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Lecture 31:

Reductions

Aims:

• To discuss the idea of a reduction and reducibility;

• To discuss the idea of polynomial-time reductions, and to see what we
can learn from them;

• To see what we can learn from other reductions too.
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31.1. Reductions

• Reductions of one problem to another are going to be very important in several
upcoming lectures. The following joke might give you an intuition about what a
reduction is:

What’s the difference between a mathematician and an engineer?
Put an empty kettle in the middle of the kitchen floor and tell them to boil
some water.
The engineer will fill the kettle with water, put it on the stove, and turn
the stove on. The mathematician will do the same thing.
Next, put the kettle already filled with water on the stove, and ask them to
boil some water.
The engineer will turn the stove on.
The mathematician will empty the kettle and put it in the middle of the
kitchen floor. . . thereby reducing the problem to one that has already been
solved!

• Suppose you have a problem P2 which you know how to solve, e.g. by using algorithm
A2.

• Suppose you are given another problem P1 that seems similar to P2. How might you
solve P1?

– You could try to solve P1 from scratch.

– You could try to borrow elements of A2.

– You could try to find a reduction from P1 to P2.

• A reduction of P1 to P2:
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– transforms inputs to P1 into inputs to P2;

– runs A2 (which solves P2) as a ‘black-box’; and

– interprets the outputs from A2 as answers to P1.

More formally,

A problem P1 is reducible to a problem P2 if there is a function f that
takes any input x to P1 and transforms it to an input f(x) of P2, such that
the solution to P2 on f(x) is the solution to P1 on x.

x f f(x) A2 output

This converts x into f(x),

A1

corresponding inputs to A2.
A2 is an algorithm that

solves P2.

A1 is an algorithm that solves P1.

• Here’s a simple example.

Suppose we already have an algorithm for solving the following problem:

Problem 31.1. Matrix Multiplication
Parameters: Two matrices, M1 and M2.
Returns: The result of multiplying M1 and M2 to-

gether.
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Suppose we are now asked to solve the following problem:

Problem 31.2. Squaring a Matrix
Parameters: A matrix, M .
Returns: The result of squaring M .

Here’s how we would do it using a reduction:

M f A2 output

A1

A2 is an algorithm that
multiplies two matrices.

M1

M2

A1 is an algorithm that squares a matrix.

Class Exercise

What does f need to do?

• Our treatment of this topic so far makes it sound as if reductions are all about saving
programming effort.

• But in theoretical Computer Science, reductions give us information. Under certain
circumstances that we’ll now investigate in detail, information we know about P1

might apply to P2, or information we know about P2 might apply to P1. Let’s look
at the details of this.
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31.2. Polynomial-Time Reducibility

• The notion of reductions become especially useful in Complexity Theory when we
can place a bound on the complexity of the transformation, f . Suppose, for example,
that we know f takes polynomial time.

• We say that a problem P1 is polynomial-time reducible to a problem P2 if there
is a function f , computable in polynomial time, that takes any input x to P1 and
transforms it to an input f(x) of P2, such that the solution to P2 on f(x) is the
solution to P1 on x.

• Shorthand P1
poly−→ P2

• Suppose P1
poly−→ P2.

– This rules out the possibility that P1 is intractable while P2 is tractable.

– Highly informally, it means that P2 is ‘as hard as’ P1.

– It also means if P2 is tractable, then P1 is tractable.

– Equivalently (the contrapositive): if P1 is proved to be intractable, then P2 is
also intractable.

• Let’s see why.

• Theorem: Suppose P1
poly−→ P2. If P2 is tractable, then P1 is tractable.

• Proof: If P2 tractable, then we will have a polynomial-time algorithm A2 for solving
P2. From this, we can construct a polynomial-time algorithm, A1, for solving P1, as
follows:
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x f f(x) A2 output

This converts x into f(x)
in polynomial−time.

A1

A2 is a polynomial−time
algorithm that solves P2.

A1 is a polynomial−time algorithm that solves P1.

These both take polynomial−time.

Therefore, A1 takes polynomial−time.

The conversion, f , takes polynomial-time and A2 takes polynomial-time, so A1 (which
comprises f followed by A2 in sequence) must take polynomial-time.

Hence P1 would be tractable too.

31.2.1. Proving a problem to be tractable

• Example 1

– As an example, let’s think about matrix multiplication and matrix squaring
again.

– We’ve already seen that Squaring a Matrix reduces to Matrix Multiplication.

And, in fact, Squaring a Matrix
poly−→Matrix Multiplication.

– Suppose Matrix Multiplication is tractable.

– What do you conclude about Squaring a Matrix and why?

• Example 2.
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– Consider a decision problem P . (It returns YES or NO.)

– The complement of P returns YES whenever P returns NO, and returns NO
whenever P returns YES.

– E.g.:

Problem 31.3.
Parameters: An integer x and a finite-length list of in-

tegers, L.
Returns: YES if x is a member of L and NO oth-

erwise.

– Its complement is

Problem 31.4.
Parameters: An integer x and a finite-length list of in-

tegers, L.
Returns: NO if x is a member of L and YES oth-

erwise.

– Suppose P2 is a decision problem and that P2 is tractable.

– Suppose P1 is the complement of P2.

– Class Exercise: Show that P1 is tractable.

31.2.2. Proving a problem to be intractable

• Suppose P1
poly−→ P2.

• We have been using this:
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– If P2 is tractable, then P1 is tractable.

• But we can also use this (the contrapositive):

– If P1 is proved to be intractable, then P2 is also intractable.

Note which way round this is!!!!

• Class Exercise: Explain why this is so.

• In fact, any lower bound we prove for P1 may apply to P2.
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31.3. Non-computability

• We have been using reductions to give us results in Complexity Theory. But we will
see reductions again in the next part of this module, when we discuss computability.

• Reductions are a powerful tool for proving a problem to be non-computable.

• Suppose P1 reduces to P2. (Here we no longer require polynomial-time reducibility.)

• If P1 is non-computable, then P2 is also non-computable.

• Class Exercise: Explain why this is so.

Acknowledgements:

The idea of introducing reductions using the old joke about mathematicians and engineers
comes from [Man89].

Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.
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