
Developing Correct . . .

Program Correctness . . .

Adding Assertions to . . .

Other Lines of Work

Module Home Page

Title Page

JJ II

J I

Page 1 of 12

Back

Full Screen

Close

Quit

Lecture 22:

Correctness in Practice

Aims:

• To discuss what is actually happening in practice.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Developing Correct . . .

Program Correctness . . .

Adding Assertions to . . .

Other Lines of Work

Module Home Page

Title Page

JJ II

J I

Page 2 of 12

Back

Full Screen

Close

Quit

22.1. Developing Correct Programs

• So far, we’ve been looking at proving the correctness of an already-written program.

Now, we will briefly look at how construction of a program and its proof can proceed
hand-in-hand, so that we guarantee that a correct program is developed.

This is non-examinable.

• Suppose we want a program C, such that L 0 ≤ n MC L x2 ≤ n ∧ n < (x + 1)2 M (the
largest integer that doesn’t exceed the square root of x).

We probably need some initialisation commands and then a loop.

L 0 ≤ n M
???
L Inv M
while B
{ L Inv ∧B M

???
L Inv M

}
L Inv ∧ ¬B MWhile
L x2 ≤ n ∧ n < (x + 1)2 M

Decide on an invariant and a loop-test. The postcondition is a conjunction. Maybe
the loop-test is the negation of one of the conjuncts, and the invariant is the other
conjunct. So let

B =def n 6< (x + 1)2

Inv =def x2 ≤ n

http://www.cs.ucc.ie/~dgb/courses/toc.html

Developing Correct . . .

Program Correctness . . .

Adding Assertions to . . .

Other Lines of Work

Module Home Page

Title Page

JJ II

J I

Page 3 of 12

Back

Full Screen

Close

Quit

L 0 ≤ n M
???
L x2 ≤ n M
while (x + 1)2 ≤ n
{ L x2 ≤ n ∧ (x + 1)2 ≤ n M

???
L x2 ≤ n M

}
L x2 ≤ n ∧ n < (x + 1)2 MWhile
L x2 ≤ n ∧ n < (x + 1)2 MConsequence

Fill in the loop body. The obvious way to preserve the invariant is to increment x in
the loop body.

L 0 ≤ n M
???
L x2 ≤ n M
while (x + 1)2 ≤ n
{ L x2 ≤ n ∧ (x + 1)2 ≤ n MInvariant and loop test

L (x + 1)2 ≤ n MConsequence
x := x + 1;
L x2 ≤ n MAssignment

}
L x2 ≤ n ∧ n < (x + 1)2 MWhile
L x2 ≤ n ∧ n < (x + 1)2 MConsequence

Fill in the initialisation. The obvious way to establish the invariant in the first place

http://www.cs.ucc.ie/~dgb/courses/toc.html

Developing Correct . . .

Program Correctness . . .

Adding Assertions to . . .

Other Lines of Work

Module Home Page

Title Page

JJ II

J I

Page 4 of 12

Back

Full Screen

Close

Quit

is to set x to 0.

L 0 ≤ n M
L 02 ≤ n MConsequence
x := 0;
L x2 ≤ n MAssignment
while (x + 1)2 ≤ n
{ L x2 ≤ n ∧ (x + 1)2 ≤ n MInvariant and loop test

L (x + 1)2 ≤ n MConsequence
x := x + 1;
L x2 ≤ n MAssignment

}
L x2 ≤ n ∧ n < (x + 1)2 MWhile
L x2 ≤ n ∧ n < (x + 1)2 MConsequence

I didn’t show the proofs needed for Consequence, but they should also be given.

Ideally, we should also have considered a variant to establish total correctness.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Developing Correct . . .

Program Correctness . . .

Adding Assertions to . . .

Other Lines of Work

Module Home Page

Title Page

JJ II

J I

Page 5 of 12

Back

Full Screen

Close

Quit

22.2. Program Correctness in Practice

• So how much program proof actually goes on in practice? Obviously, not much. But
greater rigour is needed when you are developing safety-critical (e.g. life-endangering)
systems. So let’s look at some of the things that people do.

22.2.1. Automatic Program Verification

• For every correct program, there is a proof of its correctness.

• For even short programs, proofs are often long, fiddly and boring.

• Can we automate proofs of correctness?

– We can write a program which, given a proof, can check the proof (a proof
checker).

– But the problem of writing a program to find proofs for arbitrary programs is
non-computable.

– However, we can write a program that assists the user by proving many useful
assertions and checking the work of the user.

• A typical set-up is shown in the following diagram. The user writes some of the
annotations. The system does as many proofs as it can. The user is then left to do
the remaining proofs. The system then checks the proof.

In practice, the process is iterative.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Developing Correct . . .

Program Correctness . . .

Adding Assertions to . . .

Other Lines of Work

Module Home Page

Title Page

JJ II

J I

Page 6 of 12

Back

Full Screen

Close

Quit

Annotated

More fully
annotated

Some proofs
completed

All proofs
completed

Checked
proof of

correctness

human system

program

Program

program

22.2.2. Informal Proofs

• Another possibility in practice is for the human to do proofs but to do only very
high-level, informal proofs.

For example, the human might do the following:

– Come up with an invariant.

– Prove informally that the initialisation steps make the invariant true.

– Prove informally that, if the invariant is true at the start of the loop body, then
it will be true at the end of the loop body.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Developing Correct . . .

Program Correctness . . .

Adding Assertions to . . .

Other Lines of Work

Module Home Page

Title Page

JJ II

J I

Page 7 of 12

Back

Full Screen

Close

Quit

22.3. Adding Assertions to Programs

• Programming languages such as Eiffel and (recent releases of) Java allow the pro-
grammer to include assertions in the program.

• An assertion is a statement that allows you to record and test assumptions about
your program.

• In Java, you write:

a s s e r t 〈Boolean-expression〉 ;

or, more helpfully,

a s s e r t 〈Boolean-expression〉 : 〈error string〉 ;

• When encountered during execution, the Boolean expression is evaluated. An error
is thrown if the expression does not evaluate to true. The error string, if included,
is displayed.

• The claimed advantages are

“By verifying that the boolean expression is indeed true, the assertion
confirms your assumptions about the behavior of your program, increasing
your confidence that the program is free of errors.
“Experience has shown that writing assertions while programming is one
of the quickest and most effective ways to detect and correct bugs. As
an added benefit, assertions serve to document the inner workings of your
program, enhancing maintainability.” [jav03].

http://www.cs.ucc.ie/~dgb/courses/toc.html

Developing Correct . . .

Program Correctness . . .

Adding Assertions to . . .

Other Lines of Work

Module Home Page

Title Page

JJ II

J I

Page 8 of 12

Back

Full Screen

Close

Quit

• Ideal candidates are: preconditions, postconditions and loop invariants. In other
words, even if you are not going to all the trouble of proving the correctness of your
program, a little thought about preconditions, postconditions and loop invariants
can be tremendously useful. Include them as assertions in your program. Put the
precondition at the start. Put the postcondition at the end. Put the loop invariant
(a) just prior to the while command, (b) at the end of the loop body; and (c) after
the while loop.

• E.g.

private stat ic int intDiv (int x , int y)
{ a s s e r t x >= 0 && y > 0;

int q = 0 ;
int r = x ;
a s s e r t x == q ∗ y + r && 0 <= r ;
while (r >= y)
{ q++;

r = r − y ;
a s s e r t x == q ∗ y + r && 0 <= r ;

}
a s s e r t x == q ∗ y + r && 0 <= r ;
a s s e r t x == q ∗ y + r && 0 <= r &&

r < y ;
return q ;

}

(Obviously, in this particular example, there wasn’t much point including both the
invariant after the loop and the postcondition, since they were so similar. Just the
postcondition would suffice here. But, in general, you might include both.)

• In case this (new) feature of Java interests you, here are some more notes about using

http://www.cs.ucc.ie/~dgb/courses/toc.html

Developing Correct . . .

Program Correctness . . .

Adding Assertions to . . .

Other Lines of Work

Module Home Page

Title Page

JJ II

J I

Page 9 of 12

Back

Full Screen

Close

Quit

it.

– If your program contains assertions, then you must compile your program in a
special way. This will not work:

javac MyProgram.java

Instead, you must use:

javac -source 1.5 MyProgram.java

or, if that doesn’t work, try:

javac -source 1.4 MyProgram.java

(This is why you should not include assertions in programs you are writing for
other lecturers in this year’s modules. When they are grading your program,
they may not realise that they need to compile it in a special way.)

– Assertion checking can be enabled or disabled (so that it incurs no performance
penalty once the program is finished). By default, it is disabled. So if you run
your program like this:

java MyProgram

assertion checking is disabled. More verbosely, the following gives the same
effect:

java -da MyProgram

To enable assertion checking, run your program like this:

java -ea MyProgram

(Of course, you’ll need to write a buggy program —one whose assertions are
not true— to see anything happen. But that shouldn’t be a problem ;)

http://www.cs.ucc.ie/~dgb/courses/toc.html

Developing Correct . . .

Program Correctness . . .

Adding Assertions to . . .

Other Lines of Work

Module Home Page

Title Page

JJ II

J I

Page 10 of 12

Back

Full Screen

Close

Quit

– For further information about Java assertions and where and how to use them,
read [jav03].

• A final remark is that assertion-checking was a late addition to the Java language.
The Eiffel language is an object-oriented language in which, by contrast, assertion-
checking was included from the outset. The facilities for assertion-checking in Eiffel
are therefore much better-developed. Great care has gone into thinking about the way
that assertion-checking interacts with object-oriented features such as inheritance, for
example.

In Eiffel circles, the use of assertions has been elevated to an approach to the design
and implementation of programs and goes under the name of Design-By-Contract.
If you are interested, the classic textbook is [Mey97].

http://www.cs.ucc.ie/~dgb/courses/toc.html

Developing Correct . . .

Program Correctness . . .

Adding Assertions to . . .

Other Lines of Work

Module Home Page

Title Page

JJ II

J I

Page 11 of 12

Back

Full Screen

Close

Quit

22.4. Other Lines of Work

• Verification of hardware

• More sophisticated languages for specification of systems

– Hoare triples are suitable only for simple programs

– To specify whole systems of various kinds, use Z, B, VDM, Larch, CCS, CSP,
modal logics, etc.

• Formal specification refinement.

Acknowledgements

I used material from [Kal90] and [jav03].

Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Developing Correct . . .

Program Correctness . . .

Adding Assertions to . . .

Other Lines of Work

Module Home Page

Title Page

JJ II

J I

Page 12 of 12

Back

Full Screen

Close

Quit

References

[jav03] java.sun.com. Programming with assertions.
http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html, Accessed 02/10/03.

[Kal90] A. Kaldewaij. Programming: The Derivation of Algorithms. Prentice Hall, 1990.

[Mey97] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 2nd edition,
1997.

http://www.cs.ucc.ie/~dgb/courses/toc.html

	Developing Correct Programs
	Program Correctness in Practice
	Automatic Program Verification
	Informal Proofs

	Adding Assertions to Programs
	Other Lines of Work

