
Algorithm Complexity . . .

Polynomials Functions

Module Home Page

Title Page

JJ II

J I

Page 1 of 11

Back

Full Screen

Close

Quit

Lecture 24:

Algorithmic Complexity

Aims:

• To compute and compare algorithm complexities;

• To discuss polynomial functions.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Algorithm Complexity . . .

Polynomials Functions

Module Home Page

Title Page

JJ II

J I

Page 2 of 11

Back

Full Screen

Close

Quit

24.1. Algorithm Complexity Examples

24.1.1. The Prefix Averages Problem

• The problem we’ll look at in this section is computing the prefix averages of an array
of numbers. Given an array a[1 . . . n] of n numbers, we want to compute another
array b[1 . . . n] also of length n such that b[i] contains the average of a[0] . . . a[i] (for
0 ≤ i ≤ n).

Problem 24.1.
Parameters: An array a[1 . . . n] of integers.
Returns: An array b[1 . . . n] of doubles such that b[i]

is the average of a[1] . . . a[i].

Example

1 2 3 4

a 3 1 2 6

b 3.0 2.0 2.0 3.0

This is a problem that arises in, e.g., financial software. E.g. given the year-by-year
returns of an investment, you might want to plot the average returns over the lifetime
of the investment.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Algorithm Complexity . . .

Polynomials Functions

Module Home Page

Title Page

JJ II

J I

Page 3 of 11

Back

Full Screen

Close

Quit

24.1.2. Simple Algorithm

• Here is the simplest algorithm.

Algorithm: prefixAverages1(a)

create array b[1 . . . n]
for i := 1 upto n
{ sum := 0.0;

for j := 1 upto i
{ sum := sum + a[j];
}
b[i] := sum/i;

}
return b;

The first line is in English. Beware of such lines! They may hide huge quantities of
work. In this case, it’s fairly benign: all algorithms that solve this problem will have
to contain this piece of work, and it doesn’t hide any additions and divisions.

• Class Exercise

Give a formula for t(n), in terms of n, that defines its worst-case time complexity,
counting only the additions and divisions used to compute the averages.

24.1.3. A Faster Algorithm

• Consider consecutive averages b[i− 1] and b[i]. They are similar:

http://www.cs.ucc.ie/~dgb/courses/toc.html


Algorithm Complexity . . .

Polynomials Functions

Module Home Page

Title Page

JJ II

J I

Page 4 of 11

Back

Full Screen

Close

Quit

b[i− 1] = (a[1] + a[2] + . . . + a[i− 1]) /(i− 1)
b[i] = (a[1] + a[2] + . . . + a[i− 1] + a[i]) /i

If we keep track of the total so far, we can easily compute the next average:

– add the next number to the total

– divide

Algorithm: prefixAverages2(a)

create array b[1 . . . n]
sum := 0.0;
for i := 1 upto n
{ sum := sum + a[i];

b[i] := sum/i;
}
return b;

• Class Exercise

Give a formula for t(n), in terms of n, that defines its worst-case time complexity,
again counting only the additions and divisions.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Algorithm Complexity . . .

Polynomials Functions

Module Home Page

Title Page

JJ II

J I

Page 5 of 11

Back

Full Screen

Close

Quit

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100

t(n
)

Input size, n

PrefixAverages1
PrefixAverages2

http://www.cs.ucc.ie/~dgb/courses/toc.html


Algorithm Complexity . . .

Polynomials Functions

Module Home Page

Title Page

JJ II

J I

Page 6 of 11

Back

Full Screen

Close

Quit

24.2. Polynomials Functions

• In algebra, a polynomial function, or polynomial, is a function of the form:

f(n) =def aknk + ak−1n
k−1 + . . . + a1n + a0

– k is a nonnegative integer;

– for us, a0, . . . , ak will be integers, called the coefficients of f ;

– the highest occurring power of n (i.e. k if ak is not zero) is called the degree of
f ;

– its coefficient, ak, is called the leading coefficient ;

– each summand, of the form aix
i, is called a term.

• Polynomials of

– degree 0 are called constant functions, e.g.:

f(n) =def 3

– degree 1 are called linear functions, e.g.:

f(n) =def 2n + 3

– degree 2 are called quadratic functions, e.g.:

f(n) =def 7n2 + 2n + 3

– degree 3 are called cubic functions, e.g.:

f(n) =def n3 + 3

http://www.cs.ucc.ie/~dgb/courses/toc.html


Algorithm Complexity . . .

Polynomials Functions

Module Home Page

Title Page

JJ II

J I

Page 7 of 11

Back

Full Screen

Close

Quit

• A root of a polynomial f(n) is a number r such that f(r) = 0

• To determine the roots of polynomials, i.e. to ‘solve algebraic equations’:

– approximate them using, e.g., Newton’s method

– use a formula, where known, e.g. the quadratic formula for quadratic equation
an2 + bn + c = 0

n =
−b±

√
b2 − 4ac

2a

• Here are the graphs of a few very simple polynomials.

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35 40 45 50

t(n
)

Input size, n

tA(n) = n
tB(n) = n^2
tC(n) = n^3

• In general, of course, coefficients will not always be one or zero, as they were in the
previous graph. So let’s see what happens when we have some slightly more interest-

http://www.cs.ucc.ie/~dgb/courses/toc.html


Algorithm Complexity . . .

Polynomials Functions

Module Home Page

Title Page

JJ II

J I

Page 8 of 11

Back

Full Screen

Close

Quit

ing polynomials. Suppose algorithm A’s worst-case time complexity tA(n) =def 100n,
and algorithm B’s worst-case time complexity tB(n) =def 2n2.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 20 40 60 80 100

t(n
)

Input size, n

tA(n) = 100n
tB(n) = 2n^2

The lines cross at n = 50. So when inputs of are of size less than 50, algorithm B
is the faster; when input sizes exceed 50, algorithm A is the faster. What’s more,
from that point on, the larger the input, the bigger the advantage A has over B. If
n = 100, A is twice as fast as B; if n = 1000, A is 20 times as fast.

• Those of you who have a bit of algebra under your belts can compare algorithms
without graphing them.

• To find out where the graphs for A and B cross, solve

100n = 2n2

http://www.cs.ucc.ie/~dgb/courses/toc.html


Algorithm Complexity . . .

Polynomials Functions

Module Home Page

Title Page

JJ II

J I

Page 9 of 11

Back

Full Screen

Close

Quit

Rearranging:
2n2 − 100n = 0

To solve an2 + bn + c, we can use

n =
−b±

√
b2 − 4ac

2a

In this case,

n =
−(−100)±

√
−1002 − 4× 2× 0
2× 2

So n = 0 and n = 50 are the roots of this equation.

• We can find out the maximum input size that can be handled within a certain time
period.

– To find out how much work A can do in 1000 milliseconds (1 second), assuming
each operation takes 1 millisecond, solve

100n = 1000

So n = 10.

– To find out how much B can do in 1000 milliseconds, solve

2n2 = 1000

You would use the quadratic formula again from above

n =
−0±

√
02 − 4× 2×−1000

2× 2

This has only one positive solution, n = 22.36. So we can solve instances of B
up to size 22 in 1000 milliseconds.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Algorithm Complexity . . .

Polynomials Functions

Module Home Page

Title Page

JJ II

J I

Page 10 of 11

Back

Full Screen

Close

Quit

Time available Maximum problem size Maximum problem size
(seconds) solvable with A solvable with B

1 10 22
10 100 70
100 1000 223
1000 10000 707

• Obviously, the algebra gets harder if the functions that describe the complexities of
the algorithms are not as simple as these ones.

Acknowledgements

The prefix averages problem and its two algorithms come from [GT02]. Some of the
discussion of polynomial functions is based on [AU92].

Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Algorithm Complexity . . .

Polynomials Functions

Module Home Page

Title Page

JJ II

J I

Page 11 of 11

Back

Full Screen

Close

Quit

References

[AU92] A. V. Aho and J. D. Ullman. Foundations of Computer Science. W.H. Freeman,
1992.

[GT02] M. T. Goodrich and R. Tamassia. Algorithm Design: Foundations, Analysis, and
Internet Examples. Wiley, 2002.

http://www.cs.ucc.ie/~dgb/courses/toc.html

	Algorithm Complexity Examples
	The Prefix Averages Problem
	Simple Algorithm
	A Faster Algorithm

	Polynomials Functions

