
The Inference Rule for . . .

Module Home Page

Title Page

JJ II

J I

Page 1 of 12

Back

Full Screen

Close

Quit

Lecture 19:

Invariants of Loops

Aims:

• To look at the inference rule for while loops;

• To discuss the role of invariants.

http://www.cs.ucc.ie/~dgb/courses/toc.html


The Inference Rule for . . .

Module Home Page

Title Page

JJ II

J I

Page 2 of 12

Back

Full Screen

Close

Quit

19.1. The Inference Rule for While-Loops

• While
L Inv ∧B M C L Inv M

L Inv Mwhile B C L Inv ∧ ¬B M

Wff Inv is chosen to be an invariant of the loop:

provided B is true if Inv is true before we start C, and C terminates,
then Inv is also true at the end of C.

• The key to proving the partial correctness of a while loop is the discovery of the
invariant, Inv .

In general, the body of the loop, C, changes the state (changes the values of variables).
But we must try to find a relationship between the values of the variables that is
preserved by execution of C.

Indeed, the invariant must be true just before we enter the body of the loop (whether
this be for the first time or on some subsequent iteration), and it must be true after
we have exited the loop.

This is reflected in the inference rule. The condition of the rule, L Inv ∧B MC L Inv M,
requires that, whenever we execute the body of the loop, then the invariant is satisfied
before and after execution. (In this triple, the precondition also requires that B is
true, because this is what will make us execute the body of the loop.)

The rule allows us to conclude that, prior to the loop, the invariant is true (it is the
precondition). And, after the loop, the invariant is still true, but the loop-test is false
(this is the postcondition).

Note that Inv does not have to be continuously true during execution of C. All that
is required is that it is true before C is executed and true again after C has executed.

• How do we prove the correctness of a while loop?

http://www.cs.ucc.ie/~dgb/courses/toc.html


The Inference Rule for . . .

Module Home Page

Title Page

JJ II

J I

Page 3 of 12

Back

Full Screen

Close

Quit

1. Guess a wff Inv that you hope is an invariant. Unfortunately, finding useful in-
variants requires some ingenuity and a deep understanding of the program. You
may be dismayed by this. But really it was only to be expected. Programming
itself requires understanding and ingenuity, so we shouldn’t expect a free lunch
in proving correctness. I’ll give some hints in the next lecture at how to discover
invariants. For the simple examples and exercises you encounter in this module,
finding invariants will not be too hard.

2. Prove that (Inv ∧¬B) ⇒ Q. As with the Rule of Consequence, we use ‘normal’
logic and what we know about arithmetic, etc. to do this.

3. Push Inv upwards through C. Let’s call the wff you get from this Inv ′.

4. Prove that (Inv ∧B) ⇒ Inv ′. Again we step outside of Floyd-Hoare logic to do
this.

5. Now write Inv above the while loop. (Continue to push this up through the
rest of the program, if any.)

If any of the proofs don’t go through then either you guessed the wrong invariant or
your program is wrong.

• As an observation, what we’re doing is a somewhat disguised form is a proof by
induction.

The base case is that the invariant is true after 0 iterations. We establish this because
we write the invariant ahead of the loop and push it upwards, so we’re making sure
that the earlier parts of the program do establish it.

The step case is where we assume the invariant holds for k iterations and we prove
it holds for k + 1 iterations. The place where we are doing this is when we write the
invariant at the end of the body, push it upwards through the body and then write
the invariant again and use the Rule of Consequence to show that one implies the
other.

http://www.cs.ucc.ie/~dgb/courses/toc.html


The Inference Rule for . . .

Module Home Page

Title Page

JJ II

J I

Page 4 of 12

Back

Full Screen

Close

Quit

That’s our proof by induction. We also have the additional requirement to show
that, if we exit the loop, the invariant will imply the postcondition of the program.
We achieve this when we push the postcondition up to the point just after the loop
and establish a connection using the Rule of Consequence.

• Let’s see an example in which we go through those steps. I want to show you that,
apart from guessing the invariant, it’s all simple stuff —as mechanical as the stuff
we’ve been doing so far. So, to make life easy, I will give you the invariant in this
case.

• Prove that `par L x ≥ 0 MProgA L y = x! M where ProgA is:

y := 1;

z := 0;

while z 6= x
{

z := z + 1;

y := y × z;

}

http://www.cs.ucc.ie/~dgb/courses/toc.html


The Inference Rule for . . .

Module Home Page

Title Page

JJ II

J I

Page 5 of 12

Back

Full Screen

Close

Quit

As usual, start by writing the program’s precondition at the top and the postcondition
at the bottom.

L x ≥ 0 M

y := 1;

z := 0;

while z 6= x
{

z := z + 1;

y := y × z;

}

L y = x! M

Working upwards, the command prior to the postcondition is the while loop. So we
go through the five steps given earlier.

The first involves inventing the invariant. I shall just tell you that it is y = z!

The second step involves writing Inv ∧ ¬B just after the loop and then show that

http://www.cs.ucc.ie/~dgb/courses/toc.html


The Inference Rule for . . .

Module Home Page

Title Page

JJ II

J I

Page 6 of 12

Back

Full Screen

Close

Quit

the two statements ‘connect’ using the Rule of Consequence:

L x ≥ 0 M

y := 1;

z := 0;

while z 6= x
{

z := z + 1;

y := y × z;

}
L y = z! ∧ z = x M
L y = x! MConsequence (proof 1©)

Proof 1©: To show (y = z! ∧ z = x) ⇒ y = x!.

By arithmetic, we simplify L y = z! ∧ z = x M to L y = x! M. So we have y = x! ⇒ y =
x! ≡ True.

Next, we write the invariant at the bottom of the loop body and push it upwards to

http://www.cs.ucc.ie/~dgb/courses/toc.html


The Inference Rule for . . .

Module Home Page

Title Page

JJ II

J I

Page 7 of 12

Back

Full Screen

Close

Quit

get Inv ′.

L x ≥ 0 M

y := 1;

z := 0;

while z 6= x
{

L y × (z + 1) = (z + 1)! M
z := z + 1;
L y × z = z! MAssignment
y := y × z;
L y = z! MAssignment

}
L y = z! ∧ z = x M
L y = x! MConsequence (proof 1©)

Next we write Inv ∧B just above Inv ′ and we show they ‘connect’ using the Rule of

http://www.cs.ucc.ie/~dgb/courses/toc.html


The Inference Rule for . . .

Module Home Page

Title Page

JJ II

J I

Page 8 of 12

Back

Full Screen

Close

Quit

Consequence:

L x ≥ 0 M

y := 1;

z := 0;

while z 6= x
{ L y = z! ∧ z 6= x MInvariant and loop test

L y × (z + 1) = (z + 1)! MConsequence (proof 2©)
z := z + 1;
L y × z = z! MAssignment
y := y × z;
L y = z! MAssignment

}
L y = z! ∧ z = x M
L y = x! MConsequence (proof 1©)

Proof of 2©: To show (y = z! ∧ z 6= x) ⇒ y × (z + 1) = (z + 1)!.

We know that (z + 1)! = (z + 1) × z!. So if we take y × (z + 1) = (z + 1)! and we
substitute in, we get y × (z + 1) = (z + 1) × z!, and then can divide both sides by
(z + 1) to get y = z! This leaves us with (y = z! ∧ z 6= x) ⇒ y = z! ≡ True.

So now we can write the invariant above the loop and a comment at the end of the

http://www.cs.ucc.ie/~dgb/courses/toc.html


The Inference Rule for . . .

Module Home Page

Title Page

JJ II

J I

Page 9 of 12

Back

Full Screen

Close

Quit

loop.

L x ≥ 0 M

y := 1;

z := 0;
L y = z! M
while z 6= x
{ L y = z! ∧ z 6= x MInvariant and loop test

L y × (z + 1) = (z + 1)! MConsequence (proof 2©)
z := z + 1;
L y × z = z! MAssignment
y := y × z;
L y = z! MAssignment

}
L y = z! ∧ z = x MWhile
L y = x! MConsequence (proof 1©)

Now we just push the precondition of the loop (i.e. the invariant that we wrote just

http://www.cs.ucc.ie/~dgb/courses/toc.html


The Inference Rule for . . .

Module Home Page

Title Page

JJ II

J I

Page 10 of 12

Back

Full Screen

Close

Quit

before the loop) up through the rest of the program:

L x ≥ 0 M
L 1 = 0! MConsequence (proof 3©)
y := 1;
L y = 0! MAssignment
z := 0;
L y = z! MAssignment
while z 6= x
{ L y = z! ∧ z 6= x MInvariant and loop test

L y × (z + 1) = (z + 1)! MConsequence (proof 2©)
z := z + 1;
L y × z = z! MAssignment
y := y × z;
L y = z! MAssignment

}
L y = z! ∧ z = x MWhile
L y = x! MConsequence (proof 1©)

Proof 3©: To show x ≥ 0 ⇒ 1 = 0!.

0! is 1, so we have 1 = 1, which is True, so we have x ≥ 0 ⇒ True ≡ True.

• Here’s another one that we will do as a class exercise. This program is supposed to
copy the value of x into y, without changing x. Obviously, we could do this with just
y := x. but then we wouldn’t have much of an exercise. So this program does it by
repeatedly adding 1 to y enough times.

The invariant we will try is y + a = x. Prove that `par L x ≥ 0 MProgB L x = y M

http://www.cs.ucc.ie/~dgb/courses/toc.html


The Inference Rule for . . .

Module Home Page

Title Page

JJ II

J I

Page 11 of 12

Back

Full Screen

Close

Quit

where ProgB is:

a := x;

y := 0;

while a 6= 0
{

y := y + 1;

a := a− 1;

}

Acknowledgements

I continue to base material on that in Chapter 4 of [HR00].

Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.

http://www.cs.ucc.ie/~dgb/courses/toc.html


The Inference Rule for . . .

Module Home Page

Title Page

JJ II

J I

Page 12 of 12

Back

Full Screen

Close

Quit

References

[HR00] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning
about Systems. Cambridge University Press, 2000.

http://www.cs.ucc.ie/~dgb/courses/toc.html

	The Inference Rule for While-Loops

