
Introduction

The Halting Problem

Module Home Page

Title Page

JJ II

J I

Page 1 of 12

Back

Full Screen

Close

Quit

Lecture 35:

The Halting Problem

Aims:

• To introduce the notions of computability and non-computability; and

• To prove that the Halting Problem is non-computable.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Halting Problem

Module Home Page

Title Page

JJ II

J I

Page 2 of 12

Back

Full Screen

Close

Quit

35.1. Introduction

• Some problems are unsolvable.

• We’re talking about

– important and interesting problems,
– precisely-defined problems (not vague problems such as ‘compose a poem on

topic T ’)

for which

– no matter how clever we are,
– no matter how much execution time, memory, etc. we allow

there is provably no algorithm to solve the problem.

• Our terminology: computable and non-computable.

• Here are some examples of non-computable problems that we brushed up against
earlier in the module:

– Tiling Problems for the integer grid (lecture 1);
– Take in a program P ; return YES if P will ever perform a division by zero, else

return NO (lecture 10);
– Take in a program P ; return an adequate set of test data for program P (lecture

10);
– Take in a problem specification PS and a program P ; return a proof that P

solves PS (if it does solve it), else return fail (lectures 10 & 22).

• But we’re going to look first at the most famous of all non-computable problems, the
Halting Problem.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Halting Problem

Module Home Page

Title Page

JJ II

J I

Page 3 of 12

Back

Full Screen

Close

Quit

35.2. The Halting Problem

35.2.1. What is the Halting Problem?

• As we have discussed previously, compilers detect errors in programs (prior to trans-
lating the source program into a target program). In particular, they detect errors
in the syntax and the static semantics. They cannot, in general, detect errors in
the dynamic semantics. There is a good reason for this: it’s impossible. The Halt-
ing Problem is one of the problems we might like compilers to solve, but which no
compiler can ever solve.

• It is traditional to explain this problem (and computability in general) using some-
thing called a Turing machine. However, we will explain this topic using MOCCA
programs, which is just as good. (In fact, we could use Java programs, or C pro-
grams, or Pascal programs, or. . . , and these would be just as good also.) We’ll come
back to Turing machines in a few lectures’ time, and that’s when we can show that
using MOCCA (or Java, etc.) is just as good.

• The following problem is non-computable:

Problem 35.1. The Halting Problem
Parameters: A MOCCA program P , and a potential in-

put x to P .
Returns: YES if P would have terminated had we

run it on input x; NO otherwise.

(We are assuming that P expects just one input x. Again nothing hangs on this.
Indeed, if P requires more than one input, we can think of it as taking in a single
input: the concatenation of the individual inputs.)

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Halting Problem

Module Home Page

Title Page

JJ II

J I

Page 4 of 12

Back

Full Screen

Close

Quit

• E.g. A solution to the Halting Problem should return YES when given the following
program and input x = 11:

while x 6= 1
{ x := x − 2;
}

• E.g. A solution to the Halting Problem should return NO when given the previous
program and input x = 12.

• Question: Why can’t we simply run P on x and see what happens?

35.2.2. Preliminaries

• We will prove that the Halting Problem is non-computable.

• We want to prove:

There is no MOCCA program which, upon accepting any pair 〈P, x〉 con-
sisting of the text of a legal MOCCA program P and a string of symbols x,
terminates after some finite amount of time, and outputs YES if P halts
when run on input x and NO if P does not halt when run on input x.

• A key observation is that such a program, if it exists, must work for every pair 〈P, x〉.
And, of course, such a program, if it exists, is itself a legal MOCCA program, so it
has to work on itself.

• We shall prove the nonexistence of such a program by contradiction.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Halting Problem

Module Home Page

Title Page

JJ II

J I

Page 5 of 12

Back

Full Screen

Close

Quit

• Proof by contradiction: assume the negation of what we want to prove, and then
derive a contradiction.

W1
W2∧¬W2

¬W1

• Sketch of our proof:

– We will assume such a program does exist. Call it HP .

– We will construct another program, Imposs, that uses perfectly reasonable op-
erations, but it also uses HP as a procedure.

– We will show that there’s something wrong with Imposs: there is a particular
input on which it cannot terminate and also on which it cannot not terminate!
This is impossible (contradiction)!

– Since Imposs will have been constructed in a perfectly reasonable way, the only
part that can be responsible for the contradiction is the procedure HP .

– Therefore, HP cannot exist.

35.2.3. The Proof

• Assume a MOCCA program for solving the Halting Problem does exist. Call it HP .

• We construct a new MOCCA program, Imposs, as follows:

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Halting Problem

Module Home Page

Title Page

JJ II

J I

Page 6 of 12

Back

Full Screen

Close

Quit

program
input

Q

Q Q

YES NO

(hypothetical)
program HP for
halting problem

new (hypothetical)
program, Imposs

does Q halt on input Q?

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Halting Problem

Module Home Page

Title Page

JJ II

J I

Page 7 of 12

Back

Full Screen

Close

Quit

• Here’s Imposs again in a more textual form:

Algorithm: Imposs(Q)

ans := HP(Q,Q);
if ans = YES
{ while true

{
}

}
else
{ return whatever ;
}

• And here’s an explanation of program Imposs in words.

– Imposs is a MOCCA program which takes in a single input, Q, which itself
should be the text of a MOCCA program.

– Imposs begins by making a copy of Q.

– Imposs then calls HP . Recall that HP expects two inputs, so when Imposs
activates HP , it supplies the two copies of Q.

– HP must eventually return either YES (i.e. program Q does terminate for input
Q) or NO (i.e. program Q does not terminate for input Q).

– Imposs reacts as follows:

∗ If HP returned YES, Imposs enters an infinite loop.
∗ If HP returned NO, Imposs terminates (the output being unimportant).

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Halting Problem

Module Home Page

Title Page

JJ II

J I

Page 8 of 12

Back

Full Screen

Close

Quit

• We will now show that Imposs is a logical impossibility.

• Specifically, we will show that there is a certain input on which Imposs cannot ter-
minate, but it also cannot not terminate!

• The input that causes the problem is Imposs itself!

• We’ll spell out two cases

– We’ll suppose Imposs applied to itself does terminate.

– Then we’ll suppose Imposs applied to itself does not terminate.

• Suppose Imposs, when given itself as input, does terminate.

• What happens? Two copies of Imposs are made. These are fed to HP , which returns
an answer. It tells us, in this case, whether Imposs terminates on Imposs. We are
assuming that it does. So HP would return YES. However, at this point, we enter
the infinite loop, so Imposs never terminates.

• But this means that, when we assume that Imposs does terminate on Imposs, then
Imposs does not terminate on Imposs!

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Halting Problem

Module Home Page

Title Page

JJ II

J I

Page 9 of 12

Back

Full Screen

Close

Quit

YES NO

Imposs

Imposs Imposs

does Imposs halt
on input Imposs?

Yes, it does.

Therefore, it doesn’t.

• Suppose instead that Imposs, when given itself an input, does not terminate.

• What happens? We copy Imposs. We feed the copies into HP . It returns NO.
However, at this point, Imposs terminates.

• But this means that, when we assume that Imposs does not terminate on Imposs,
then Imposs does terminate on Imposs!

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Halting Problem

Module Home Page

Title Page

JJ II

J I

Page 10 of 12

Back

Full Screen

Close

Quit

YES NO

Imposs

Imposs Imposs

does Imposs halt
on input Imposs?

No, it doesn’t.

Therefore, it does.

• From these two cases, we have found that

– Imposs cannot terminate when run on itself, and

– Imposs cannot not terminate when run on itself!

Something is very wrong with Imposs.

• But Imposs was constructed quite legally. So, the only part of Imposs that can be
held responsible is HP .

• We conclude that a program HP , solving the Halting Problem, simply cannot exist.

• (How much did this depend on MOCCA? Not at all.)

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Halting Problem

Module Home Page

Title Page

JJ II

J I

Page 11 of 12

Back

Full Screen

Close

Quit

Acknowledgements

This treatment is mostly based on [Har92]. I acknowledge also the influence of Achim
Jung’s Models of Computation course notes [Jun].

Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Halting Problem

Module Home Page

Title Page

JJ II

J I

Page 12 of 12

Back

Full Screen

Close

Quit

References

[Har92] D. Harel. Algorithmics: The Spirit of Computing. Addison-Wesley, 2nd edition,
1992.

[Jun] A. Jung. Models of Computation (Course Notes).

http://www.cs.ucc.ie/~dgb/courses/toc.html

	Introduction
	The Halting Problem
	What is the Halting Problem?
	Preliminaries
	The Proof


