
Algorithmic Pseudocode

Algorithm Name and . . .

Data Types

Assignment

Sequence

Conditional

Iteration

Module Home Page

Title Page

JJ II

J I

Page 1 of 26

Back

Full Screen

Close

Quit

Lecture 3:

Algorithmic Constructs

Aims:

• To agree on a basic language that we will use for the presentation of
algorithms throughout this module:

– data types and their operations;

– variables and assignment; and

– control structures (sequence, conditional and iteration).

http://www.cs.ucc.ie/~dgb/courses/toc.html

Algorithmic Pseudocode

Algorithm Name and . . .

Data Types

Assignment

Sequence

Conditional

Iteration

Module Home Page

Title Page

JJ II

J I

Page 2 of 26

Back

Full Screen

Close

Quit

3.1. Algorithmic Pseudocode

We need a language in which we can write our algorithms. The language we will develop
will resemble some parts of Java. Why not use Java itself? The idea here is communication
between us, humans, rather than communication with the machine. Using Java, or any
other programming language, would require excessive detail and precision.

Instead, we will use what is often called pseudocode. This is a language in which we can
express algorithms. It has many of the constructs of modern programming languages. But
it makes life easier in a number of ways. Most radically, we allow ourselves to include infor-
mal English statements, provided they are reasonably precise and reasonably unambiguous.
We also rid ourselves of many of the awkward details of real programming languages. For
example, we will allow ourselves to write well-recognised abbreviations such as 3x instead
of 3 * x. Similarly, we allow oursleves to write 32 instead of the more ‘linear’ forms that
are found in programming languages such as 3 * 3 or 3 ** 3 or 3↑2 or Math.exp(3, 2).
(Which of those would be the one supported by Java?) We also won’t get too bogged down
in details such as consistent use of semi-colons for ending or joining statements.

In other words, you can write pretty much what you like! However, I advise you to stick
more or less to what is covered in this lecture.

I am going to give our pseudocode language a name, so that I can refer to it, for example
in exam questions. The name I choose is DECAFF.

Here’s an example of an algorithm written in DECAFF. We discuss the details in the rest

http://www.cs.ucc.ie/~dgb/courses/toc.html

Algorithmic Pseudocode

Algorithm Name and . . .

Data Types

Assignment

Sequence

Conditional

Iteration

Module Home Page

Title Page

JJ II

J I

Page 3 of 26

Back

Full Screen

Close

Quit

of the lecture.

Algorithm: BinarySearch(x, a, lower , upper)

Parameters: x is an integer; a[lower . . . upper] is an array of distinct integers

stored in non-decreasing order; 0 < lower ≤ upper .
Returns: The position of x in a if found, otherwise fail.

{ lo := lower ;
hi := higher ;
while lo ≤ hi
{ mid := (lo + hi) div 2;

if a[mid] < x
{ lo := mid + 1;
}
else if a[mid] = x
{ return mid ;
}
else
{ hi := mid − 1;
}

}
return fail;

}

http://www.cs.ucc.ie/~dgb/courses/toc.html

Algorithmic Pseudocode

Algorithm Name and . . .

Data Types

Assignment

Sequence

Conditional

Iteration

Module Home Page

Title Page

JJ II

J I

Page 4 of 26

Back

Full Screen

Close

Quit

3.2. Algorithm Name and Problem Specification

• We optionally begin with the name of the algorithm and the formal parameters.

Algorithm: BinarySearch(x, a, lower , upper)

• Then we optionally give the problem specification for the problem that this algorithm
solves. This has the advantage of giving more details about the parameters, e.g. their
type (integer, Boolean, etc.). but we’ll omit it when the problem that we are solving
is clear from the context.

Parameters: x is an integer; a[lower . . . upper] is an array of distinct integers

stored in non-decreasing order; 0 < lower ≤ upper .
Returns: The position of x in a if found, otherwise fail.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Algorithmic Pseudocode

Algorithm Name and . . .

Data Types

Assignment

Sequence

Conditional

Iteration

Module Home Page

Title Page

JJ II

J I

Page 5 of 26

Back

Full Screen

Close

Quit

3.3. Data Types

• A data type is

– a set of values; and

– the operations we can use to create, access and modify the values.

3.3.1. Integers

• For integers, we allow two kinds of operation.

• Operations on integers that return other integers:

+ − × div mod

Three of these are obvious: +,− and ×. We use div to indicate integer division,
i.e. the result will be an integer. Integer division truncates twowards zero. So, e.g.,
7 div 2 = 3 and −7 div 2 = −3. We use mod for modulo, i.e. xmod y gives the
remainder after integer division of x by y. Let Q be xdiv y and R be xmod y, then
x = Q× y + R. So, for example, 7mod 2 = 1 and −7 mod 2 = −1.

The symbols you would use for these in Java are: +, -, *, / and %, respectively.
There is no penalty if you use these Java symbols: I will know what you mean.

Equally, abbreviations, such as 3x instead of 3× x (or 3 * x) are also acceptable.

We will also, on occasion, assume that we can raise to a power (xy). There may be
other things which we will allow. We’ll introduce them as we need them.

And, one final thing: what about illegal operations? We disallow division by zero
(using div or mod). But we won’t worry about overflow. We’ll assume that our
computer can perform the five operations on numbers no matter how great their
magnitude.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Algorithmic Pseudocode

Algorithm Name and . . .

Data Types

Assignment

Sequence

Conditional

Iteration

Module Home Page

Title Page

JJ II

J I

Page 6 of 26

Back

Full Screen

Close

Quit

• Operations on integers that return Booleans:

= 6= < ≤ > ≥

These are all obvious. Feel free to also use the following if you find them convenient:
6<, 6≤, 6> and 6≥. Of course, they aren’t necessary because each is equivalent to one of
the ones above, e.g. 6< is equivalent to ≥.

The symbols you would use in Java are = =, !=, <, <=, > and >=. The first of
these is, of course, a pair of equal signs. Writing a single equals sign in Java when
you should have written a pair is one of the commonest Java errors. In DECAFF, I
am going to use a single equals sign, as we would in maths. I don’t mind which you
use.

3.3.2. Booleans

• We also allow Booleans.

• There are just two values: true and false.

• Operations on Booleans that return other Booleans:

= ¬ ∧ ∨

p ¬p

true false
false true

p q p ∧ q p ∨ q

true true true true
true false false true
false true false true
false false false false

http://www.cs.ucc.ie/~dgb/courses/toc.html

Algorithmic Pseudocode

Algorithm Name and . . .

Data Types

Assignment

Sequence

Conditional

Iteration

Module Home Page

Title Page

JJ II

J I

Page 7 of 26

Back

Full Screen

Close

Quit

• We will introduce some other types as we proceed through the module (e.g. lists).
But integers and Booleans will suffice for now.

3.3.3. Precedence and Associativity

When there are multiple operators in an expression, how should evaluation proceed? Con-
sider

2 + 3× 4

This evaluates either to the number 20 or to the number 14. It depends on which operator
you evaluate first. If you apply + to 2 and 3 to give 5 and then apply × to 5 and to 4, the
whole expression has 20 as its value. However, if first you apply × to 3 and 4 to give 12
and then apply + to 2 and 12, the whole expression has 14 as its value.

Consider also
5− 2 + 3

This evaluates either to the number 6 or to the number 0. 5− 2 gives 3, then 3 + 3 gives
6. Alternatively, 2 + 3 gives 5 and 5− 5 gives 0.

Parentheses provide one way to disambiguate. They make the evaluation order explicit:

(2 + 3)× 4 evaluates to the number 20
2 + (3× 4) evaluates to the number 14
(5− 2) + 3 evaluates to the number 6
5− (2 + 3) evaluates to the number 0

We will use parentheses liberally. But there are ways to avoid some parentheses, as we
will now illustrate.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Algorithmic Pseudocode

Algorithm Name and . . .

Data Types

Assignment

Sequence

Conditional

Iteration

Module Home Page

Title Page

JJ II

J I

Page 8 of 26

Back

Full Screen

Close

Quit

One way to do away with parentheses is to have a convention about which of two operators
is applied first: these conventions are known as operator precedence rules and operator
associativity rules. The following rules are based on those used in Java.

Here are the operator precedences:

¬ highest precedence
×,div,mod

+,−
<,≤, >,≥

=, 6=
∧
∨ lowest precedence

So

2 + 3× 4

is evaluated as
2 + (3× 4)

because × has higher precedence than +.

The associativity rules tell us what to do in the event of a tie in precedence. Again we use
Java’s rules. In Java all operators are left-associative. So

5− 2 + 3

is evaluated as
(5− 2) + 3

because + and − associate to the left.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Algorithmic Pseudocode

Algorithm Name and . . .

Data Types

Assignment

Sequence

Conditional

Iteration

Module Home Page

Title Page

JJ II

J I

Page 9 of 26

Back

Full Screen

Close

Quit

(As a matter of passing interest, Java does in fact have one right-associative operator. It’s
not one of the operators discussed above. I’ll leave you to find out what it is from a Java
textbook, if you’re interested.)

Remember, you can override the precedence and associativity rules with parentheses. E.g.
you would use

(2 + 3) ∗ 4

5− (2 + 3)

to obtain different evaluation orders.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Algorithmic Pseudocode

Algorithm Name and . . .

Data Types

Assignment

Sequence

Conditional

Iteration

Module Home Page

Title Page

JJ II

J I

Page 10 of 26

Back

Full Screen

Close

Quit

3.4. Assignment

• Assignment is the first of the commands that we allow in DECAFF.

• A variable is a named storage location that can hold a value of a particular type.

• The assignment command is used to store the value of an expression into a variable:

mid := (lo + hi) div 2;

• In programming languages, you have to follow numerous rules concerning variables.
These rules concern declaration, initialisation, scope, lifetime and visibility. For
example, in Java, you would have needed to declare the variable mid, indicating its
type and giving some initial value:

int mid = 0;

In DECAFF, we take a low-ceremony approach: use whatever variables you need,
when you need them!

• Note that in DECAFF, I prefer to use the symbol := for assignment, whereas in Java
the equals sign, =, is used. I don’t mind which you use; there’s no penalty either way.

• Remember that DECAFF is pseudocode. So if we want, we can mix in statements of
English (provided they are reasonably precise and unambiguous), e.g.:

z := the larger of x and y;

http://www.cs.ucc.ie/~dgb/courses/toc.html

Algorithmic Pseudocode

Algorithm Name and . . .

Data Types

Assignment

Sequence

Conditional

Iteration

Module Home Page

Title Page

JJ II

J I

Page 11 of 26

Back

Full Screen

Close

Quit

• We allow arrays in DECAFF.

• In DECAFF, arrays are indexed fixed-length collections of values of the same type.

Mostly, we’ll use arrays of integers. But arrays of other data types are also allowed,
e.g. arrays of Booleans, arrays of arrays, etc.

In Java, the cells of an array are indexed starting from 0. So an array of length n
has cells that are indexed by the integers from 0 to n− 1. Perhaps confusingly then,
the first cell is cell 0, the second is cell 1, the third is cell 2, and the last is cell n− 1
(not n).

In DECAFF, we choose how we want to refer to the cells.

• a[1 . . . n] is an array of length n, indexed from 1 to n. (N.B. 1 . . . n are the indexes
of the cells, not the contents.)

• a[0 . . . n− 1] is an array of length n, indexed from 0 to n− 1. (This is like Java.)

• a[lower . . . upper] is an array of length upper − lower + 1, indexed from lower to
upper . This is a nice general way to specify an array.

• Array assignment changes the value of one of the components:

a[i + 1] := a[j]× 2;

http://www.cs.ucc.ie/~dgb/courses/toc.html

Algorithmic Pseudocode

Algorithm Name and . . .

Data Types

Assignment

Sequence

Conditional

Iteration

Module Home Page

Title Page

JJ II

J I

Page 12 of 26

Back

Full Screen

Close

Quit

3.5. Sequence

• Control structures enable us to determine the order of execution of the commands
within an algorithm.

• The most basic control structure is sequence.

– You have several commands and you want them executed one after the other.
– In DECAFF, simply write them one after the other!

C1;C2; . . . ;Cn

• A sequence of one or more commands can be grouped into a single command called
a block or compound command using curly braces.

{C1;C2; . . . ;Cn}

• Here’s an example:

temp := a[i];
a[i] := a[j];
a[j] := temp;

temp := a[i];

a[i] := a[j];

a[j] := temp;

http://www.cs.ucc.ie/~dgb/courses/toc.html

Algorithmic Pseudocode

Algorithm Name and . . .

Data Types

Assignment

Sequence

Conditional

Iteration

Module Home Page

Title Page

JJ II

J I

Page 13 of 26

Back

Full Screen

Close

Quit

• Here it is as a block:

{ temp := a[i];
a[i] := a[j];
a[j] := temp;

}

http://www.cs.ucc.ie/~dgb/courses/toc.html

Algorithmic Pseudocode

Algorithm Name and . . .

Data Types

Assignment

Sequence

Conditional

Iteration

Module Home Page

Title Page

JJ II

J I

Page 14 of 26

Back

Full Screen

Close

Quit

3.6. Conditional

One-armed conditional: There are occasions when we want a statement to be executed
only if a certain condition is satified.

if B
C;

If Boolean expression B evaluates to true, then command C is executed. If B is
false, C is not executed. Remember that C can be a block of commands (which acts
like a single command). I like to write the braces around C, even when C is a single
command.

Two-armed conditional: There are other occasions when we want to select one of two
commands according to the condition.

if B
C1;

else
C2;

If Boolean expression B evaluates to true, then command C1 is executed. If B is
false, then C2 is executed. Again C1 and/or C2 can be blocks of commands. Using
curly braces, even when not strictly needed, will avoid certain errors – see the next
lecture.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Algorithmic Pseudocode

Algorithm Name and . . .

Data Types

Assignment

Sequence

Conditional

Iteration

Module Home Page

Title Page

JJ II

J I

Page 15 of 26

Back

Full Screen

Close

Quit

Here’s an example of a one-armed conditional.

if x 6= 0
{ z := y div x
}

x =/= 0

false

true

z := y div x

And here’s an example of a two-armed conditional.

if x < y
{ z := y
}
else
{ z := x
}

false true
x < y

z := x z := y

http://www.cs.ucc.ie/~dgb/courses/toc.html

Algorithmic Pseudocode

Algorithm Name and . . .

Data Types

Assignment

Sequence

Conditional

Iteration

Module Home Page

Title Page

JJ II

J I

Page 16 of 26

Back

Full Screen

Close

Quit

3.7. Iteration

• If our only control structures are sequences and conditionals, then no part of an
algorithm would ever be executed more than once. We introduce iteration (loop)
control structures to allow parts of the algorithm to be executed multiple times.

• Iteration control structures typically comprise:

– a body — the command that may be executed multiple times;

– a test — a Boolean expression that determines whether to execute the body
another time or whether to exit the loop

• In unbounded iteration, when the processor encounters the loop, it does not know
how many times the body of the loop is to be executed.

• In bounded iteration, when the processor encounters the loop, it does know how many
times the body of the loop is to be executed.

3.7.1. Unbounded Iteration

• while loops are perhaps the most common forms of unbounded iteration.

while B
C;

• If Boolean expression B evaluates to true, then command C is executed, and then
the while command is repeated. If B is false, C is not executed.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Algorithmic Pseudocode

Algorithm Name and . . .

Data Types

Assignment

Sequence

Conditional

Iteration

Module Home Page

Title Page

JJ II

J I

Page 17 of 26

Back

Full Screen

Close

Quit

• Thus, C is executed repeatedly for as long as B evaluates to true.

• Again C can be a block of commands.

• Here’s a concrete example.

while x ≥ y
{ x := x− y;
}

true

x >= y

x := x − y

false

• There are at least four types of unbounded iteration depending on

– placement of the test: pre-test or post-test i.e. whether the test is made before
or after executng the body.

– nature of the test: exit-when-true or exit-when-false i.e. whether the loop is
exited when the test evaluates to true or when it evaluates to false.

• So let’s look at the four possibilities. The first is just the while loop that we have
already looked at.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Algorithmic Pseudocode

Algorithm Name and . . .

Data Types

Assignment

Sequence

Conditional

Iteration

Module Home Page

Title Page

JJ II

J I

Page 18 of 26

Back

Full Screen

Close

Quit

3.7.1.1. Pre-test, exit-when-false

while curry is bland
{ add teaspoon of spices
}

add teaspoon
of spices

curry
is bland

true

false

Java has this.

3.7.1.2. Pre-test, exit-when-true

until curry is spicy
{ add teaspoon of spices
}

add teaspoon
of spices

curry
is spicy

false

true

http://www.cs.ucc.ie/~dgb/courses/toc.html

Algorithmic Pseudocode

Algorithm Name and . . .

Data Types

Assignment

Sequence

Conditional

Iteration

Module Home Page

Title Page

JJ II

J I

Page 19 of 26

Back

Full Screen

Close

Quit

Java does not have this.

The key observation about pre-test loops is that the body may not be executed even once.

3.7.1.3. Post-test, exit-when-false

do
{ add teaspoon of spices
}
while curry is bland

add teaspoon
of spices

curry
is blandtrue

false

Java has this.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Algorithmic Pseudocode

Algorithm Name and . . .

Data Types

Assignment

Sequence

Conditional

Iteration

Module Home Page

Title Page

JJ II

J I

Page 20 of 26

Back

Full Screen

Close

Quit

3.7.1.4. Post-test, exit-when-true

do
{ add teaspoon of spices
}
until curry is spicy

add teaspoon
of spices

curry
is spicyfalse

true

Java does not have this.

The key observation about post-test loops is that the body will definitely be executed at
least once.

Class Exercise

Choosing the wrong loop type is a major cause of error. This can happen even when you
only have a choice of two loop types, as you do in Java!

http://www.cs.ucc.ie/~dgb/courses/toc.html

Algorithmic Pseudocode

Algorithm Name and . . .

Data Types

Assignment

Sequence

Conditional

Iteration

Module Home Page

Title Page

JJ II

J I

Page 21 of 26

Back

Full Screen

Close

Quit

What’s wrong with this and how would you fix it?

Parameters: A list, L, of integers.

Returns: The sum of the integers in the list.

{ sum := 0;
do
{ x := the next number from L

sum := sum + x;
}
until the list is empty
return sum

}

3.7.1.5. Infinite Loops

It is easy to deliberately or inadvertently write infinite loops using the unbounded iteration
constructs. Here are some examples.

while True
C;

while 1 = 1
C;

http://www.cs.ucc.ie/~dgb/courses/toc.html

Algorithmic Pseudocode

Algorithm Name and . . .

Data Types

Assignment

Sequence

Conditional

Iteration

Module Home Page

Title Page

JJ II

J I

Page 22 of 26

Back

Full Screen

Close

Quit

x := 11;
while x 6= 0

x := x− 2; ;

q := 0;
while x 6= 0
{ x := x− y;

q := q + 1;
}
return q;

Look at the last example to the right. Assume that x and y are the formal parameters and
that they are both positive integers. This algorithm will sometimes terminate (for some
values of x and y) and sometimes will not.

Make a guess at what problem the algorithm is supposed to solve. On what values does it
terminate, and on what values does it fail to terminate? How would you fix the algorithm
so that it always terminates and does correctly solve the problem?

3.7.2. Bounded Iteration

• In bounded iteration, when the processor encounters the loop, it does know how many
times the body of the loop is to be executed.

• Typically, some kind of for loop is used to give bounded iteration. Here’s an example
of the simplest kind of for loop:

for i := 1 upto n
{ sum := sum + i;
}

http://www.cs.ucc.ie/~dgb/courses/toc.html

Algorithmic Pseudocode

Algorithm Name and . . .

Data Types

Assignment

Sequence

Conditional

Iteration

Module Home Page

Title Page

JJ II

J I

Page 23 of 26

Back

Full Screen

Close

Quit

Let V be a variable; let E1 and E2 be arithmetic expressions that evaluate to integers; let
L be a finite list; and let S be a finite set. Then we allow each of these:

for V := E1 upto E2

C;

e.g.

for i := lower upto upper
{ a[i] := 0;
}

You might be surprised to learn that the exact way that for loops work differs from pro-
gramming language to programming language. We will discuss this further in a lecture on
programming language semantics in a few lectures time.

For now, I’ll just briefly say how I intend our very simple for loops to work. In the above
example, E1 and E2 are evaluated once, when the loop is encountered, to get values. They
are not re-evaluated every time round the loop.

Suppose the values of E1 and E2 when the loop is encountered are e1 and e2 respectively.
Variable V is assigned e1. If V ≤ e2, the loop body, C, is executed. Then V is incremented
by 1. Then the for loop is repeated from the test.

It is illegal in DECAFF for you to include commands in the loop body, C, that in any way
alter the value in V .

We will also allow the following in DECAFF:

for V := E1 downto E2

C;

e.g.

for i := 10 downto 3
{ x := y
}

http://www.cs.ucc.ie/~dgb/courses/toc.html

Algorithmic Pseudocode

Algorithm Name and . . .

Data Types

Assignment

Sequence

Conditional

Iteration

Module Home Page

Title Page

JJ II

J I

Page 24 of 26

Back

Full Screen

Close

Quit

The difference this time is that the loop body is executed if V ≥ e2 and, after executing
C, V is decremented by 1.

And we will allow these also (where L is a finite-length list and S is a finite-sized set):

for each V in L
C;

e.g.

for each x in L
{ sum := sum + x;
}

for each V in S
C;

e.g.

for each x in S
{ display x on the screen;
}

These two are much like the previous two. L and S are evaluated once, when the loop is
encountered. (Or, equivalently, you are not allowed to include commands in C that in any
way alter the contents of L and S.)

Variable V is assigned the first element in L or S, if there are any elements. If V has been
successfully assigned an element, the loop body is executed.

After C has been executed, V is assigned the next element in L or S, if there is one. Then
the for each loop is repeated from the test.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Algorithmic Pseudocode

Algorithm Name and . . .

Data Types

Assignment

Sequence

Conditional

Iteration

Module Home Page

Title Page

JJ II

J I

Page 25 of 26

Back

Full Screen

Close

Quit

With DECAFF’s highly simplified for and for each loops, it is impossible to write an
infinite loop. This is not the case with, for example, Java’s much more powerful (even
dangerously powerful) for loop.

Acknowledgements

The binary search algorithm comes from [Raw91].

Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Algorithmic Pseudocode

Algorithm Name and . . .

Data Types

Assignment

Sequence

Conditional

Iteration

Module Home Page

Title Page

JJ II

J I

Page 26 of 26

Back

Full Screen

Close

Quit

References

[Raw91] G. J. E. Rawlins. Compared to What? An Introduction to the Analysis of Algo-
rithms. W. H. Freeman, 1991.

http://www.cs.ucc.ie/~dgb/courses/toc.html

	Algorithmic Pseudocode
	Algorithm Name and Problem Specification
	Data Types
	Integers
	Booleans
	Precedence and Associativity

	Assignment
	Sequence
	Conditional
	Iteration
	Unbounded Iteration
	Pre-test, exit-when-false
	Pre-test, exit-when-true
	Post-test, exit-when-false
	Post-test, exit-when-true
	Infinite Loops

	Bounded Iteration

