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Lecture 24:

Algorithmic Complexity

Aims:

• To compute and compare algorithm complexities;

• To discuss polynomial functions.
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24.1. Algorithm Complexity Examples

24.1.1. The Prefix Averages Problem

• The problem we’ll look at in this section is computing the prefix averages of an array
of numbers. Given an array a[1 . . . n] of n numbers, we want to compute another
array b[1 . . . n] also of length n such that b[i] contains the average of a[0] . . . a[i] (for
0 ≤ i ≤ n).

Problem 24.1.
Parameters: An array a[1 . . . n] of integers.
Returns: An array b[1 . . . n] of doubles such that b[i]

is the average of a[1] . . . a[i].

Example

1 2 3 4

a 3 1 2 6

b 3.0 2.0 2.0 3.0

This is a problem that arises in, e.g., financial software. E.g. given the year-by-year
returns of an investment, you might want to plot the average returns over the lifetime
of the investment.
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24.1.2. Simple Algorithm

• Here is the simplest algorithm.

Algorithm: prefixAverages1(a)

create array b[1 . . . n]
for i := 1 upto n
{ sum := 0.0;

for j := 1 upto i
{ sum := sum + a[j];
}
b[i] := sum/i;

}
return b;

The first line is in English. Beware of such lines! They may hide huge quantities of
work. In this case, it’s fairly benign: all algorithms that solve this problem will have
to contain this piece of work, and it doesn’t hide any additions and divisions.

• Class Exercise

Give a formula for t(n), in terms of n, that defines its worst-case time complexity,
counting only the additions and divisions used to compute the averages.

24.1.3. A Faster Algorithm

• Consider consecutive averages b[i− 1] and b[i]. They are similar:

http://www.cs.ucc.ie/~dgb/courses/toc.html
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b[i− 1] = (a[1] + a[2] + . . . + a[i− 1]) /(i− 1)
b[i] = (a[1] + a[2] + . . . + a[i− 1] + a[i]) /i

If we keep track of the total so far, we can easily compute the next average:

– add the next number to the total

– divide

Algorithm: prefixAverages2(a)

create array b[1 . . . n]
sum := 0.0;
for i := 1 upto n
{ sum := sum + a[i];

b[i] := sum/i;
}
return b;

• Class Exercise

Give a formula for t(n), in terms of n, that defines its worst-case time complexity,
again counting only the additions and divisions.
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24.2. Polynomials Functions

• In algebra, a polynomial function, or polynomial, is a function of the form:

f(n) =def aknk + ak−1n
k−1 + . . . + a1n + a0

– k is a nonnegative integer;

– for us, a0, . . . , ak will be integers, called the coefficients of f ;

– the highest occurring power of n (i.e. k if ak is not zero) is called the degree of
f ;

– its coefficient, ak, is called the leading coefficient ;

– each summand, of the form aix
i, is called a term.

• Polynomials of

– degree 0 are called constant functions, e.g.:

f(n) =def 3

– degree 1 are called linear functions, e.g.:

f(n) =def 2n + 3

– degree 2 are called quadratic functions, e.g.:

f(n) =def 7n2 + 2n + 3

– degree 3 are called cubic functions, e.g.:

f(n) =def n3 + 3

http://www.cs.ucc.ie/~dgb/courses/toc.html
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• A root of a polynomial f(n) is a number r such that f(r) = 0

• To determine the roots of polynomials, i.e. to ‘solve algebraic equations’:

– approximate them using, e.g., Newton’s method

– use a formula, where known, e.g. the quadratic formula for quadratic equation
an2 + bn + c = 0

n =
−b±

√
b2 − 4ac

2a

• Here are the graphs of a few very simple polynomials.
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• In general, of course, coefficients will not always be one or zero, as they were in the
previous graph. So let’s see what happens when we have some slightly more interest-
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ing polynomials. Suppose algorithm A’s worst-case time complexity tA(n) =def 100n,
and algorithm B’s worst-case time complexity tB(n) =def 2n2.
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The lines cross at n = 50. So when inputs of are of size less than 50, algorithm B
is the faster; when input sizes exceed 50, algorithm A is the faster. What’s more,
from that point on, the larger the input, the bigger the advantage A has over B. If
n = 100, A is twice as fast as B; if n = 1000, A is 20 times as fast.

• Those of you who have a bit of algebra under your belts can compare algorithms
without graphing them.

• To find out where the graphs for A and B cross, solve

100n = 2n2

http://www.cs.ucc.ie/~dgb/courses/toc.html


Algorithm Complexity . . .

Polynomials Functions

Module Home Page

Title Page

JJ II

J I

Page 9 of 11

Back

Full Screen

Close

Quit

Rearranging:
2n2 − 100n = 0

To solve an2 + bn + c, we can use

n =
−b±

√
b2 − 4ac

2a

In this case,

n =
−(−100)±

√
−1002 − 4× 2× 0
2× 2

So n = 0 and n = 50 are the roots of this equation.

• We can find out the maximum input size that can be handled within a certain time
period.

– To find out how much work A can do in 1000 milliseconds (1 second), assuming
each operation takes 1 millisecond, solve

100n = 1000

So n = 10.

– To find out how much B can do in 1000 milliseconds, solve

2n2 = 1000

You would use the quadratic formula again from above

n =
−0±

√
02 − 4× 2×−1000

2× 2

This has only one positive solution, n = 22.36. So we can solve instances of B
up to size 22 in 1000 milliseconds.
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Time available Maximum problem size Maximum problem size
(seconds) solvable with A solvable with B

1 10 22
10 100 70
100 1000 223
1000 10000 707

• Obviously, the algebra gets harder if the functions that describe the complexities of
the algorithms are not as simple as these ones.
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