Lecture 37:
Turing Machines

Aims:

e To describe Turing machines, which are an important formal model of
computation.

http://www.cs.ucc.ie/~dgb/courses/toc.html

37.1. Introduction

e So far, we've presented algorithms and programs using DRCAFF, MOCCA and Java.
And we’ve tried not to make any assumptions about the computer on which these

algorithms and programs will be executed: we’ve just assumed we’d use a ‘standard’
Turing Machines computer.

Configurations and Traces
e In the next few lectures, we will be looking at devices of the simplest imaginable

kind. They’re not real, practical computers. They are a mathematical idealisation
(‘a formal model’). They’re primitive in contrast to today’s languages and computers.
Nevertheless, they are powerful enough to execute any algorithm.

e The formal model of computation that we will study is called a Turing machine in
honour of Alan Turing who invented it in 1936.

wand

e Why do we want a formal model of computation?

— We've been making some pretty bold claims about computability. And you
might be wondering whether these claims only apply if you use certain languages
or certain types of computers. It would be nice to show that these claims apply
to all reasonable languages and computers. Turing machines offer a precise

http://www.cs.ucc.ie/~dgb/courses/toc.html

Introduction

notion of computation, enabling us to show that certain problems truly are
non-computable.

We wish to compare different programming languages and different types of
computers. We want to know whether one is more powerful than another. (By
power, we mean: can one solve more problems than another?) Turing machines
offer a precise yardstick, against which we can compare other ways of doing
computations.

We’ve been making some pretty bold assumptions when considering algorithm
complexity and problem complexity. E.g. we’ve ignored the fact that arithmetic
operations take longer when applied to numbers that exceed the size of a single
word of memory. Turing machines offer a clearly-defined notion of a single
indivisible computational step, enabling us to study algorithm complexity and
problem complexity without unnecessary assumptions.

http://www.cs.ucc.ie/~dgb/courses/toc.html

37.2. Turing Machines

37.2.1. Definition

e A Turing machine consists of a finite-state control unit and a tape that is infinite in
both directions and divided into cells, each of which can hold one symbol:

Turing Machines

Two—way infinite tape
Hlallalallllllll\

Read/write head (moves in both directions)

Finite—state control unit

e At each step, the control unit performs two actions in a way dependent on:

— the current state, and

— the tape symbol currently scanned by the read/write head.
The two actions will be:

1. either

— write a symbol into the cell that is under the read/write head (overwriting
the one already there)

or
— move the read/write head one cell to the left or right;

2. put the control unit into a new state.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Only a certain finite set of symbols can be written on the tape. Call this the tape
alphabet, X

— ¥ always includes _ (‘blank’), and
— Y always excludes L and R.

Turing Machines

There will be a finite set of states, @ = {qo,q1,---,an,h}:

— qo will always be the start state, and

— h will be the halt state (when the computation enters state h, the computation
halts).

We will use L and R to indicate that the read/write head moves one cell left/right.

The actions are specified by a transition function, ¢. For the mathematically minded,
0 is a function
from Q \ {h} to (BEU{L,R}) x Q

37.2.2. Simple Examples

e Example 1 Consider a machine where ¥ = {a,b,.} and Q@ = {qo,h} and ¢ is as
follows:

S a | b | -
q0 ” L7q0 | LaqO | '-')h

Class Exercise: What does this machine do?

e Example 2 Consider a machine where ¥ = {a,.} and Q = {qo,q1,h} and ¢ is as
follows:

http://www.cs.ucc.ie/~dgb/courses/toc.html

Turing Machines

S| a | -
4o — q1 =) h
|| — | L,q

(In this table, “— is used to mean that this can’t arise. Le. this particular machine
can never find itself in a situation where the control unit is in state ¢; and the cell
of the tape under the read/write head contains an a.

Class Exercise: Why is this case impossible?

Mathematicians would not be happy with the idea of leaving this undefined. ¢ is
supposed to be a function, which should be defined for all possible inputs. Math-
ematicians would just put some arbitrary stuff into this cell of the table, e.g. a, qo,
safe in the knowledge that it will never be used. I think it’s clearer for us if we put
‘“—’in.)

Class Exercise: What does this machine do?

http://www.cs.ucc.ie/~dgb/courses/toc.html

Introduction
Turing Machines

Configurations and Traces

37.3. Configurations and Traces

The non-blank symbols that we place on the tape prior to the computation can be
thought of as the Turing machine’s input.

We'll assume, unless otherwise stated, that the Turing machine always starts in state
qo and the read/write head will be positioned over the rightmost non-blank.

Because it can write onto the tape, a Turing machine can output an answer onto the
tape. In general, we won’t be overly concerned by whether the answer is written to
a blank part of the tape or whether it overwrites some or all of the input.

The configuration that a machine is in is given by:

— the symbols on the tape,
— the position of the read/write head, and

— the current state.
In fact, we’ll split the symbols on the tape into three strings:

— the symbols to the left of the read/write head up to and including the blank to
the left of the leftmost non-blank;

— the symbol currently being scanned by the read/write head, and

— the symbols to the right of the read/write head up to and including the blank
to the right of the rightmost non-blank.

Here are some example configurations:

(_abb, b, bba.., qo) (_ab, b, bbba., qo)
(-a, b, bbbba.., qo) (-, a, bbbbba.., qo)
(o, o, abbbbba.,q1) (., ., .abbbbba., h)

http://www.cs.ucc.ie/~dgb/courses/toc.html

o With this notation, we can trace the operation of a Turing machine.
e We simply show a sequence of configurations, e.g.

(-abb, b, bba.., go) ~ (-ab, b, bbba., qo) ~ (-a, b, bbbba., qo)

o E.g. We'll trace Example 2 using the following initial configuration:

(aaaa, a, -, qo)

S| a | -
Qo | »q | <h
a | — | L

waaa, @, <, Qo

-aaa, oy iy q1
-aa, a, - 490
-aa, =3 =5 q1

-a, a, - 4o
-a,) - q1

&) a,) q0

&) =y) q0
e e o h

¢¢e e

Acknowledgements

In preparing this material, I have used [Har92], [Jun] and [LP&1].
Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.

http://www.cs.ucc.ie/~dgb/courses/toc.html

References

[Har92] D. Harel. Algorithmics: The Spirit of Computing. Addison-Wesley, 2nd edition,
1992.

[Jun] A. Jung. Models of Computation (Course Notes).

[LP81] H.R. Lewis and C.H. Papadimitriou. Elements of the Theory of Computation.
Prentice Hall, 1981.

http://www.cs.ucc.ie/~dgb/courses/toc.html

	Introduction
	Turing Machines
	Definition
	Simple Examples

	Configurations and Traces

