Lecture 24:
 Algorithmic Complexity

Module Home Page

Title Page
Aims:

- To compute and compare algorithm complexities;
- To discuss polynomial functions.

24.1. Algorithm Complexity Examples

24.1.1. The Prefix Averages Problem

- The problem we'll look at in this section is computing the prefix averages of an array of numbers. Given an array $a[1 \ldots n]$ of n numbers, we want to compute another array $b[1 \ldots n]$ also of length n such that $b[i]$ contains the average of $a[0] \ldots a[i]$ (for $0 \leq i \leq n)$.

Problem 24.1.

Parameters:
Returns: $\quad A n$ array $b[1 \ldots n]$ of doubles such that $b[i]$ is the average of $a[1] \ldots a[i]$.

Example

$$
\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}
$$

$b \quad 3.012 .012 .013 .0$

This is a problem that arises in, e.g., financial software. E.g. given the year-by-year returns of an investment, you might want to plot the average returns over the lifetime of the investment.

24.1.2. Simple Algorithm

- Here is the simplest algorithm.

```
Algorithm: PrefixAverages1(a)
create array \(b[1 \ldots n]\)
for \(i:=1\) upto \(n\)
\{ sum \(:=0.0\);
    for \(j:=1\) upto \(i\)
    \{ sum \(:=\) sum \(+a[j]\);
    \}
    \(b[i]:=s u m / i ;\)
\}
return \(b\);
```

The first line is in English. Beware of such lines! They may hide huge quantities of work. In this case, it's fairly benign: all algorithms that solve this problem will have to contain this piece of work, and it doesn't hide any additions and divisions.

- Class Exercise

Give a formula for $t(n)$, in terms of n, that defines its worst-case time complexity, counting only the additions and divisions used to compute the averages.

24.1.3. A Faster Algorithm

- Consider consecutive averages $b[i-1]$ and $b[i]$. They are similar:

$$
\begin{aligned}
b[i-1] & =(a[1]+a[2]+\ldots+a[i-1]) \quad /(i-1) \\
b[i] & =(a[1]+a[2]+\ldots+a[i-1]+a[i]) \quad / i
\end{aligned}
$$

Module Home Page

Title Page

Page 4 of 11

Back

Full Screen

```
Algorithm: PREFIXAVERAGES2( \(a\) )
create array \(b[1 \ldots n]\)
sum \(:=0.0\);
for \(i:=1\) upto \(n\)
\(\{\quad\) sum \(:=\) sum \(+a[i]\);
    \(b[i]:=\operatorname{sum} / i\);
\}
return \(b ;\)
```


- Class Exercise

Give a formula for $t(n)$, in terms of n, that defines its worst-case time complexity, again counting only the additions and divisions.

Page 5 of 11

24.2. Polynomials Functions

- In algebra, a polynomial function, or polynomial, is a function of the form:

$$
f(n)=\operatorname{def} a_{k} n^{k}+a_{k-1} n^{k-1}+\ldots+a_{1} n+a_{0}
$$

- k is a nonnegative integer;
- for us, a_{0}, \ldots, a_{k} will be integers, called the coefficients of f;
- the highest occurring power of n (i.e. k if a_{k} is not zero) is called the degree of f;
- its coefficient, a_{k}, is called the leading coefficient;
- each summand, of the form $a_{i} x^{i}$, is called a term.
- Polynomials of
- degree 0 are called constant functions, e.g.:

$$
f(n)={ }_{\text {def }} 3
$$

- degree 1 are called linear functions, e.g.:

$$
f(n)={ }_{\text {def }} 2 n+3
$$

- degree 2 are called quadratic functions, e.g.:

$$
f(n)={ }_{\operatorname{def}} 7 n^{2}+2 n+3
$$

- degree 3 are called cubic functions, e.g.:

$$
f(n)={ }_{\text {def }} n^{3}+3
$$

- A root of a polynomial $f(n)$ is a number r such that $f(r)=0$
- To determine the roots of polynomials, i.e. to 'solve algebraic equations':
- approximate them using, e.g., Newton's method
- use a formula, where known, e.g. the quadratic formula for quadratic equation $a n^{2}+b n+c=0$

$$
n=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- Here are the graphs of a few very simple polynomials.

- In general, of course, coefficients will not always be one or zero, as they were in the previous graph. So let's see what happens when we have some slightly more interest-
ing polynomials. Suppose algorithm A's worst-case time complexity $t_{A}(n)={ }_{\text {def }} 100 n$, and algorithm B's worst-case time complexity $t_{B}(n)={ }_{\operatorname{def}} 2 n^{2}$.

The lines cross at $n=50$. So when inputs of are of size less than 50 , algorithm B is the faster; when input sizes exceed 50 , algorithm A is the faster. What's more, from that point on, the larger the input, the bigger the advantage A has over B. If $n=100, \mathrm{~A}$ is twice as fast as B ; if $n=1000, \mathrm{~A}$ is 20 times as fast.

- Those of you who have a bit of algebra under your belts can compare algorithms without graphing them.
- To find out where the graphs for A and B cross, solve

$$
100 n=2 n^{2}
$$

Rearranging:

$$
2 n^{2}-100 n=0
$$

To solve $a n^{2}+b n+c$, we can use

$$
n=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

In this case,

$$
n=\frac{-(-100) \pm \sqrt{-100^{2}-4 \times 2 \times 0}}{2 \times 2}
$$

So $n=0$ and $n=50$ are the roots of this equation.

- We can find out the maximum input size that can be handled within a certain time period.
- To find out how much work A can do in 1000 milliseconds (1 second), assuming each operation takes 1 millisecond, solve

$$
100 n=1000
$$

So $n=10$.

- To find out how much B can do in 1000 milliseconds, solve

$$
2 n^{2}=1000
$$

You would use the quadratic formula again from above

$$
n=\frac{-0 \pm \sqrt{0^{2}-4 \times 2 \times-1000}}{2 \times 2}
$$

This has only one positive solution, $n=22.36$. So we can solve instances of B up to size 22 in 1000 milliseconds.

Time available (seconds)	Maximum problem size solvable with A	Maximum problem size solvable with B
1	10	22
10	100	70
100	1000	223
1000	10000	707

Module Home Page

Title Page

Page 10 of 11

Back

Acknowledgements

The prefix averages problem and its two algorithms come from [GT02]. Some of the discussion of polynomial functions is based on [AU92].

Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.

References

[AU92] A. V. Aho and J. D. Ullman. Foundations of Computer Science. W.H. Freeman, 1992.
[GT02] M. T. Goodrich and R. Tamassia. Algorithm Design: Foundations, Analysis, and Internet Examples. Wiley, 2002.

