
Universal Turing Machines

Church’s Thesis

The Sequential . . .

Summary

Module Home Page

Title Page

JJ II

J I

Page 1 of 14

Back

Full Screen

Close

Quit

Lecture 41:

All Computers Are Created Equal

Aims:

• To discuss Universal Turing Machines;

• To discuss Church’s thesis, and

• To discuss the Sequential Computation Thesis.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Universal Turing Machines

Church’s Thesis

The Sequential . . .

Summary

Module Home Page

Title Page

JJ II

J I

Page 2 of 14

Back

Full Screen

Close

Quit

41.1. Universal Turing Machines

• Computers are programmable but Turing machines, as we have described them, are
not.

• Each of our Turing machines can be viewed as a computer with a single fixed program.

• We have to design a particular Turing machine for each problem, whereas real com-
puters are ‘general-purpose’.

• But this is misleading because, in fact, even Turing machines are programmable.

• The idea is

– just like we found a way to encode a Turing machine as integers which could
be the input to a Counter Program that simulates the behaviour of the Turing
machine

– we can encode a Turing machine as a string that can be placed onto the tape of
another ‘general-purpose’ Turing machine that then simulates the behaviour of
the original Turing machine.

• Such a general-purpose Turing machine is called a Universal Turing Machine.

• The main challenge is to encode the transition table.

• Using only one symbol (e.g. ‘1’), we set up the following correspondences:

h : 1 L : 1
q0 : 11 R : 11
q1 : 111 : 111
q2 : 1111 a : 1111
q3 : 11111 b : 11111
...

...
...

...
...

...

http://www.cs.ucc.ie/~dgb/courses/toc.html


Universal Turing Machines

Church’s Thesis

The Sequential . . .

Summary

Module Home Page

Title Page

JJ II

J I

Page 3 of 14

Back

Full Screen

Close

Quit

• Then a transition such as δ(q1, a) = 〈L, q2〉 becomes a 4-tuple:

∗111 ∗ 1111 ∗ 1 ∗ 1111∗

• We’ll have something like this for each entry in the transition table.

• The Universal Turing Machine that we will describe has three tapes (but, as we have
discussed, multi-tape machines can be simulated by single-tape machines):

1. a tape that contains a string that represents a Turing machine TM (using the
encoding from above);

2. a tape that contains a string that represents the input to TM (also encoded
using the correspondences from above); and

3. a tape that can be used to keep track of the current state that TM would be in
(initially containing q0, i.e. 11).

• The Universal Turing Machine knows

– the state that TM would be in (tape 3), and
– the symbol that TM would be scanning (tape 2).

• At each step, the Universal Turing Machine

– searches tape 1, to find the 4-tuple that represents the transition for this state
and symbol;

– it reads the 3rd part of the 4-tuple from tape 1:
∗ if 1 (or 11), it moves tape 2’s head left (or right) a suitable number of

symbols;
∗ else, it writes onto tape 2 (maybe shifting to make room first);

– then it reads the 4th part of the 4-tuple from tape 1 (the new state) and over-
writes tape 3 with this.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Universal Turing Machines

Church’s Thesis

The Sequential . . .

Summary

Module Home Page

Title Page

JJ II

J I

Page 4 of 14

Back

Full Screen

Close

Quit

41.2. Church’s Thesis

41.2.1. The Evidence

• We have seen that Turing machines can be designed to solve quite complicated prob-
lems.

• We have also seen that there are some problems that Turing machines cannot solve.

• We have also seen that certain extensions to Turing machines do not increase the
power (no additional problems become solvable).

• This suggests that Turing machines represent a natural upper limit on what a com-
puting machine can be designed to do.

• We have also seen that there are other approaches to computation, e.g. Counter
Programs (and their variants).

• But, we have seen that these too are of equivalent power to Turing machines (i.e. the
set of problems that Turing machines and Counter Program can solve are the same).

• Over the last 60+ years, numerous other formal models of computation have been
proposed. There have been models based on string processing, models based on
stored programs, models based on the composition of basic functions, etc. E.g.:

– Unrestricted grammars

– µ-recursive functions

– Markov algorithms

– Post machines

– Random access machines

http://www.cs.ucc.ie/~dgb/courses/toc.html


Universal Turing Machines

Church’s Thesis

The Sequential . . .

Summary

Module Home Page

Title Page

JJ II

J I

Page 5 of 14

Back

Full Screen

Close

Quit

– λ-calculus

• None of these models is more powerful than Turing machines. The best that has
been achieved is equivalent power.

• This adds support to the idea that we have reached a natural upper limit on what a
computing machine can be designed to do.

• Of course, we only consider extensions and alternative models that are in the same
spirit as Turing machines.

• Let’s call such models ‘reasonable’ models of computation. What do we mean by
‘reasonable’? That’s hard to say, but perhaps it’s something along these lines. . .

– There is a finite set of operations.

– Each operation is simple, precise and mechanical (e.g. not requiring the use of
‘insight’).

– Each operation must be of a type which could be carried out with a finite
amount of effort at each step. E.g. a machine which could answer an infinite set
of questions in one step would not be reasonable.

– The machines (or programs) must be finite.

– The machines (or programs) must be uniform. This means that, for a particular
problem, one machine (or program) is used for inputs of all sizes. We don’t have
a different machine (or program) for different input sizes. E.g. we don’t have
a sequence of machines (or programs) where the member of the sequence used
to deal with inputs of size 100, say, need not be the one used to solve inputs of
size 101.

– Each machine (or program) will, if operated correctly, produce its result in a
finite number of steps.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Universal Turing Machines

Church’s Thesis

The Sequential . . .

Summary

Module Home Page

Title Page

JJ II

J I

Page 6 of 14

Back

Full Screen

Close

Quit

41.2.2. The Thesis

• All these equivalences between such a diversity of (reasonable) models lead to the idea
that we have found some quite profound, intuitive concept that has many different-
looking but equivalent precise definitions. This belief is encapsulated in Church’s
Thesis, also known as Turing’s Thesis (especially when we state it in terms of Turing
machines), and sometimes called the Church-Turing Thesis.

• There are many ways of stating this thesis and we choose to give two informal ways.

Church’s Thesis: Any problem that is computable by some ‘reasonable’ model of
computation is computable by a Turing machine.

Church’s Thesis: Nothing will be considered an algorithm if it cannot be rendered
as a Turing machine.

• This is a thesis, not a theorem. If it were a theorem, we would have a proof. But
a proof of this is not possible. It equates informal concepts (‘reasonable models of
computation’, ‘algorithms’) with a formal one (Turing machines).

• It is possible it could be overthrown if someone ever proposed an alternative model
of computation that people agreed was ‘reasonable’ and yet was provably capable
of solving problems that cannot be solved by any Turing machine. Faced with the
evidence of the equivalences mentioned earlier, no-one considers this likely.

41.2.3. Ill-Conceived Attacks

1. Every now and again someone proposes a model of computation that they claim is
capable of solving problems that Turing machines cannot solve. It might be massively
parallel computers, hypercomputers, quantum computers, molecular computers, . . .

http://www.cs.ucc.ie/~dgb/courses/toc.html


Universal Turing Machines

Church’s Thesis

The Sequential . . .

Summary

Module Home Page

Title Page

JJ II

J I

Page 7 of 14

Back

Full Screen

Close

Quit

Usually they are wrong. E.g. sober writings on quantum computers usually say
that there are no problems that quantum computers can solve that Turing machines
cannot solve.

Sometimes, however, they are right! Their model does solve problems that Turing
machines cannot, hypercomputers being an example. So why doesn’t this overthrow
Church’s thesis? The reason is that, in each case where the model can solve prob-
lems that Turing machines cannot, the model has always been found to be ‘unrea-
sonable’. “Failure to appreciate this subtlety has resulted in ‘models which disprove
the Church-Turing hypothesis’ being announced in some of the (fringe or popular)
literature. In all such cases the error is usually found to be that of comparing a
non-uniform model with a uniform one [i.e. Turing machines].” [Dun91], p.138 Or
they are comparing a model that allows an infinite amount of labour in each step
(e.g. hypercomputers) with one that does not (i.e. Turing machines).

2. Sometimes people claim to have found ways of using Turing machines to solve prob-
lems that have been proven to be non-computable. So they think they too have
overthrown Church’s thesis in some way. All they have actually ever done is solve
special cases of the problem. No-one ever said that special cases were unsolvable.
For example, in our lecture on the Halting Problem, we carefully noted that, just
because the Halting Problem is non-computable in general, does not mean that you
can’t write a program that goes some way to solving it.

41.2.4. Consequences

• A problem that is not computable by a Turing machine is not computable by any
algorithm. Given an unlimited amount of time and memory, all general-purpose
reasonable models of computation can solve precisely the same problems. The non-
computable problems are not solvable on any of them; the computable problems are
solvable on all of them.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Universal Turing Machines

Church’s Thesis

The Sequential . . .

Summary

Module Home Page

Title Page

JJ II

J I

Page 8 of 14

Back

Full Screen

Close

Quit

This is why it didn’t matter what programming language we used in the proof of
the non-computability of the Halting Problem. Turing used Turing machines in his
original proof. We used MOCCA programs. But we could have used any fully general
model of computation or fully general programming language.

• When you want to prove whether a certain problem is computable, you can use
whichever of the equivalent models suits you best (whichever gives the easiest proof),
knowing that, by Church’s thesis, your result will apply to all of the equivalent models
of computation.

• No programming language is more powerful than Turing machines; most are of the
same power as Turing machines. They differ only in such things as programmer
convenience and efficiency.

There are specialised languages, however, that are of lower power. E.g. SQL is just
a database query language and is of lower power than Turing machines.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Universal Turing Machines

Church’s Thesis

The Sequential . . .

Summary

Module Home Page

Title Page

JJ II

J I

Page 9 of 14

Back

Full Screen

Close

Quit

41.3. The Sequential Computation Thesis

41.3.1. Background

• A primitive formal model of computation, such as Turing machines, is also essential
for obtaining robust results in Complexity Theory.

• There are advantages to studying the running time and memory requirements of
Turing machines:

– The time a Turing machine takes is unambiguously obtained by counting the
number of transitions it makes. We can ignore actual timings and treat each
transition as something that can be executed in one time unit. This seems
quite sensible — much more sensible than the assumptions we were making in
our lectures on Complexity (e.g. that multiplication should cost the same as
addition; that a complex assignment should cost the same as a simple one; that
an assignment should cost the same as a return command; etc.)

– The memory requirements of a Turing machine can also be defined unambigu-
ously. We simply count the number of cells the Turing machine ever visits during
a computation.

– A Turing machine will operate in the same way on all sizes of inputs. E.g. it
uses the same transitions to multiply two large numbers as it does to multiply
two small numbers. This isn’t true of real hardware. Multiplying small numbers
that fit into a single word is different from multiplying two much larger integers
that exceed the capacity of a single word.

• Of course, time and space complexities are sensitive to what kind of Turing machine
you are using. E.g.:

– On a one-tape machine, the problem of copying a string is at least quadratic in
the length of the string.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Universal Turing Machines

Church’s Thesis

The Sequential . . .

Summary

Module Home Page

Title Page

JJ II

J I

Page 10 of 14

Back

Full Screen

Close

Quit

– But on a two-tape machine, there is a linear solution.

• While the time and space complexities of problems are sensitive to the kind of machine
under consideration, the nice thing about classes of problems, such as P, is how
insensitive they are to the kind of machine.

• In particular, problems that take polynomial-time on a one-tape machine also take
polynomial time on all sequential models of computation (whether they be variations
of Turing machines or other models of computation).

• So, for example, P will contain the same problems irrespective of the model of com-
putation (provided it is sequential).

• What do we mean by ‘sequential’?

• It is easier to say what we don’t mean by by sequential than what we do mean.

– Any model that allows unlimited amounts of concurrency is not sequential.

– Non-deterministic Turing machines and ND-DECAFF are not sequential: they
use ‘magic dice’ to do the equivalent of unlimited amounts of work in a single
step.

41.3.2. The Thesis

• This leads to the Sequential Computation Thesis, for which we give two informal
versions. Note again that it is a thesis, not a theorem.

The Sequential Computation Thesis: All sequential models of computation have
polynomially related time behaviour.

The Sequential Computation Thesis: The class of problems solvable in polyno-
mial time is the same for all sequential models of computation.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Universal Turing Machines

Church’s Thesis

The Sequential . . .

Summary

Module Home Page

Title Page

JJ II

J I

Page 11 of 14

Back

Full Screen

Close

Quit

• I am simplifying a bit to make things easier to understand, but not in any drastic way.
There are some sequential models of computation whose actions are exponentially
weaker than Turing machine transitions and only if we strengthen these models does
the thesis still hold. But this is a nicety that you can ignore.

41.3.3. Consequences

• Turing machines may strike you as very inefficient. For even the simplest problems,
they do large amounts of scanning, shifting, etc. However, the point is that they are
only polynomially less efficient than even the fastest sequential models of computa-
tion. E.g. a Turing machine might take twice as long, or a thousand times as long,
or even that amount squared or cubed, but it will not take exponentially more than
the fastest models.

• When you want to prove whether a certain problem is tractable, you can use whichever
of the sequential models suits you best (whichever gives the easiest proof), knowing
that, by the Sequential Computation Thesis, your result will apply to all of the
sequential models of computation.

• Many other classes are insensitive to the model of computation in the same way (e.g.
NP is).

• Practical parallel computers (where you have 2 CPUs, or 10 or 1000000 or any number
fixed in advance) is, under this definition, still a sequential model of computation.
(This is a bit counter-intuitive because, outside of the Theory of Computer Science,
people use the word ‘parallel’ in opposition to ‘sequential’, whereas we are saying
that ‘sequential’ includes ‘normal’ parallelism.) The reason, of course, is that such
parallelism just changes the constant hidden under the big-Oh: with your parallel
machine you might be able to do things twice as fast or 10 times as fast or 1000000
as fast. ‘Normal’ parallelism cannot change the growth rate, e.g., from 2n to n or

http://www.cs.ucc.ie/~dgb/courses/toc.html


Universal Turing Machines

Church’s Thesis

The Sequential . . .

Summary

Module Home Page

Title Page

JJ II

J I

Page 12 of 14

Back

Full Screen

Close

Quit

from n2 to n or from n to log n. To make these kinds of changes to the growth
rate, you need a growing number of processors, the exact number depending on n.
This, of course, is (probably) not practical and, while researchers may investigate it,
it doesn’t qualify as a sequential model of computation, so it doesn’t invalidate the
Sequential Computation Thesis.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Universal Turing Machines

Church’s Thesis

The Sequential . . .

Summary

Module Home Page

Title Page

JJ II

J I

Page 13 of 14

Back

Full Screen

Close

Quit

41.4. Summary

• In this module, we have explored problems and their solutions. The distinctions we
have drawn are quite robust, largely unaffected by using different models of compu-
tation, different computers and different programming languages.

highly
unsolvable problems

unsolvable problems

intractable problems

tractable problems

Acknowledgements

I brought together some material from [Dun91], [LP81], [Jun] and [Har92] when writing
this lecture. I took the title of the lecture from a chapter in [Dew93].

Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Universal Turing Machines

Church’s Thesis

The Sequential . . .

Summary

Module Home Page

Title Page

JJ II

J I

Page 14 of 14

Back

Full Screen

Close

Quit

References

[Dew93] A. K. Dewdney. The (New) Turing Omnibus. W.H. Freeman, 1993.

[Dun91] P.E. Dunne. Computability Theory: Concepts and Applications. Ellis Horwood,
1991.

[Har92] D. Harel. Algorithmics: The Spirit of Computing. Addison-Wesley, 2nd edition,
1992.

[Jun] A. Jung. Models of Computation (Course Notes).

[LP81] H.R. Lewis and C.H. Papadimitriou. Elements of the Theory of Computation.
Prentice Hall, 1981.

http://www.cs.ucc.ie/~dgb/courses/toc.html

	Universal Turing Machines
	Church's Thesis
	The Evidence
	The Thesis
	Ill-Conceived Attacks
	Consequences

	The Sequential Computation Thesis
	Background
	The Thesis
	Consequences

	Summary

