Home Page

Title Page

JJ II

J I

Page 5 of 13

Back

Full Screen

Close

Quit

7.3. Alphabets

• An alphabet is a finite set of symbols. A common name for an alphabet is Σ. E.g.

Σ1 =def {0, 1}
Σ2 =def {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}

• Strictly, when we define strings as we did earlier, we ought to do so with respect to
a particular alphabet. E.g.

001 is a string over the alphabet {0, 1}

abba is a string over the alphabet {a, b}

• If Σ is an alphabet, then Σ∗ is the set of all strings over alphabet Σ. It will include
the empty string, and it will be an infinite set.

E.g. if Σ = {0, 1}, then Σ∗ is all bit strings, including the empty string.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Formal Languages

Strings

Alphabets

Languages

Recursive Definitions . . .

Syntax Diagrams

Module Home Page

Title Page

JJ II

J I

Page 6 of 13

Back

Full Screen

Close

Quit

7.4. Languages

• A language is a set of strings formed from some alphabet. E.g.

L1 =def ∅
L2 =def {ε}
L3 =def {000, 001, 010, 011, 100, 101, 110, 111}

Of course, this definition from Theoretical Computer Science only partly ties in with
our understanding of the everyday meaning of the word language, which we might
define in terms of communication. That, remember, is why we sometimes use the
phrase formal language instead.

• Recall that Σ∗ is the set of all strings that can be formed over alphabet Σ. Then, we
can see that a language is a subset of Σ∗.

• Since languages are sets, we can define them extensionally (see the examples above)
or intensionally. Many languages will be infinite sets and, for these, only intensional
definitions can be used. They will tend to take the form

{w ∈ Σ∗ | P (w)}

i.e. the set of strings over alphabet Σ that satisfy property P . E.g.

L1 =def {w ∈ {0, 1}∗ | w has an equal number of 0’s and 1’s}
L2 =def {w ∈ Σ∗ | w = wR}

• Languages are sets, so we can apply all the usual set operations (e.g. union and
intersection).

• If L1 and L2 are languages, then the concatenation of L1 and L2, written L1L2, is
the language consisting of all strings uv which can be formed by selecting a string u

http://www.cs.ucc.ie/~dgb/courses/toc.html

Formal Languages

Strings

Alphabets

Languages

Recursive Definitions . . .

Syntax Diagrams

Module Home Page

Title Page

JJ II

J I

Page 7 of 13

Back

Full Screen

Close

Quit

from L1, a string v from L2 and concatenating them in that order. More formally,

L1L2 =def {uv | u ∈ L1 and v ∈ L2}

E.g. if L1 =def {0, 01, 110} and L2 =def {10, 110}, then

L1L2 = {010, 0110, 01110, 11010, 110110}

• If L is a language, then we will write Li to mean LL . . . L (i times). We take L0 to
be {ε}.
E.g. suppose L =def {a, ab}, then

L0 = {ε}
L1 = {a, ab}
L2 = {aa, aab, aba, abab}
L3 = {aaa, aaba, abaa, ababa, aaab, aabab, abaab, ababab}

and so on.

• If L is a language, then the closure of L, written L∗, is the concatenation of L with
itself any number of times. Formally,

L∗ =def

∞⋃
i=0

Li

i.e. L0 ∪ L1 ∪ L2 ∪

E.g. if L = {aa}, then L∗ is all strings of an even number of a’s, since L0 = {ε},
L1 = {aa}, L2 = {aaaa}, and so on.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Formal Languages

Strings

Alphabets

Languages

Recursive Definitions . . .

Syntax Diagrams

Module Home Page

Title Page

JJ II

J I

Page 8 of 13

Back

Full Screen

Close

Quit

• If L is a language, then the positive closure of L, written L+, is the concatenation
of L with itself any number of times but at least once. Formally,

L+ =def

∞⋃
i=1

Li

i.e. L1 ∪ L2 ∪

E.g. if L = {aa}, then L+ is all non-empty strings of an even number of a’s.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Formal Languages

Strings

Alphabets

Languages

Recursive Definitions . . .

Syntax Diagrams

Module Home Page

Title Page

JJ II

J I

Page 9 of 13

Back

Full Screen

Close

Quit

7.5. Recursive Definitions of Languages

• The previous sections showed us one way to define a language (a set of strings),
namely by writing an extensional or intensional set definition, possibly making use
of operators such as concatenation and closure.

• Another possibility is to give a recursive definition. By way of example, here’s a
recursive definition (which, in fact, you saw in a previous lecture) of arithmetic
expressions. (The alphabet is {0, 1, 2, . . . , 9,+,−,×,div,mod}.)

Base case: Integers
0, 1, 2, 3, . . .

Recursive case: If E1 and E2 are arithmetic expressions then

(E1 op E2)

is an arithmetic expression, where op is one of

+ − × div mod

Closure: Nothing else.

We have already noted that this definition is recursive. Recursion is a common
feature of the definition of languages.

The other thing to note is that it is quite cumbersome to define even these very
simple expressions using English as our metalanguage. Already we are resorting to
abbreviations, such as E1, E2 and op. A symbol such as op is not part of the object
language; it’s part of the metalanguage. We are using it to define the object language.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Formal Languages

Strings

Alphabets

Languages

Recursive Definitions . . .

Syntax Diagrams

Module Home Page

Title Page

JJ II

J I

Page 10 of 13

Back

Full Screen

Close

Quit

Class Exercise

• It’s important not to confuse metalanguage with object language. Hence, from the
definition, which of these are legal arithmetic expressions?

(23 op 78)

(23 op (56 op 102)

(E1 + E2)

(E1 × (56 div E2))

http://www.cs.ucc.ie/~dgb/courses/toc.html

Formal Languages

Strings

Alphabets

Languages

Recursive Definitions . . .

Syntax Diagrams

Module Home Page

Title Page

JJ II

J I

Page 11 of 13

Back

Full Screen

Close

Quit

7.6. Syntax Diagrams

• Syntax diagrams are another way of defining the syntax of a formal language. They
are readily-understood because (a) they are pictorial and (b) they keep a clear dis-
tinction between metalanguage and object language.

• Our first examples define arithmetic expressions:

0

1

2

etc.

(expression op expression)

expresssion:

integer

etc.

op:

+

−

x

integer:

• Each syntax diagram has a name.

• A string of symbols is legal according to some syntax diagram if it can be generated
by moving through the diagram from its entry point to its exit point.

• Symbols shown in circles must appear ‘as is’. (They must be symbols from our
alphabet.)

http://www.cs.ucc.ie/~dgb/courses/toc.html

Formal Languages

Strings

Alphabets

Languages

Recursive Definitions . . .

Syntax Diagrams

Module Home Page

Title Page

JJ II

J I

Page 12 of 13

Back

Full Screen

Close

Quit

• A name inside a rectangle is the name of another diagram, and so this diagram must
also be traversed.

• When a branch is encountered, multiple paths may need to be checked, but we require
only that at least one of them can be successfully traversed.

• Usually, one of the diagrams is regarded as special in the sense that it defines the
start symbol of the grammar. Here, it would be the diagram labelled ‘expression’.

• Let’s use syntax diagrams to define part of the syntax of a simple programming
language that we will call MOCCA. The start symbol is ‘program’. The alphabet is
{{, }, :=, if , else ,while }.

program:

block

{ }

block:

command

command:

block

assignment

one−armed
conditional

two−armed
conditional

loop
while

http://www.cs.ucc.ie/~dgb/courses/toc.html

Formal Languages

Strings

Alphabets

Languages

Recursive Definitions . . .

Syntax Diagrams

Module Home Page

Title Page

JJ II

J I

Page 13 of 13

Back

Full Screen

Close

Quit

:= exprvar

assignment:

one−armed conditional:

if expr command

if expr command command

two−armed conditional:

else

expr command

while loop:

while

• That’s enough! To finish this off properly, we should define ‘var’ and ‘expr’ (variables
and expressions). But we won’t bother. You get the idea.

Acknowledgements

Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.

http://www.cs.ucc.ie/~dgb/courses/toc.html

	Formal Languages
	Strings
	Alphabets
	Languages
	Recursive Definitions of Languages
	Syntax Diagrams

