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Lecture 40:

Another Model of Computation

Aims:

• To look at Counter Programs, which are another formal model of com-
putation; and

• To show that Turing machines and Counter Programs are of equivalent
power.
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40.1. Counter Programs

• Turing machines are only one of many formal models of computation.

• Here we describe Counter Programs, which are another very simple formal model.

• Counter Programs or something very like them also go under the names Counter
Machines, Register Machines, Minsky Machines, etc.

• A Counter Program has a finite set of variables.

• Each variable can store a natural number (i.e. a non-negative integer).

• A Counter Program is a finite sequence of labelled commands, the last of which is
halt

• The other allowable commands are:

– x := 0

– x := y + 1

– x := y − 1 (In Counter Programs, y − 1 is defined to be zero if y is already 0)

– if x = 0 goto G (where G is the label of a command in the Program)

• The commands are executed in sequence, but branching off to the specified com-
mand when a goto is encountered, and terminating when the final command in the
sequence (halt ) is encountered.

• Example 1. A Counter Program having variables u, x and y which, if started
in configuration 〈u = u0, x = x0, y = y0〉, will halt in configuration 〈u = 0, x =
x0 + y0, y = 0〉. In other words, it adds the initial contents of x and y and stores the
result in x, also destroying the value that was in y. E.g. if initially x contains 3 and
y contains 2, then afterwards x will contain 5 and y will contain 0.
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Note the role of u.�

�
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1. u := 0;
2. if y = 0 goto 6;
3. y := y − 1;
4. x := x + 1;
5. if u = 0 goto 2;
6. halt

• Trace the program for initial configuration 〈u = 28, x = 3, y = 2〉.

• Example 2. A Counter Program which, if started in configuration 〈u = u0, v =
v0, x = x0, y = y0, z = z0〉, will halt in configuration 〈u = 0, v = 0, x = 0, y = y0, z =
x0 × y0〉. In other words, it multiplies the initial contents of x and y and stores the
result in z, also destroying the value that was in x. u has the same role as before.
Note the trick we use to copy y into v. And note that the second half of the program
is effectively the adding program from Example 1.�

�
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1. u := 0;
2. z := 0;
3. if x = 0 goto 11;
4. x := x − 1;
5. v := y + 1;
6. v := v − 1;
7. if v = 0 goto 3;
8. v := v − 1;
9. z := z + 1;

10. if u = 0 goto 7;
11. halt
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• Just as with Turing machines, Counter Programs can be defined in many different
ways that are of equivalent power:

– E.g. restricting yourself to only two variables;

– E.g. insisting that one register is used for the answer, and the rest are cleared
by the end of the computation;

– E.g. allowing infinitely many variables;

– E.g. using slightly different commands.
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40.2. Turing Machines and Counter Programs are of
Equivalent Power

• Turing machines and Counter Programs are of equivalent power: any problem that
can be solved by a Turing machine can be solved by a Counter Program, and vice
versa.

• This is by no mean obvious: they seem like very different models of computation.

• We prove this by showing that

– anything a Turing machine can do, a Counter Program can do — i.e., given a
Turing machine, we show how to build a Counter Program that performs the
same computation; and

– anything a Counter Program can do, a Turing machine can do — i.e., given a
Counter Program, we show how to build a Turing machine that performs the
same computation.

• One possibly useful observation is that both models have a potentially infinite amount
of memory: for Turing machines this comes in the form of its infinite tape; Counter
Programs have a finite set of variables but each can hold an arbitrarily large value.

40.2.1. Using a Counter Program to Simulate a Turing Machine

• The first challenge is how to represent the contents of the tape as one or more numbers
that can be stored in the variables of a Counter Program. This is possible because,
although the tape is infinite, only finitely many cells are non-blank.

• Each member of Σ must be associated with a natural number (non-negative number).
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• E.g. if Σ = {a, b, X, },

a : 0 b : 1
X : 2 : 3

• Then, if you have a sequence of characters c1, c2, c3, . . . cn and their corresponding
numbers are d1, d2, d3, . . . , dn, then these numbers can be combined into a single,
unique number:

2d1 × 3d2 × 5d3 × . . . × pdn
n

where pi is the ith prime number. (Fundamental Theorem of Arithmetic!)

• E.g. aabX bbX becomes 20 × 30 × 51 × 72 × 113 × 131 × 171 × 192 = 26016185200
(and no other string of characters map to the same number).

• In fact, for reasons we needn’t go into, the above is a simplification. And, instead,
we have to use a slight variant, such as:

2d1+1 × 3d2+1 × 5d3+1 × . . . × pdn+1
n

• We can use two numbers to encode

– the cells from the leftmost non-blank up to but excluding the scanned symbol;
and

– the cells from the rightmost non-blank up to and including the scanned symbol.

Note how the last of these is encoded ‘in reverse’.

• E.g.

a b a a X b
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20 × 31 × 50 = 3 21 × 33 × 52 × 70 = 1350

• So the Counter Program has a variable x to hold the left-hand tape contents, a
variable y to hold the right-hand tape contents, and a variable z to hold the Turing
machine’s state (plus some extra ones to help it get its work done).

• For each entry in the Turing machine’s transition table, there is a sequence of Counter
Program commands which alter the contents of the three variables.

• E.g. if the Turing machine moves left, we do some arithmetic on x to make it a
smaller number and some arithmetic on y to make it a bigger number. (Similarly,
for moving right.)

• E.g. if the Turing machine writes a symbol, then we do some arithmetic on y.

• In all cases, we also do some arithmetic on z to reflect the change of state.

40.2.2. Using a Turing Machine to Simulate a Counter Program

• Now the first challenge is how to represent the contents of the Counter Program’s
variables as symbols on a tape.

• Easy! Let Σ = {0, . . . , 9, ∗} and write out the contents of each variable onto the tape,
separated by, e.g., ∗’s.

• E.g.

* 1 2 * 2 3 4 * 4 1 *

12 234 41
x y z
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• In fact, contrary to what is shown in the diagram, you would probably use a binary
encoding.

• For each type of command, we can work out a simple Turing machine control unit:

– E.g. x := 0: scan the tape to reach the part that holds the value of x and then
do some shifting (e.g. so that ∗12∗ becomes ∗∗)

– E.g. x := y + 1: involves a lot of scanning, shifting and writing.

• Then these basic machines can be combined, just like we were combining simple
Turing machines into complex ones earlier.
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