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Lecture 26:

Algorithms with Logarithmic Complexity

Aims:

• To discuss logarithms;

• To look at an algorithm with logarithmic complexity.
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26.1. Logarithmic Functions

• Suppose you are told the following:

3c = 81

What is c? To what power must you raise 3 to get 81?

• Logarithmic functions are the inverse of exponential functions. If a is b to the power
c, i.e. bc = a, we also say that c is the logarithm of a to the base b (meaning c is the
power to which we have to raise b in order to get a), and we write logb a = c.

• For example,
log10 100 = 2 (since 102 = 100)

log2 8 = 3 (since 23 = 8)

• Note that logb a is defined only when a is a positive real number and b is a positive
real number other than 1. (Note: a cannot be 0; b cannot be 0 or 1.) We’ll only be
dealing with positive integer values for a and integers > 1 for b anyway. And mostly,
for us, b will be 2.

• Some laws:

logb 1 = 0
logb b = 1

logb cd = logb c + logb d
logb c/d = logb c− logb d
logb ac = c logb a
logb a = (logc a)/ logc b
blogc a = alogc b
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• E.g. simplify log2 2n

• Outside Computer Science, it is common to compute logs to the base 10 and to
compute so-called natural logs, which are logs to the base e (where e = 2.71828 . . .).
But, in Computer Science logs to the base 2 are the most common.

• If your calculator has a button labelled log on it, then this almost certainly computes
logs to the base 10. If your calculator has a button labelled ln, then this computes
natural logs.

• You may then be wondering: if my calculator only offers logs to the base 10 and
natural logs, how do I use my calculator to compute logs to the base 2? Well, you
can use this law:

logb a =
logc a

logc b

This law allows us to change base. In particular,

log2 a =
ln a

ln 2

• E.g. what is log2 12?

• What are logs used for?

– They help you solve equations that involve exponentiation.

– They reduce multiplication/division of large numbers to addition/subtraction
(log tables & slide rules!)

– In complexity theory, they are used to measure input sizes, especially when the
input is numeric and we want to count the number of digits.
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– In complexity theory, the complexity functions for algorithms that repeatedly
split their input into two halves involve logs to the base 2.

– Logarithmic scale helps us to fit plots onto graph paper.

– They are used in the Richter scale for measuring the seismic energy released by
earthquakes!

• Suppose algorithm A’s worst-case time complexity tA(n) =def log n and algorithm
B’s worst-case time complexity tB(n) =def n. logn grows much more slowly than n.
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26.2. Binary Search

• Here is the binary search algorithm given in a previous lecture. Remember it assumes
that the contents of a are stored in ascending order. Note also that here we have
assumed that a contains distinct integers (no duplicates). This simplifies the analysis.
But the algorithm works just as well when duplicates are allowed.

Algorithm: BinarySearch(x, a, lower , upper)

Parameters: x is an integer; a[lower . . . upper] is an array of distinct integers

stored in non-decreasing order; 0 < lower ≤ upper .
Returns: The position of x in a if found, otherwise fail.

{ lo := lower ;
hi := higher ;
while lo ≤ hi
{ mid := (lo + hi) div 2;

if a[mid ] < x
{ lo := mid + 1;
}
else if a[mid ] = x
{ return mid ;
}
else
{ hi := mid − 1;
}

}
return fail;

}
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• To carry out our analysis, let’s make some assumptions:

– The algorithm performs comparisons, some arithmetic and some assignments.
We count only element comparisons, i.e. comparisons between x and the ele-
ments in a. The frequency of the other operations would be similar to that of
the element comparisons.

– What we want to do in this algorithm is carry out a three-way comparison. We
want to find out whether a[mid ] is less than, equal to, or greater than x. But
DECAFF, along with most programming languages, forces us to implement this
as two two-way comparisons. For simplicity, in our frequency counts we will
assume that only a single operation is needed to determine which of the three
possibilities holds.

• Assume that a is an array of length 15 and that it is indexed from 1 to 15 (rather
than 0 to 14 as it would be in Java). For concreteness, let’s say that these are the
values that a contains:

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

1 2 3 54 6 7 8 9 10 11 12 13 14 15

In the lecture, we will search for

– x = 170

– x = 150

– x = 180

– x = 185
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100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

1 2 3 54 6 7 8 9 10 11 12 13 14 15
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• Searching for x = 185:
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FAIL

– Initially, the number of candidates is n.
– If you have executed the loop body once, the number of candidates is at most

n div 2.
– If you have executed the loop body twice, the number of candidates is at most

n div 4.
– In general, if you have executed the loop body k times, the number of candidates

is at most n div 2k.
– The worst case is unsuccessful search where we reduce the candidates to 1 and

then do one more test. We have reduced the candidates to 1 when

1 = n div 2k

i.e.
k = log2 n
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– So, performing one more test, we get

t(n) =def 1 + log2 n

(For those of you who can handle a bit more precision, it is actually 1+blog2 nc.)
– E.g. with n = 15, k = 4

• Closing remarks:

– Many algorithms involve repeatedly splitting a list or array into equal halves
and then turning attention to one or both halves.

– Base 2 logarithms tell us how many times we can split into halves.

– Base 2 logarithms are therefore crucial in complexity analysis.

– They are so useful that, henceforth, if we write log n we mean log2 n.
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26.3. Summary Graph

• Let’s put several plots on the same graph: something logarithmic, linear, quadratic,
exponential and factorial.
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